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To realize the lower carbon and more efficient operation of energy hubs in the joint
electricity and carbon market, a day-ahead bidding strategy is proposed for the energy
hub operator (EHO). Considering the uncertainties of prices, demands, and renewable
energy sources, this strategy is formulated as a novel two-stage distributionally robust
joint chance-constrained optimization problem. A total distance-based ambiguity set is
proposed to preserve the mean value of uncertain factors. By introducing this indicator
function, this problem is further reformulated as a mixed-integer linear programming
(MILP) problem. Simulations are performed based on the electricity and carbon prices
in Europe, and the relation between the carbon emission and operational cost is further
investigated in the case studies.
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1 INTRODUCTION

1.1 Motivation
Energy hubs (EHs) are recognized as a powerful platform to realize the efficient energy
conversion and utilization for the future low carbon society, e.g., buildings and industry parks
(Mohammadi et al., 2017). With the deregulation of the energy market and the emergence of the
carbon market, the energy hub operator (EHO) can participate in both electricity and carbon
markets (Ding et al., 2020). It brings significant flexibility to the EHO in reducing the carbon
emission (Olsen et al., 2018), while introducing additional risks to the operational cost, e.g.,
uncertain carbon prices (Sun and Huang, 2020). These uncertainties should be properly modeled
and incorporated into the risk management scheme of EHOs.

1.2 Literature Review
The bidding strategies of EHOs within the electricity market, including the day-ahead and real-
time electricitymarket, can always bemodeled as deterministic optimization problems to reduce the
operational cost (Brahman et al., 2015), emissions (Brahman et al., 2015), and maximize the utility
(Li et al., 2018). A time-series technique for predicting the power generation of the photovoltaic
(PV) cell is applied in (Brahman et al., 2015), and it is assumed that there is no bias from the
actual renewable output to the forecast value. Amathematical programwith equilibrium constraints
is proposed for studying the strategic behaviors of profit-driven EHs in both the electricity and
thermal markets from a deregulated market point of view, and the uncertainties of electricity and
heating demand are neglected in the bidding optimization process, considering the conciseness of
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themodel. However, one significant feature of EHs is to cope with
the fluctuation and intermittency of the distributed renewable
generation with the flexibility provided by multicarrier energy
systems (Jadidbonab et al., 2020).

Furthermore, according to the uncertainties of renewable
energy sources, loads, prices, etc., the deterministic strategies
can be further extended to stochastic optimization
(Davatgaran et al., 2018; Zhao et al., 2020; Jadidbonab et al., 
2020), robust optimization (Lu et al., 2020), distributionally
robust optimization (Zhao et al., 2019), and hybridization
(Liu et al., 2021). The hybrid alternating current/direct current
(AC/DC) microgrid is embedded as an electrical hub for EHs to
realize the high efficiency of energy conversion, and a two-stage
stochastic programming problem is proposed, where uncertain
day-ahead prices, loads, PV, and ambient temperatures are
depicted by scenario trees.Making full use of the thermal demand
flexibility, the quality of thermal service is modeled as a chance
constraint (Zhao et al., 2020). In Oskouei et al. (2021), a large set
of industrial EHs are integrated into virtual EHs to trade energy
in variousmarkets, and the robust approach is coordinated with a
stochastic programming model to formulate a hybrid expression
of uncertainties, considering the priority of day-ahead electricity
prices. The ability of EHs to participate in the joint electricity
and thermal markets in the form of virtual power plants (VPPs)
is explored in Jadidbonab et al. (2020), and a self-scheduling
program is proposed for virtual EHs to maximize the revenue.

