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In the traditional non-invasive load monitoring (NILM) algorithms, the identification
accuracy is enhanced with the increased network scale while sacrificing the
calculation speed, which restricts the efficiency of the load identification. In this
study, a multi-feature (active/reactive power and current peak-to-peak value)
fusion algorithm is proposed, which can achieve enhanced identification accuracy
with a smaller network scale while maintaining the calculation speed. The features of
the power and current amplitudes of the loads are transformed into the values of red-
green-blue (RGB) color channels by color coding and then fused into the V-I trajectory
features. After that, the true-color feature image with higher discrimination is
generated and input into the convolutional neural network (CNN). The testing
results on the PLAID data set indicate that in comparison with the traditional load
identification algorithm, the algorithm proposed in this study performs higher
identification accuracy with a smaller neural network parameter scale, which
significantly improves the identification efficiency.

Keywords: non-invasive load monitoring (NILM), feature fusion, color channel, color coding, convolutional neural
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1 INTRODUCTION

In 2021, the total electricity consumption in China has been released to be 8,312.8 billion kWh,
an increase of 10.3% compared with that of the year 2020, in which the domestic power
consumption of urban and rural residents is 1,174.3 billion kWh, with an increase of 7.3%,
according to the data released by the China National Energy Administration (Lei., 2021). On
one hand, the continuous growth of the residential power demand requires the power supply
company to provide the demand side management (DSM) with higher efficiency to optimize
power consumption. On the other hand, it also brings greater potential dangers to safety-
related issues of the residential electricity consumption. The proportion of electrical fires in
2021 is as high as 50.4% from the perspective of fire types, according to the national fire
situation released by the China Fire and Rescue Department Ministry of Emergency
Management (Niu, 2021).

As a newmeans of power load consumption monitoring with artificial intelligence techniques, the
non-intrusive load monitoring (NILM) technology obtains information on the type and operational
condition of each load in the load cluster by monitoring voltage and current signals at the power
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input port, which is of great practical significance to strengthen
the load side management, reduce power losses, and improve the
safety of the power consumption.

Load identification is an important part of NILM. The load
steady/transient characteristics are extracted by various
algorithms and then matched to the load model in the
database to identify the type of the load. Related research
has been conducted regarding the construction of a load
identification algorithm. As is proved by Gao et al. (2015),
the V-I trajectory feature is proved to have higher
identification accuracy than the other approaches with the
traditional high-frequency features on the public data set.
Teshome et al. (2016) decompose the current signal into
active (Ia) and reactive (If) components to extract the V-If
trajectory features with an improved identification effect for
the resistive loads, while the normalization operation during
the extraction of the above two features makes the power
characteristics difficult to be reflected. In order to resolve this
problem, the convolution neural network and BP neural
network are both utilized by Wang et al. (2020) to fuse V-I
trajectory image features and power digital features,
respectively. However, the scale of the neural network
increases with this approach, which is not conducive to
maintaining the identification efficiency. Cui et al. (2021)
propose a true-color feature image where the red-green-blue
(RGB) values are converted by the voltage, current, and V-If
trajectory information of the loads. In Ding et al. (2021), the
active current of the loads, the slope of the straight line
segment between the adjacent sampling points of the V-If
trajectory, and the average instantaneous power of adjacent
sampling points are extracted as the RGB values. The color
coding is conducted on the straight line segment between
adjacent sampling points of the V-If trajectory. Liu et al.
(2019a) propose an algorithm based on a grayscale image,
where the phase angle, power factor, and multi-period
repeatability between the continuous points of the
trajectory respectively correspond to the components of
the hue-saturation-brightness (HSV). After that, the
differences among the feature vectors can be demonstrated
on the sampling points of the V-If trajectory. The
aforementioned three pieces of literature can generate true-
color visual images with smaller size and higher
discrimination, while they have the drawback of large
redundancy of feature information.

