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This study presents a command filtered control scheme for multi-input multi-output
(MIMO) strict feedback nonlinear unmodeled dynamical systems with its applications
to power systems. To deal with dynamic uncertainties, a dynamic signal is introduced,
together with radial basis function neural networks (RBFNNs) to overcome the influences
of the dynamic uncertainties. Command filters (CFs) are used to prevent the explosion
of complexity, where the compensating signals can eliminate the effect of filter errors.
Compared with single-input single-output strict feedback nonlinear systems, the method
proposed in this study has more suitability. In the end, the simulation experiments are
carried out by applying the developed algorithm to power systems, where the simulation
results verify the efficacy of the approach proposed.

Keywords: power system, dynamic uncertainty, command filter, MIMO system, strict feedback nonlinear system

1 INTRODUCTION

In recent years, adaptive control has become a hotspot because of its strong disturbance-
rejection property. Related theories, such as model reference control, robust adaptive control,
and adaptive dynamic programming (Mukherjee et al., 2017; Yang et al., 2021b; Han and
Liu, 2020; Yang et al., 2021d; L’Afflitto, 2018; Yang et al., 2021e), have been applied to many
fields, including power systems, wind energy systems, and multi-agent systems (Li et al., 2020;
Xu et al., 2018; Wu et al., 2017; Ghaffarzdeh and Mehrizi-Sani, 2020; Zou et al., 2020b; Ghosh and
Kamalasadan, 2017; Namazi et al., 2018; Zou et al., 2020a). Moreover, applications of adaptive
control on energy systems are also widely reported (Deese and Vermillion, 2021; Quan et al., 2020;
Liu et al., 2022; Nascimento Moutinho et al., 2008; Liu et al., 2021). Among them, backstepping is
a powerful tool since many energy systems can essentially be modeled as strict feedback systems,
which can be analyzed through the backstepping technique.

The main idea of backstepping is to divide the whole system into a series of subsystems
so that they can be analyzed individually. In this way, the control design and stability
analysis can both be simplified, especially for large-scale systems (Yang et al., 2021a). Meanwhile,
for unmodeled dynamical systems, if the unmodeled dynamics are ignored, the disturbance
from dynamic uncertainties may result in unbounded evolution. Therefore, the dynamic
uncertainties need to be paid enough attention, which is not considered in the aforementioned
literatures. Zhao J. et al. (2021) presented a fuzzy adaptive control approach with an observer
design for unmodeled dynamical systems. Xia et al. developed an output feedback control
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design with quantized performance for dynamic uncertainties
in Xia and Zhang (2018). Wang et al. (2017)investigated
nonstrict feedback systems with unmodeled dynamics and
dead zones through output feedback-based control methods.
Although the aforementioned results can successfully tackle
dynamic uncertainties, they are not able to deal with the
explosion of complexity and avoid the influences of filter
errors.

In the backstepping process, the explosion of complexity often
occurs because the virtual control is repeatedly differentiated.
Meanwhile, the computational complexity increases significantly,
which results in the presented design not being suitable for
applications (Yang et al., 2020). To deal with this issue, the
dynamic surface control method is proposed (Wang and
Huang, 2005). The dynamic surface control method uses first-
order filters, where the virtual control is replaced by the filter
states in each subsystem (Yang et al., 2021c). In this way, the
repeated differentiation issue can be evaded. However, filter
errors are introduced simultaneously, which degrades the
control precision. Thus, command filters (CFs) are developed
(Farrell et al., 2009). Based on the dynamic surface control
approach, CFs additionally introduce compensating signals
to compensate for the loss caused by filter errors, which
further improves the control accuracy compared with the
dynamic surface control method. Owing to this advantage,
CFs are widely applied to many systems. For example,
Zhu et al. (2018)investigated a command filtered robust adaptive
neural network (NN) control for strict feedback nonlinear
systems with input saturation. Zhao L. et al. (2021)presented
an adaptive finite-time tracking control design with CFs. The
adaptive fuzzy backstepping control approach of uncertain strict
feedback nonlinear systems is developed by Wang et al. (2016).
However, the applications of the backstepping technique in
energy systems are not taken into consideration in these works.
In addition, the systems of interest in these works are single-
input single-output systems, whichmay give conservative results.
Therefore, in this study, for multi-input multi-output (MIMO)
strict feedback nonlinear unmodeled dynamical systems, a
command filtered control method is developed and applied to
energy systems.