When the carbon emission is considered, the bidding
management should consider the carbon emissions as objective
functions (Yang et al., 2019) or constraints (Cheng et al., 2018).
For the given carbon permit prices, a price-taker bidding
strategy is proposed for the VPP operator to bid in the energy,
ancillary services, and carbon market in (Yang et al., 2019),
where carbon emissions, greenhouse gases, and pollutants
are effectively reduced by the carbon trading mechanism. In
Cheng et al. (2018), an analytical model called carbon emission
flow is proposed to quantify the allocation of carbon emission
among different energy carriers in delivery and conversion
processes including both primary and secondary energy. This
work is further used to realize the coordination between
transmission and distribution systems with locational marginal
electricity and uniform carbon prices in Cheng et al. (2020).
Though there have been few studies about carbon trading
in the existing literature, the uncertainties of carbon prices
have not been considered in existing works (Yang et al., 2019;
Cheng et al., 2018, 2020). It introduces additional risks to EHOs
involving carbon markets.

The prevalent works on the risk hedging strategies of
EHOs in various markets are to manage specific uncertainties.
These uncertainties are the aggregation of prices, renewable
energy output, loads, etc. They can be further depicted
by the stochastic model (Zhao et al., 2020), uncertain sets
(Lu et al., 2020), and ambiguity sets (Zhao et al., 2019). The
required scenarios for stochastic optimization rapidly increase
with a growing number of uncertainties to sustain an acceptable
confidence level, or uncertainties are assumed to obey exact
probability distributions which are normally unrealistic. In
robust optimization, uncertainties are always depicted as an

uncertainty set, e.g., polyhedron, which ignores the distribution
information, and the optimized result by considering the worst
condition can be overconservative. To address these limitations,
the ambiguity sets are proposed under different metrics, e.g.,
total distance (Liu et al., 2021) and moment-based distances
(Zhao et al., 2019).However, when the carbon price uncertainties
are considered, the ambiguity sets have not been modeled.

To address the uncertainties under joint electricity and carbon
markets, the EHO should optimize the conversion, storage,
and consumption processes within EHs. As the distributed
energy resources are to be integrated into EHs, the conversion
process, from renewable energy sources and gas to electricity and
thermal energy, has been embedded into the bidding strategies
of EHOs (Davatgaran et al., 2018; Dai et al., 2017). Using existing
electrical and thermal energy storage systems (ESSs), the
electricity and thermal energy can be charged and discharged
efficiently. The demand response programs have been considered
from the energy consumption perspective, and the quality of
thermal services has been utilized to reduce the operational risk
(Zhao et al., 2020). The flexibility of the thermal demand has not
been explored to reduce the risks under joint electricity and
carbon markets.

1.3 Contributions
To manage the uncertainties in joint electricity and carbon
markets, a novel day-ahead bidding strategy is proposed for the
EHO. This strategy is formulated as a two-stage distributionally
robust chance-constrained programming problem, where the
uncertainties of prices, loads, renewable energy sources, and
ambient temperature are formulated as a novel ambiguity set.
The quality of service for the thermal demand is relaxed and
treated as a joint chance constraint. Based on duality, the problem
is reformulated as a mixed-integer linear programming (MILP)
problem.Themain contribution of this article can be summarized
as follows:

• A novel ambiguity set is proposed for electrical prices and
carbon prices. The first-order information is preserved in
this set.
• A novel two-stage distributionally robust joint chance-

constrained programming problem is proposed to manage
the uncertainties in the joint electricity and carbonmarkets.

The rest of this article is organized as follows. The day-
ahead bidding scheme is proposed in Section 2. The two-stage
distributionally robust joint chance-constrained programming
problem is formulated in Section 3. The deterministic
reformulation method is given in Section 4. Case studies are
performed in Section 5. Conclusions are drawn in Section 6.

2 DAY-AHEAD BIDDING OF ENERGY
HUBS IN THE JOINT ELECTRICITY AND
CARBON MARKET

In this section, a typical EH model is introduced, together
with its bidding scheme in the joint electricity and carbon
market.
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2.1 Energy Hub Models
AnEH is typically treated as amultiple-input andmultiple-output
energy conversion system, including the functions of conversion,
storage, and consumption (Zhao et al., 2020). Considering the
electrification of buildings, transportation, and industries in the
coming decades, there exist electrical and thermal hubs in the
system (Oskouei et al., 2021). The input of the EH is the utility
grid (UG), PV generation, and natural gas.The energy conversion
is realized by the combined heat and power (CHP) unit and
air-conditioning. The AC/DC conversion in the electrical hub is
realized by the bi-directional AC/DC converters. The battery and
thermal ESSs are used to store electricity and thermal.