In this study, the high-frequency information of the load is
first sampled. Thus, the normalized voltage and current data in
the steady-state cycle can be obtained. In addition, the V-I
trajectory matrix is established with the voltage as the vertical
axis and the current as of the horizontal axis. After that, the
average active/reactive power and current peak-to-peak value
in this cycle are extracted and standardized as the RGB values
of the V-I trajectory matrix image so as to achieve the data
visualization and generate true-color feature image. The
characteristic image is then input into a 2DCNN and
trained to improve the accuracy of the load identification.
Finally, the PLAID public data set is utilized to verify the
effectiveness of the proposed approach.

2 PRINCIPLES OF NILM BASED ON
FEATURE FUSION AND COLOR CODING

2.1 Process of Load Identification
The load identification process of the algorithm (Wang et al.,
2020) is illustrated in Figure 1, which can be divided into the
following four steps:

1) Waveform acquisition: The original waveform of high-
frequency voltage and current is first collected over a long
period. Since the on/off state of electrical equipment is
included, the event detection is required to determine the
steady-state cycle including the feature information. In this
study, the sliding window bilateral cumulative sum (CUSUM)
algorithm proposed by Niu and Jia (2021) is used to detect the
rising edge of the power change of specific equipment. The
cycle starting from 1s after the end of the rising edge is
regarded as the steady-state cycle.

2) Feature extraction: After obtaining the data from the
current and voltage waveform during the steady-state
cycle, the V-I trajectory matrix can be formed with the
current/voltage as the x-axis/y-axis. Meanwhile, the active/
reactive power and current peak-to-peak value are
calculated simultaneously.

FIGURE 1 | Flow chart of the load identification process.
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3) Color coding: Values of the RGB channels are respectively
assigned by the active/reactive power and current peak-to-
peak value after standardization. After that, the user-defined
colors are generated and displayed at each sampling point in
the V-I trajectory.

4) Deep learning: Generated true-color feature images are input
into the trained convolution neural network and the final
output is the predicted value of the electrical equipment.

2.2 V-I Trajectory
V-I trajectory is a type of high-frequency feature proposed by
Lam et al. (2007), which can reflect the impedance characteristics,
current variation, and other characteristics of the electrical
equipment at the nominal operating condition. Assuming that
the order of the V-I trajectory matrix is generated at k, the
voltage/current value sequences v/i during the steady-state
cycle are obtained after the acquisition of the waveform, each
including N sampling points. Firstly, the voltage and current are
standardized as:

vsm � ⌊ vm −min(v)
max(v) −min(v) × k⌋, m � 1, 2LN, (1)

ism � ⌊ im −min(i)
max(i) −min(i) × k⌋, m � 1, 2LN, (2)

where vm and im are the instantaneous voltage and current atmth
sampling point; vsm and ism are the voltage and current after
standardization, which also correspond to the number of rows
and columns of the mth sampling point in the V-I trajectory
matrix; � � is the downward rounding symbol.

Secondly, a k*k square matrix M is formed and its elements are
all 0. The corresponding matrix elements are assigned according
to the obtained vsm and ism as:

M[vsm, ism] � 1, m � 1, 2LN. (3)
When the matrix is drawn, the position with element 0 is

temporarily displayed as white color while the position with
element 1 is displayed as black color. Since the direction of
the matrix column is opposite to the positive direction of the
y-axis of the plane in the rectangular coordinate, the required V-I
trajectory matrix can be obtained by turning matrix M vertically.
Figure 2 illustrates the V-I trajectory matrix images of several
common household appliances under nominal operating
conditions. Figures 2A-F present the binary V-I trajectories of
hairdryer, microwave, washing machine, heater, air conditioner
and laptop, respectively.