The contributions of this study are two-fold. First, this study
designs an adaptive backstepping control scheme for MIMO
strict feedback nonlinear unmodeled dynamical systems with
CFs, the compensating signal design and controller design are
improved such that they can get higher tracking precision.
Second, this study investigates the applications of the presented
CF-based adaptive backstepping control approach on power
systems, and a MIMO circuit system is used in the simulation
experiments to verify the effectiveness of the method developed.

The rest of this article is organized as follows. Section 2
provides the problem formulation and necessary assumptions.
In Section 3, the control design is proposed. The stability
analysis of the system with the presented design is carried
out in Section 4. In Section 5, a voltage source converter-high
voltage direct current transmission system is used to verify the
efficacy of the proposed method. The conclusion is made in
Section 6.

2 PROBLEM FORMULATION

In this study, the circuit system under consideration is modeled
as

̇ς = q (ς, X) ,
̇Xi = Fi (X i) +GiXi+1 +Di +Δi (ς, X) ,
̇Xi = Fn (X) +GnU +Dn +Δn (ς, X) ,
y = X1,

(1)

whereX = [X1 … Xn]
T ∈ ℝnm, y ∈ ℝm, andU ∈ ℝm are the system

state, output, and the control input, respectively. Fi(⋅) ∶ ℝ
im→

ℝm is a known continuous function, q(⋅, ⋅) ∶ ℝ×ℝnm→ℝ is an
unknown continuous function, Gi ≠ 0 is a known constant, Di ∈
ℝm is an unknown constant vector, X i = [X1, ⋯ , Xi]

T ∈ ℝim, ς ∈
ℝ is the unmeasured portion of the state, and Δi ∈ ℝ

m is the
unmodeled dynamics.

In this study, the following assumptions are needed.

Assumption 1: Jiang and Praly (1998):The dynamic uncertainty
Δi in Eq. 1 is assumed to satisfy

‖Δi (ς, X)‖ ≤ ϕi1 (‖X i‖) +ϕi2 (‖ς‖) , i = 1, …,n (2)

with unknown smooth functions ϕi1 (⋅) ∶ ℝ
+
0 →ℝ

+
0 and ϕi2 (⋅) ∶

ℝ+0 →ℝ
+
0 . In addition, ϕi2 (⋅) is assumed to be strictly increasing.

Assumption 2: Jiang and Praly (1998): There exists an input-to-
state practically stable Lyapunov function Vς (ς) for ̇ς = q (ς,X) in
Eq. 1 such that

ω1 (‖ς‖) ≤ Vς (ς) ≤ ω2 (‖ς‖) ,
∂Vς

∂ς
q (ς,X) ≤ −c0Vς (ς) + ϑ (‖X1‖) + d0,

(3)

with ω1 and ω2 belonging to class K∞ functions, ϑ (⋅) ∶ ℝ+0 →ℝ
+
0 ,

and c0 and d0 being positive constants.
To deal with the dynamic uncertainty, a dynamic signal is
designed with the following dynamics,

̇r = −cr + ϑ (‖X1‖) + d0, r (0) = r0, (4)

where ϑ (X1) ≥ ϑ (‖X1‖), c ∈ (0,c0), and c0 > 0 and r0 are constants.

Lemma 1: Hardy et al. (1952): For any ξ0 > 0, one has

0 ≤ ‖ξ0‖ − ξ0 ⁡ tanh(
ξ0
χ
) ≤ 0.2785χ,

where χ > 0 is a constant.

Lemma 2: Jiang and Praly (1998):
For the unmeasured partial state ς (t)with initial state ς0,Vς (ς)

given in Assumption 2, the dynamic signal r(t) in Eq. 4, and all
t ≥ 0, there is a non-negative function B (t) such that

Vς (ς) ≤ r (t) +Φ (t) . (5)

In addition, there is a limited time T0 = T0 (c0, r0,ς0) such that
Φ (t) = 0 for all t ≥ T0.
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With no loss of generality, chooseΘ (X1) asΘ (X1) = X2
1Θ(X

2
1).