2.2 Day-Ahead Bidding Progress of Energy
Hubs
The EHO is to manage the conversion, storage, and utilization
processes in the EHs while participating in both electricity and
carbon markets. The EHO acts as the price taker in both markets.
The bidding procedure for the EHO is shown in Figure 1.

As shown in Figure 1, the EHO can buy and sell electricity
in the day-ahead and real-time markets. The carbon permit is
purchased in the day-ahead and real-time carbon markets. In the
day-ahead bidding, the electricity and carbon prices are given,
while the real-time electricity and carbon prices, together with
PV output, demand, and ambient temperature, are uncertain,
which is depicted by a scenario tree with uncertain probability
density functions (PDFs).

3 DISTRIBUTIONALLY ROBUST BIDDING
PROBLEM FORMULATION

The optimal day-ahead bidding problem for EHs is formulated
as a bi-objective two-stage distributionally robust optimization
problem in this section, including the day-ahead operation and
real-time operation recourse.

3.1 Two-Stage Distributionally Robust
Chance-Constrained Programming
Problem
A two-stage distributionally robust chance constrained
optimization problem is shown as follows:

FIGURE 1 | Bidding process in the joint electricity and energy market.

min
x∈X

f (x) +max
ℙ∈P
{ρ𝔼ω∼ℙ [Q (x,ω)] + (1− ρ)CVaRα [Q (x,ω)]} ,

(1)

where x represents the day-ahead bidding strategy of EHO,
including the electricity and carbon permit purchase plan, as
shown in Eq. 6. X is the first-stage constraint set, including box
constraints Eqs 7, 8. ρ is the weight factor between the expected
value and conditional value at risk (CVaR), which is employed
as a measure of the tail risk with the given confidence level α.
The choice of ρ depends on the risk preference of the EHO.
For instance, if the EHO is only concerned about the expected
cost minimization, ignoring the potential trading risk in extreme
conditions, ρ is set to be 0. The calculation of CVaR is shown as
follows:

CVaRα [Q (x,ω)] =min
η
{(η+ 1

1− α
𝔼[(Q [(x,ω) − η] +]} , (2)

where η is the value at risk (VaR). For more details on VaR refer
to Rockafellar and Uryasev (2000).
ℙ is the probability within the following ambiguity set:

P ≔
{{
{{
{
ℙ ∈M (Ξ,F)

||

|

ℙ(ξ ∈Ω) = 1
∑ω∈Ω |πω − π0,ω| ≤ τ
∑ω∈Ωπωξω = ξ0

}}
}}
}

, (3)

where πω and π0,ω are the real probability density and nominal
probability density of scenario ω. As shown in Eq. 3, the
ambiguity set only limits the density function on the given
support set Ω. The mean value of prices and renewable energy
outputs is preserved by the third line of Eq. 3 (Liu et al., 2021).
This ambiguity set is further represented by the compact format
Gω ≤ e. Q(x,ω) is the following recourse problem to capture the
optimal decision of EHOs in real-time operation, with the given
day-ahead bidding plan and uncertainties.

Q (x,ω) ≔ min
yω∈Y(x,ω)
{qTyω|Dyω ≥ hω −Tωx} , (4)

where Dyω ≥ hω −Tωx is the compact representation of
Eqs 10–12, 14–33.

The following distributionally robust chance constraint is
introduced to balance the feasibility of the recourse problem and
uncertainties:

Pr
ω∼Ω
{Eyω + Fξω ≤ gω} ≥ 1− β, (5)

where β is the confidential level of the feasibility of the constraint
(Eq. 13). The detailed formulation on the first stage and
second stage optimization problems are given in the following
subsections.