De Baets et al. (2017) conduct an experiment with the PLAID
public data set (Gao et al. 2014) and find that under steady-state
conditions, the difference in the V-I trajectory caused by the
change of the operating states of electrical equipment can be
ignored in comparison with the characteristic difference between
different equipment. Hence, for multi-state loads such as the air
conditioning, the change of their operating states is not
considered in this study and is regarded as single-state loads.

2.3 Color Coding
Standardization during the drawing of the V-I trajectory matrix
leads to the loss of the amplitude characteristics of the original
voltage and current, which can be reflected by the power
characteristics of the electrical equipment. Hence, in this
study, the average active/reactive power of the electrical
equipment during the steady-state cycle is calculated and
standardized as the R/G values of the characteristic image. The
active and reactive power of the loads are derived as follows:

P � 1
N

∑N
m�1

vm × im, (4)

Q � 1
N

������������������������∑N
m�1

v2m × ∑N
m�1

i2m − ∑N
m�1

(vm × im)2
√√

. (5)

The standardized derivation of the conversion of the power
characteristics into the color values is:

colR � P

max(Ps), (6)

colG � Q

max(Qs), (7)

where colR and colG are the values of the R and G channels of the
characteristic image; max (Ps)/max (Qs) is the maximum value of
the average active/reactive power of electrical equipment during
the steady-state cycle in the whole data set.

The current peak-to-peak value describes the variation range
of the original signal value during the steady-state cycle, which
cannot be reflected by the power characteristics. Similarly, the
current peak-to-peak characteristics are standardized to obtain
the value of the B channel as:

Ipp � max(i) − min(i) , (8)

FIGURE 2 | Image of the V-I trajectory matrix.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 8996693

Xiang et al. NILM Color Coding/Feature Fusion

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


colB � Ipp
max(Ipps), (9)

where Ipp is the peak-to-peak value of steady-state periodic
current; max (Ipps) is the maximum peak-to-peak value of
steady-state periodic current of the loads among the data set;
colB is the value of the B channel of the characteristic image. Thus,
the V-I trajectory matrix images in Figure 2 are color-coded and

transformed to the true-color feature images, as depicted in
Figure 3. Figures 3A-F present the ture-color feature images
of hairdryer, microwave, washing machine, heater, air
conditioner and laptop, respectively.

3 CNN STRUCTURE AND TRAINING
METHOD

3.1 CNN Structure
As is proved by Russakovsky et al. (2015), CNN has a high
sensitivity to subtle color deviation, so it is appropriate to be
utilized for classifying the true-color feature images. The CNN
classification network used in this study is illustrated in
Figure 4.

The specific network parameters are presented in Table 1.
The comparison with the scale of the other networks is

illustrated in Table 2.
It can be seen that compared with the other two networks

used by De Baets et al. (2017) and Liu et al. (2019b), the
network parameter scale of this algorithm is much smaller
and the convergence speed in the training process is also
faster. It proves that the algorithm performs higher
identification accuracy with a smaller neural network
parameter scale.

3.2 CNN Training Method
After completing the establishment of the CNN structure, the
deep neural network will be trained. In this study, the PLAID
public data set is utilized to generate the required feature image,

FIGURE 3 | True-color feature image.

FIGURE 4 | CNN framework.

TABLE 1 | CNN parameters.

Layer type Output dimension Kernel dimension Activation function

Input (32, 32, 3)
Conv1 (32, 32, 12) 3 × 3 × 3 (16) Relu
MaxPooling1 (16, 16, 12) 2 × 2
Conv2 (16, 16, 24) 3 × 3 (32) Relu
Maxpooling2 (8, 8, 24) 2 × 2
FC 64 Relu
Output 11 Softmax
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which is manually divided into the training set and testing set
with a ratio of 7:3. The training process activation function uses a
sigmoid, and the learning rate is set to 0.01. The loss calculation
uses the cross-entropy loss function. In order to prevent
overfitting, L2 regularization parameters are added to the full
connection layer to control the intensity of the overfitting effect
with λ, as is utilized by Li et al. (2016). After testing the neural
network, λ is set to 0.05. The final confusion and accuracy of the
model can be evaluated according to the matrix.