Accordingly, the dynamic signal r(t) is designed as

̇r = −cr +X2
1Θ(X

2
1) + d0, r (0) = r0. (6)

The control objective of this study can be formulated as
follows.

Control Objective: Consider the reference output Xd
satisfying {Xd, ̇Xd, ̈Xd} are bounded. Under Assumptions 1–2,
design a neuro-adaptive controller for the system (1), such that,

1. the system output X1 can track the reference Xd
asymptotically, and

2. all signals in the closed-loop system keep bounded.

3 NEURO-ADAPTIVE CONTROLLER
DESIGN

First, the tracking errors Ei, filter errors Zi, and the compensated
tracking errors Λi are defined for each subsystem as

Ei = Xi −Ai−1, i = 1,2,3,
Zi = Ai − Si, i = 1,2,
Λi = Ei −Bi, i = 1,2,3,

(7)

where Ai is the filter state, A0 = Xd, Si is the virtual control, and Bi
is the compensating signal.

For the subsequent design and analysis, denote Θi =
‖W∗i ‖

i , i = 1,…,n with W∗i being the ideal weight vector of the
RBFNNs. In addition, denote Θ̂i (t) as the estimation of 𝛩i with
an estimation error Θ̃i (t) = Θi − Θ̂i (t).

3.1 Adaptive Backstepping Design
3.1.1 Step 1
Based on Eqs 1, 7, taking a derivative of E1 yields

̇E1 =F1 (X1) +G1X2 +D1 +Δ1 − ̇Xd

= F1 (X1) +G1E2 +G1S1 +G1Z1 +D1 +Δ1 − ̇Xd. (8)

For the first subsystem, the virtual control S1 is designed as

S1 =
1
G1
(−F1 −K1E1 −

Θ̂1

2η1
Λ1φ

T
1φ1 + ̇Xd), (9)

with K1 = diag{K11, ⋯ , K1m} is a positive definite matrix, and
η1 > 0. To avoid repeated differentiation of the virtual control, a
CF is designed as

̇A1 =
S1 −A1

τ1
,A1 (0) = S1 (0) , (10)

with a positive constant τ1. To eliminate the effect of filter errors,
the compensating signal is developed as

̇B1 = −K1B1 +G1B2 +G1Z1,B1 (0) = 0. (11)

To compensate for the unknown dynamics, the adaptive law
for 𝛩1 is presented as

̇Θ̂1 =
1
2η1

ΛT
1Λ1φ

T
1φ1 − γ1Θ̂1, Θ̂1 (0) = 0, (12)

where γ1 > 0 is a constant.

3.1.2 Step i (2≤i≤n−1)
From Eqs 1, 7, differentiating Ei leads to

̇Ei = Fi +GiXi+1 +Di +Δi − ̇Ai−1

= Fi +GiEi+1 +GiSi +GiZi +Di +Δi − ̇Ai−1. (13)

The virtual control design Si is developed as

Si =
1
Gi
(−Fi −Gi−1Ei−1 −KiEi −

Θ̂i

2ηi
Λiφ

T
i φi + ̇Ai−1), (14)

where Ki = diag{Ki1, ⋯ , Kim} is a positive definite matrix, and
ηi > 0. To obviate repeated differentiation of the virtual control
Si, a CF is given as

̇Ai =
Si −Ai

τi
,Ai (0) = Si (0) , (15)

with a positive design parameter τi. To diminish the influences of
filter errors, the compensating signal is proposed as

̇Bi = −Gi−1Bi−1 −KiBi +GiBi+1 +GiZi,Bi (0) = 0. (16)

To deal with the parameter estimation, the adaptive law to
estimate 𝛩i is designed as

̇Θ̂i =
1
2ηi

ΛT
i Λiφ

T
i φi − γiΘ̂i, Θ̂i (0) = 0, (17)

with a constant γi > 0.

3.1.3 Step n
According to Eqs 1, 7, the differentiation of En can be
transformed as

̇En = Fn +GnU +Dn +Δn − ̇An−1. (18)

The controller design is given as

U = 1
Gn
(−Fn −Gn−1En−1 −KnEn −

Θ̂n

2ηn
Λnφ

T
nφn + ̇An−1), (19)

with design parameters Kn = diag{Kn1, ⋯ , Knm} is a positive
definite matrix, and ηn > 0. The compensating signal for this step
is presented as

̇Bn = −Gn−1Bn−1 −KnBn,Bn (0) = 0. (20)

The adaptive law is developed as

̇Θ̂n =
1
2ηn

ΛT
nΛnφ

T
nφn − γnΘ̂n, Θ̂n (0) = 0, (21)

where γn > 0 is a constant.