3.2 Day-Ahead Bidding Optimization
The first stage optimization is to minimize the total cost in the
day-ahead market, including the electricity and carbon cost, as
follows:

f (x) = ∑
t∈T
[λDA (t)PDA (t) + μDA (t)ΦDA (t)] , (6)
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where λDA(t) and μDA(t) are the electricity and carbon prices in
the day-ahead markets. The day-ahead bidding plan is limited by
the following constraints:

PUG,min ≤ PDA (t) ≤ PUG,max,∀t, (7)

ΦC,min ≤ΦDA (t) ≤ΦC,max,∀t, (8)

where PUG, min, PUG, max, ΦC, min, and ΦC, max are the minimal and
maximal electricity and carbon purchasing limits in the day-
ahead and real-time markets.

3.3 Real-Time Operation Optimization
Real-time operation optimization is to minimize the real-
time operational cost by optimal scheduling of the generation,
conversion, and consumption processes within EHs. The
objective function in the second stage optimization is depicted as
follows:

qTyω = ∑
t∈T
{cGAS [vCHP,ω (t) + vGAS,ω (t)] + cPVpPV,ω (t)

+ λRT,ωpRT,ω (t) + cES,CHpES,CH,ω (t)
+ cES,DCpES,DC,ω (t) + μRT,ω (t)ϕRT,ω (t)} , (9)

where subscription ω represents for scenario ω. λRT,ω(t) and
μRT,ω(t) are the real-time electricity and carbon prices in the
electricity and carbonmarkets. pRT(t) and ϕRT(t) are the real-time
power between the EH and UG and carbon permit purchased,
respectively. cES,CH and cES,DC are the charging and discharging
cost of battery energy systems (BESs), respectively. pES,CH,ω(t)
and pES,DC,ω(t) are the charging and discharging rates of the BES,
respectively. cGAS is the price of natural gas. vCHP,ω(t) and vGAS,ω(t)
are the gas consumption of CHP and gas boiler, respectively.

The constraints for within the EHs include the thermal,
electrical, conversion, storage, and carbon emission constraints,
as shown in the following subsections.

3.3.1 Constraints for the Thermal Hub
The energy balance equations in the heating and cooling hubs of
the EH are depicted as follows:

qHVAC,TD,ω (t) + qTD,ω (t) + qAC,ω (t) + qHS,CH,ω (t)
= qGAS,ω (t) + qCHP,ω (t) + qHS,DC,ω (t) ,∀t,ω, (10)

qHVAC,CD,ω (t) + qCD,ω (t)
= qCS,DC,ω (t) + qIAC,ω (t) + qCE,ω (t) ,∀t,ω, (11)

where qHVAC,TD,ω(t) and qHVAC,CD,ω(t) are the heating and cooling
demand to control the indoor room temperature, respectively.
qTD,ω(t) and qCD,ω(t) are the heating and cooling demand,
respectively. qAC,ω(t) and qCE,ω(t) are the heating consumption and
cooling output of the absorption chiller, respectively. qCHP,ω(t)
and qGAS,ω(t) are the heating output of the CHP and gas
boiler, respectively. qHS,CH,ω and qHS,DC,ω(t) are the charging and
discharging rates of heating energy storage (HES), respectively.
qCS,CH,ω and qCS,DC,ω(t) are the charging and discharging rates of

cooling energy storage (CES), respectively. qIAC,ω(t) is the cooling
output of the inverter air-conditioning system.

Eqs 10, 11 depict the energy balance on the heating hub and
cooling hub, respectively.