4 EXPERIMENTAL RESULTS AND
ANALYSIS

After training 120 times, the accuracy of the testing set reaches
82.87% and the loss of the testing set reaches 2.1106 as shown in
Figure 5A. With the same CNN structure in this study, the black-
and-white binary V-I trajectory (Gao et al., 2015) has a testing
accuracy of 73.68% and a loss of 2.2587 on the PLAID data set as
shown in Figure 5B.

TABLE 2 | Comparison of network scales.

Feature figure Data set Network structure Parameter/106 Calculation/106

V-I image with color coding (De Baets et al., 2017) PLAID AlexNet 60 720
Weighted pixel V-I image (Liu et al., 2019b) PLAID 2DCNN 21.18 63.49
True-color V-I image (This paper) PLAID 2DCNN 1.02 2.45

FIGURE 5 | Accuracy and loss change curve.
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It can be seen from the figure that the accuracy and loss of the
method in this study gradually converge with the increase of
training times, and there is no overfitting. The accuracy of the
method proposed in this study is higher than that proposed by
Gao. The comparison of the confusionmatrix (Kahl et al., 2016) is
shown in Figure 6. Figures 6A,B illustrate the confusion matrix
of the ture-color V-I trajectory and the binary V-I trajectory,
respectively.

It can be seen from the confusion matrix that there are seven
types of equipment with high identification accuracy, e.g., compact
fluorescent lamp (CFL), hairdryer, microwave, laptop,
incandescent light bulb (ILB), and fan, indicating that these

equipment categories have unique V-I trajectory characteristics.
The accuracy of multi-state load identification, e.g., the air
conditioner (AC) and fridge, is low. The heater and hairdryer
are resistive loads with similar power factors, which can hardly be
distinguished by the binary V-I trajectory. After adding power
parameters, the identification rate is significantly improved, but the
accuracy is still notmeeting expectations. The reason is that: 1) The
power and current level of the air conditioner in the data set is
much higher compared with the other electrical appliances as
shown in Figure 7, resulting in the concentration of RGB color
values of the other electrical appliances in a very small range, which
limits the identification accuracy; 2) the number of samples of each
electrical appliance in the data set is unbalanced, which also led to
the decrease in accuracy. For example, the fluorescent lamp (175
data) is the most sampled appliance, while the washing machine
(26 data) is the least sampled appliance.

To solve these two problems, the future work is as follows.
First, aiming at the concentration of data of other electrical
appliances except for air conditioners, a data interval
homogenization algorithm will be proposed to make the
feature parameters of all electrical appliances evenly
distributed in the interval and enlarge the difference between
different electrical parameters; Second, SMOTE algorithm (Liu
et al., 2019a) will be used to expand the data set to make the
number of data of each type of electrical appliances the same, so
as to solve the problem of data imbalance.

5 CONCLUSION

In order to take both the identification accuracy and the neural
network parameter scale into account in theNILM algorithm, a true-
color V-I trajectory feature image recognition algorithm integrating

FIGURE 6 | Confusion matrix of compound features.

FIGURE 7 | Load distributions in two-dimensional plane of the active and
reactive power from PLAID.
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active/reactive power and current peak-to-peak amplitude features
through color coding has been proposed. Specifically, the features of
the active/reactive power and current amplitudes of the loads are
transformed into the values of the RGB color channels by the color
coding and then fused into the V-I trajectory. As verified with the
PLAID public data set, the accuracy and loss of the testing set reach
82.87% and 2.1106, respectively, which indicates that the algorithm
proposed has significantly improved the identification efficiency
with a smaller neural network parameter scale. Based on the
approach proposed in this study, the power feature fusion
algorithm can be further optimized to make the power difference
of various electrical appliances more intuitive and improve the
learning effect of the neural network.
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