4 STABILITY ANALYSIS

In this section, we analyze the stability of the closed-loop system
(Eq. 1) with the presented design of the virtual control (Eqs 9,
14), controller (Eq. 19), adaptive laws (Eqs 12, 17, 21), CFs
(Eq. 10) and (15), and compensating signals (Eqs 11, 16, 20).
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4.1 Step 1
Inserting Eq. 9 into Eq. 8, we obtain

̇E1 = −K1E1 +G1E2 +G1Z1 −
Θ̂1

2η1
Λ1φ

T
1φ1 +D1 +Δ1. (22)

From the aforementioned equation and Eq. 11, one has

Λ̇1 = −K1Λ1 +G1Λ2 −
Θ̂1

2η1
Λ1φ

T
1φ1 +D1 +Δ1. (23)

The Lyapunov function is defined as V1 (Λ1, Θ̃1) =
1
2
ΛT

1Λ1 +
1
2
Θ̃T

1 Θ̃1. From Assumption 1, the term ΛT
1Δ1 satisfies

ΛT
1Δ1 ≤ ‖Λ1‖ϕ11 (‖X1‖) + ‖Λ1‖ϕ12 (‖ς‖) . (24)

For the term ‖Λ1‖ϕ11 (‖X1‖) in the aforementioned equation,
based on Lemma 1, one has

‖Λ1‖ϕ11 (X1, Λ1) ≤ ΛT
1
̂ϕ11 (‖X1‖) + ε′11, ε′11 = 0.2785ε11, (25)

with ε′11 and 𝜀11 being positive constants and

̂ϕ11 (X1, Λ1) = ϕ11 (‖X1‖) tanh(
ΛT

1ϕ11 (‖X1‖)
ε11
).

Consider the term ‖Λ1‖ϕ12 (‖ς‖) in Eq. 24, according to
Lemma 2, we have

‖Λ1‖ϕ12 (‖ς‖) ≤ ‖Λ1‖ϕ12 (ω
−1
1 (r +Φ)) . (26)

It is to be noted that ϕ12(⋅) is strictly increasing and non-
negative from Assumption 1, together with the fact that r +Φ ≤
max {2r,2Φ}, one has

‖Λ1‖ϕ12 (ω
−1
1 (r +Φ)) ≤ ‖Λ1‖ϕ12 (ω

−1
1 (2r))

+ ‖Λ1‖ϕ12 (ω−11 (2Φ)) . (27)

From Lemma 1, we can obtain

‖Λ1‖ϕ12 (ω−11 (2r)) ≤ Λ
T
1
̂ϕ12 (Λ1, r) + ε′12, ε′12 = 0.2785ε12, (28)

where ε′12 and ε12 are positive constants, and

̂ϕ12 (Λ1, r)ϕ12 (ω−11 (2r)) tanh(
Λ1ϕ12 (ω−11 (2r))

ε12
),

‖Λ1‖ϕ12 ‖(ω−11 (2Φ))‖ ≤
1
4
ΛT

1Λ1 + d1 (t) , (29)

where d1 (t) = ϕ2
12 (ω
−1
1 (2Φ (t))). From Eqs 23–29, the derivative

of V1 can be expressed as

̇V1 = ΛT
1 (−K1Λ1 +G1Λ2 −

Θ̂1

2η1
Λ1φ

T
1φ1 +D1 +Δ1)− Θ̃

T
1
̇Θ̂1

≤ −ΛT
1K1Λ1 −

Θ̂1

2η1
ΛT

1Λ1φ
T
1φ1 +G1ΛT

1Λ2 +
1
2
ΛT

1Λ1

+ 1
2
DT

1D1 − Θ̃
T
1
̇Θ̂1 +ΛT

1
̂ϕ11 (x1, Λ1) + ε′11 +ΛT

1
̂ϕ12 (Λ1, r)

+ ε′12 +
1
4
ΛT

1Λ1 + d1 (t) . (30)