The indoor room temperature of a cluster of buildings is
managed via the consumption of heating and cooling from
the EH, as shown in Figure 2. Based on Fourier’s law, the
relationship between the heating/cooling loads and indoor
room temperature can be approximated by the following linear
equations (Zhang et al., 2018):

qHVAC,TD,ω (t) − qHVAC,CD,ω (t)
Δt

= cair
𝛩in,ω (t) −𝛩in,ω (t −Δt)

Δt

−
𝛩am,ω (t) −𝛩in,ω (t)

RT
,∀t,ω,

(12)

where 𝛩in,ω(t) and 𝛩am,ω(t) are the indoor temperature and
ambient temperature, respectively. cair is the air heating capacity
(kWh/°C), and RT is the thermal resistance of the building
envelope (°C/kW). To guarantee the thermal service quality, the
indoor room temperature should be guaranteed within the given
range as follows:

𝛩in,min ≤ 𝛩in,p,k (t) ≤ 𝛩in,max,∀t,ω, (13)

where𝛩in,min and𝛩in,max are theminimal andmaximal limitations
for the indoor room temperature, respectively.

3.3.2 Constraints of the Electrical Hub
In the electrical systems, the power balance equations on the AC
bus and DC bus of the electrical hub can be depicted as follows:

PDA (t) + pRT,ω (t) + pCHP,ω (t) + ηBICpDC2AC,ω (t)
= pAC,ω (t) + pAC2DC,ω (t) ,∀t,ω, (14)

pES,DC,ω (t) − pES,CH,ω (t) + ηBICpAC2DC,ω (t) + pPV,ω (t)
= pDC,ω (t) + pDC2AC,ω (t) + pIAC,ω (t) + pCS,ω,∀t,ω, (15)

where pCHP,ω(t) is the electric output of CHP, pAC2DC,ω(t) and
pDC2AC,ω(t) are the power transferred from the AC bus to DC
bus and DC bus to AC bus, respectively. pAC,ω(t) and pDC,ω(t) are
the AC load and DC load, respectively. pIAC,ω(t) is the electricity
consumption of the inverter air-conditioning system. ηBIC is the
efficiency of the bidirectional converter (BIC). Eqs 14, 15 depict
the power balance on the AC bus and DC bus of the electrical
hub, respectively.

The limitations for power exchange between the UG and EH
and power transferring on the BIC are shown as follows:

PUG,min ≤ pRT,ω (t) ≤ PUG,max,∀t,ω, (16)

PUG,min ≤ pRT,ω (t) + PDA (t) ≤ PUG,max,∀t,ω, (17)

0 ≤ PDC2AC,ω (t) ≤ IDC2AC,ω (t)PBIC,max,∀t,ω, (18)
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FIGURE 2 | Illustrative figure for the energy hub.

0 ≤ PAC2DC,ω (t) ≤ (1− IDC2ACω (t))PBIC,max,∀t,ω, (19)

where PBIC,max is the capacity of the BIC. IDC2AC,ω(t) is a binary
variable, indicating the operating status of BICs, i.e., 1 if BIC is
on the inverter mode and 0 on the rectifier mode.

Eqs 16, 17 represent the power range limitation on the day-
ahead and real-time power exchange between the EH and utility
grid. Eqs 18, 19 are the constraints for power conversion from
the DC bus to AC bus and AC bus to DC bus, respectively. IDC2AC
forces the unidirection of power conversion on the BIC.

3.3.3 Constraints of Energy Conversion
The energy conversion constraints are to depict the relationship
among energy carriers within the EH, which can be depicted as
the following linear functions (Zhao et al., 2020):

vCHP,ω (t)ηCHPe = pCHP,ω (t) ,∀t,ω, (20)

vCHP,ω (t)ηCHPh = qCHP,ω (t) ,∀t,ω, (21)

vGAS,ω (t)ηGAS = qGAS,ω (t) ,∀t,ω, (22)

pIAC,ω (t)ηIAC = qIAC,ω (t) ,∀t,ω, (23)

pCS,ω (t)ηPCS = qCS,CH,ω (t) ,∀t,ω, (24)

qAC,ω (t)ηAC = qCE,ω (t) ,∀t,ω, (25)

where ηCHPe and ηCHPh are the electricity and heat conversion
efficiency of CHP, respectively. ηGAS, ηIAC, ηAC, and ηPCS are the
conversion efficiencies of the gas boiler, absorption chiller, air
conditioner, and ice storage air conditioner, respectively.

Eq. 20 shows the energy conversion from gas to electricity.
The conversion from gas to heating is depicted by Eqs 21, 22,
using the CHP and gas boiler, respectively. The conversion from
electricity to cooling is depicted by Eqs 23, 24, using the air
conditioner and ice storage air conditioner, respectively. The
conversion from heating to cooling is shown in Eq. 25. It should
be noted that these linear functions might be oversimplified,
especially for the CHP. If heat recovery and other processes are
considered, their equations can be replaced by more accurate
convex or non-convex models, balancing the optimality and
feasibility (Dai et al., 2017).

3.3.4 Constraints of Energy Storage Systems
Considering the self-discharge, charge, and discharge of
processes, the constraints for the ESSs, including BES, CES, and
HES, are represented as follows (Zhao et al., 2018):

0 ≤ yDC,ω (t) ≤ yDC,max,∀t,ω, (26)

0 ≤ yCH,ω (t) ≤ yCH,max,∀t,ω, (27)

yES,min ≤ yES,ω (t) ≤ yES,max,∀t ∈ T , (28)

yES,ω (t) = ηyyES,ω (t −Δt) + yCH,ω (t)ηy,CHΔt −
yDC,ω (t)Δt

ηy,DC
,∀t,ω,

(29)
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yCH,ω ≤ ICH,ω (t)yCH,max∀t,ω, (30)

yDC,ω ≤ (1− ICH,ω (t))yDC,max∀t,ω, (31)

yES,ω (T) = yES (0) ,∀ω, (32)

where yDC(t), yCH(t), and yES(t) represent the discharging,
charging, and energy status of BES, HES, and CES, respectively.
ICH,k(t) is a binary variable, indicating the charging and
discharging status, respectively. ηy,CH, ηy,DC, and ηy represent
the charging, discharging, and self-discharging efficiency of
ESSs, respectively. yDC,max, yCH,max, yES,min, and yES,max are the
limitations for the discharging, charging, and energy status,
respectively.

Eqs 26–28 are the limitations on the discharging, charging,
and energy status of ESSs, respectively.The energy status dynamic
is shown in Eq. 29. Eqs 30–32 enforce that the ESS can only
be either charging or discharging within each period. After the
operation, the energy status should be the same as the initial
status, as depicted by Eq. 32.

3.3.5 Constraints of Carbon Emission
The carbon emissions are generated by the utilized electricity and
gas, which should be less than the purchased carbon permit in the
day-ahead market and real-time market, as follows:

∑
t∈T
[PDA (t) + pRT (t)]νele + [vCHP,ω (t) + vGAS,ω (t)]νgas

≤ ∑
t∈T
[ΦDA (t) +ϕRT,ω (t)] , (33)

where νele and νgas are the carbon emission co-efficients of
electricity and natural gas, respectively.

4 DETERMINISTIC REFORMULATION

As shown in Eqs 1–5, the formulated problem is a two-stage
distributionally robust jointed chance-constrained programming
problem. This problem cannot be solved directly as the
density function is uncertain. It is further reformulated as
its deterministic counterpart, which is a mixed-integer linear
programming problem.

4.1 Deterministic Reformulation of Jointed
Chance Constraints
To reformulate the joint chance constraints (Eq. 5) as a
deterministic constraint, an indicator function is introduced as
follows, to show whether y is feasible or not under scenario ω ∶

Iω = {
0,Eyω + Fξω ≤ gω,
1,Eyω + Fξω > gω

(34)

Using the indicator function (Eq. 34), the joint chance constraint
(Eq. 5) can be reformulated as the following constraints:

∑
ω∈Ω

Iωπω ≤ β, (35)

Eyω + Fξω ≤ gω + IωM, (36)

where M is a scalar big enough to guarantee the feasibility of
problem (Eq. 4), when Iω is activated to 1. Based on the ambiguity
set (3), constraint (Eq. 35) can be further reformulated as the
following constraint:

eTγ ≤ β
GTγ ≥ b(Iω)
γ ≥ 0

, (37)

where γ is the Lagrange multiplier of Gω ≤ e, that is, the
ambiguity set (Eq. 3), and b(Iω) is the vector to represent the
∑ω∈ΩIωπω.