Using RBFNNs satisfies

̇V1 ≤ −ΛT
1K1Λ1 −

Θ̂1

2η1
ΛT

1Λ1φ
T
1φ1 +G1ΛT

1Λ2

+Λ1H1 (Y1) +
1
2
DT

1D1 + ε′11 + ε′12 + d1 (t) − Θ̃
T
1
̇Θ̂1, (31)

whereH1 (Y1) = ̂ϕ11 (x1,Λ1) + ̂ϕ12 (Λ1, r) +
3
4
Λ1,Y1 = [X1,Λ1, r]T. It

is to be noted that H1 (Y1) is an unknown function. Then,
according to the universal approximation theory, the unknown
function H1 (Y1) can be approximated by the RBFNNs in the
following form,

̂H1 (Y1|W
∗
1 ) =W

∗T
1 φ1 (Y1) , (32)

withW∗1 being the ideal weight vector defined as

W∗1 = arg min
W1∈ΩW1

[ sup
Y1∈ΩY1

‖ ̂H1 (Y1|W1) −H1 (Y1)‖] ,

where ΩW1
and ΩY1

are compact regions for W1 and Y1,
respectively.The corresponding approximation error ε∗1 is defined
as

ε∗1 =H1 (Y1) − ̂H1 (Y1|W∗1 ) ,

with ‖ε∗1‖ ≤ ε1 and a positive constant ε1.
Based on the definition of 𝛩1, combining with Young’s

inequality, we have

ΛT
1H1 (Y1) ≤

Θ1

2η1
ΛT

1Λ1φ
T
1φ1 +

η1
2
+ 1
2
(ΛT

1Λ1 + ε21) . (33)

Inserting Eq. 33 into Eq. 31 yields

̇V1 ≤−ΛT
1K1Λ1 −

Λ1Λi

Li
+

Θ̃1

2η1
ΛT

1Λ1φ
T
1φ1 +

η1
2

+ 1
2
(ΛT

1Λ1 + ε21) + ε
′
11 + ε
′
12 + d1 (t) − Θ̃

T
1
̇Θ̂1. (34)

4.2 Step i (2≤ i ≤ n−1)
Inserting the virtual control design Eq. 14 into Eq. 13, we have

̇Ei = −Gi−1Ei−1 −KiEi +GiEi+1 +GiZi −
Θ̂i

2ηi
Λiφ

T
i φi +Di +Δi. (35)

On the basis of Eq. 16 and the aforementioned equation, one
can obtain

̇Λi = −Gi−1Λi−1 −KiΛi +GiΛi+1 −
Θ̂i

2ηi
Λiφ

T
i φi +Di +Δi. (36)

To analyze the stability of the i-th subsystem through the
Lyapunov theory, define the Lyapunov function for Λi and Θ̃i as
Vi (Λi, Θ̃i) =

1
2
ΛT

i Λi +
1
2
Θ̃T

i Θ̃i. Based on Assumption 1, the term
ΛT

i Δi satisfies

ΛT
i Δi ≤ ‖Λi‖ϕi1 (‖X i‖) + ‖Λi‖ϕi2 (‖ς‖) . (37)
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Consider the term ‖Λi‖ϕi1 (‖X i‖) in Eq. 37, on account of
Lemma 1, one has

‖Λi‖ϕi1 (‖X i‖) ≤ Λ
T
i
̂ϕi1 (X i, Λi) + ε

′
i1, ε
′
i1 = 0.2785εi1, (38)

with ε′i1 > 0, 𝜀i1 > 0, and

̂ϕi1 (X i, Λi) = ϕi1 (‖X i‖) tanh(
Λiϕi1 (‖X i‖)

εi1
).

For the term ‖Λi‖ϕi2 (‖ς‖) in (37), according to Lemma 2, we
can obtain

‖Λi‖ϕi2 (‖ς‖) ≤ ‖Λi‖ϕi2 (ω−11 (r +Φ)) . (39)

Since ϕi2 is strictly increasing and non-negative from
Assumption 1, based on the fact r +Φ ≤max {2r,2Φ}, one has

‖Λi‖ϕi2 (ω
−1
1 (r +Φ)) ≤ ‖Λi‖ϕi2 (ω

−1
1 (2r))

+ ‖Λi‖ϕi2 (ω
−1
1 (2Φ)) . (40)

On the basis of Lemma 1, we can obtain

‖Λi‖ϕi2 (ω
−1
1 (2r)) ≤ Λ

T
i
̂ϕi2 (Λi, r) + ε

′
i2, ε
′
i2 = 0.2785εi2, (41)

with ε′i2 > 0, 𝜀i2 > 0, and

̂ϕi2 (Λi, r) = ϕi2 (ω−11 (2r)) tanh(
Λiϕi2 (ω

−1
1 (2r))

εi2
).