It can be seen that after the reformulation (Eq. 37), the jointed
chance constraint can be solved by its deterministic counterpart.

4.2 Deterministic Reformulation of
Second-Stage Optimization Problems
The expected CVaR value in Eq. 1, that is, maxℙ∈P{ρ𝔼ω∼ℙ
[Q(x,ω)] + (1− ρ)CVaRα[Q(x,ω)]}, can be reformulated based
on Lagrange duality, as the following problem:

min
z,ν,η,z+ω,z−ω,κ

τz + (1− ρ)η+ ξT
0 κ +∑

ω
π0,ω (z+ω − z−ω) + ν

s.t. qTyω +
1− ρ
1− β

vω ≤ z+ω − z−ω + ν + ξT
ωκ,∀ω

z+ω − z−ω ≤ z,∀ω
qTyω − η ≤ vω,∀,ω
z+ω,z
−
ω,vω ≥ 0,∀ω

(38)

where z,ν,η,z+ω, z
−
ω,andκ are the auxiliary variables.

After the deterministic reformulation of the jointed chance
constraints and the second-stage optimization problem,
problems (1)–(5) can be treated as the following mixed-integer
linear programming problem:

min
x,yω,Iω,z,ν,η,z

+
ω,z−ω,κ,γ

τz + (1− ρ)η+ ξT
0 κ

+∑
ω
π0,ω (z+ω − z−ω) + ν

s.t. Dyω ≥ hω −Tωx,∀ω
Eyω + Fξω ≤ gω + IωM,∀ω

qTyω +
1− ρ
1− β

vω ≤ z+ω − z−ω + ν + ξT
ωκ,∀ω

z+ω − z−ω ≤ z,∀ω
qTyω − η ≤ vω,∀ω
z+ω,z−ω,vω ≥ 0,∀ω
eTγ ≤ β
GTγ ≥ b(Iω)
γ ≥ 0

(39)

Problem (39) can be solved by offshore commercial solvers, e.g.,
Gurobi and Cplex.
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FIGURE 3 | Prices in the day-ahead and forecast prices in the real-time
electricity markets.

FIGURE 4 | Day-ahead bidding curves under different cases.

5 CASE STUDY

5.1 Case Description
To verify the effectiveness of the proposed bidding strategy, an EH
test system is proposed, as shown in Figure 2. The bidirectional
AC/DC converter is used to realize the AC/DC conversion in
the electrical hub. The electrical load, heat load, and cooling

FIGURE 5 | Real-time bidding curve differences in different scenarios
between case II and case III.

FIGURE 6 | Real-time bidding curve differences in different scenarios
between case II and case III.

load profiles are obtained from Sadeghian et al. (2017). The day-
ahead electricity price and expected real-time electricity price
profiles are obtained from energy market prices in Omie (2022),
as shown in Figure 3, and carbon prices are extracted from
EU Carbon Permits (Tradingeconomics, 2022a). For the second
stage optimization, 100 scenarios are generated, including the
electrical prices, loads, PV output, and ambient temperature. α is

TABLE 1 | Simulation results under different cases.

Case I II III IV V

f(x)($) 5027.94 5136.68 5141.38 5128.93 5103.22
∑tPDA(t)(kWh) 6943.29 1385.68 1166.83 5346.13 2471.69
𝔼ℙ0(∑tpRT(t))(kWh) 9874.70 15421.00 15641.00 11264.33 14335.97
∑tΦDA(t) +𝔼ℙ0(∑tϕRT(t))(kg) 5419.84 5420.35 5421.04 5365.70 5421.71
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FIGURE 7 | Indoor room temperature in selected scenarios.

set to 0.95. Other parameter settings are obtained from Zhao et 
al. (2020).

Numerical simulations were carried out on a desktop with an
Intel Xeon Gold 6226R CPU and 128 GB of RAM. The MILP
problem in Eq. 39 is solved by the commercial solver Gurobi with
branch-and-cut and simplex methods.

To show the effectiveness of the proposed method, four
different cases are performed as follows:

• Case I: The uncertainties have not been considered.
• Case II: τ = 0, β = 0, and ρ = 0.5.
• Case III: τ = 0.1, β = 0, and ρ = 0.5.
• Case IV: τ = 0.1, β = 0.1, and ρ = 0.5.
• Case V: τ = 0, β = 0, and ρ = 1.

5.2 Result Analysis
The simulation results under different cases are shown inTable 1,
and the day-ahead bidding curves of the EHO in the day-ahead
market are shown in Figure 4.

5.2.1 Impacts of Uncertainties
As shown in Table 1, an increase in the operational cost from
5027.94 $ to 5136.68 $ can be induced including uncertainties
of PV output, demand, and ambient temperature. The day-ahead
bidding curves of case I and case II vary, as shown in Figure 4,
especially during the (0:00, 1:00). In case 1, the uncertainties have
not been considered, whichmeans forecast prices in the real-time
market are accurate without bias, so it is specific for the EHO
whether there is a need for arbitrage or not. In other words, the
EHO tends to purchase as much electricity as possible, in the
day-ahead market during time slots when the electricity price
in the day-ahead market is lower than in the real-time market,
e.g., (5:00, 6:00) and (8:00, 9:00).The purchased electricity during
these time slots has reached the given upper limit, that is,
1000 kW.

To explore the effectiveness of the risk-averse, the risk factor ρ
is set to be 1 in case V. In comparison with case II, the potential
trading risk, which can be incurred in the extreme condition, is
neglected by the EHO to search for a lower expected cost.

5.2.2 Impacts of Distributionally Robust
Uncertainties
The real-time bidding and carbon permit trading difference
curves between case II and case III are shown in Figures 5, 6.
The uncertainties of the probability distribution are considered,
and the worst condition is found by the optimization process.The
variance from the nominal distribution of case II increases the
operational cost, which seems slight due to limited differences
among scenarios. The expected electricity purchased under
nominal PDF in the real-time market increased by 220 kWh in
case III. An interesting observation is that even if the electricity
is increased, the carbon emission almost remains the same. It
indicates that the proposed bidding strategy can always reduce
carbon emissions, while the electricity bidding can be adjusted
accordingly.

5.2.3 Impacts of Joint Chance Constrain Relaxation
The indoor room temperature curve under scenarios 36,
49, 52, 68, and 85 are shown in Figure 7. In these five
scenarios, the indoor room temperature has been relaxed
as the highest temperature is more than 24°C, that is, the
threshold temperature value. These relaxed scenarios can help
reduce the carbon emission and operational cost. Furthermore,
due to τ = 0.1, the number of total relaxed scenarios is 5,
while it should be 10 when τ = 0.0, that is, the PDF is
accurate.

6 CONCLUSION

In this study, a day-ahead bidding strategy is proposed for the
EHO to manage its technical and economic behavior in the
joint electricity and carbon market. To manage the ambiguity
uncertainties of prices, loads, renewable energy output, and
ambient temperature, this strategy is formulated as a two-stage
distributionally robust joint chance-constrained programming
problem and further been reformulated as a mixed-integer linear
programming problem.

Simulations are performed on a test EH system, where the
indoor room temperature can be relaxed in some scenarios.
Results indicate that the proposed strategy can manage the
uncertainties in the joint electricity and carbon market and
reduce the operational cost and carbon emission by exploring the
flexibility of the thermal demand.
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