Using Young’s inequality, we have

‖Λi‖ϕi2 (ω−11 (2Φ)) ≤
1
4
ΛT

i Λi + di (t) , (42)

where di (t) = ϕ2
i2 (ω
−1
1 (2Φ (t))).

From Eqs 36–42, the derivative of Vi becomes

̇Vi = Λi(−Gi−1Λi−1 −KiΛi +GiΛi+1

−
Θ̂i

2ηi
Λiφ

T
i φi +Di +Δi)− Θ̃

T
i
̇Θ̂i

≤ −Gi−1ΛT
i−1Λi −ΛT

i KiΛi +GiΛT
i Λi+1 −

Θ̂i

2ηi
ΛT

i Λiφ
T
i φi

+ 1
2
ΛT

i Λi +
1
2
DT

i Di +ΛT
i
̂ϕi1 (X i, Λi) + ε′i1 +ΛT

i
̂ϕi2 (Λi, r)

+ ε′i2 +
1
4
ΛT

i Λi + di (t) − Θ̃
T
i
̇Θ̂i. (43)

Applying RBFNNs yields

̇Vi ≤ −Gi−1ΛT
i−1Λi −ΛT

i KiΛi +GiΛT
i Λi+1 −

Θ̂i

2ηi
ΛT

i Λiφ
T
i φi

+ΛT
i Hi (Yi) +

1
2
DT

i Di + ε′i1 + ε′i2 + di (t) − Θ̃
T
i
̇Θ̂i, (44)

where Hi (Yi) = ̂ϕi1 (X i, Λi) + ̂ϕi2 (Λi, r) +
3
4
Λi,Yi = [XT

i , Λi, r]
T.

The unknown function Hi (Yi) can be approximated in the
following form:

̂Hi (Yi|W∗i ) =W
∗T
i φi (Yi) , (45)

whereW∗i is the ideal weight vector defined as

W∗i = argmin
Wi∈ΩWi

[ sup
Yi∈ΩYi

‖ ̂Hi (Yi|Wi) −Hi (Yi)‖] ,

with ΩWi
and ΩYi

being compact regions for Wi and Yi,
respectively. The approximation error ε∗i is defined as

ε∗i =Hi (Yi) − ̂Hi (Yi|W
∗
i ) ,

where ‖ε∗i ‖ ≤ εi and 𝜀i > 0.
Based on the definition of𝛩i, using Young’s inequality, one has

ΛT
i Hi (Yi) ≤

Θi

2ηi
ΛT

i Λiφ
T
i φi +

ηi
2
+ 1
2
(ΛT

i Λi + ε2i ) . (46)

Inserting Eq. 46 into Eq. 44, one can obtain

̇Vi ≤ −Gi−1ΛT
i−1Λi −ΛT

i KiΛi +GiΛT
i Λi+1 +

Θ̃i

2ηi
ΛT

i Λiφ
T
i φi

+
ηi
2
+ 1
2
(ΛT

i Λi + ε2i ) +
1
2
DT

i Di + ε′i1 + ε′i2 + di (t)

− Θ̃T
i
̇Θ̂i. (47)

4.3 Step n
Inserting Eq. 19 into Eq. 18 results in

̇En = −Gn−1En−1 −KnEn −
Θ̂n

2ηn
Λnφ

T
nφn +Dn +Δn. (48)

Based on the aforementioned equation and Eq. 20, we have

̇Λn = −Gn−1Λn−1 −KnΛn −
Θ̂n

2ηn
Λnφ

T
nφn +Dn +Δn. (49)

To investigate system stability through the Lyapunov theory,
the Lyapunov function is defined for Λn and Θ̃n as Vn (Λn, Θ̃n) =
1
2
ΛT

nΛn +
1
2
Θ̃2

n. According to Assumption 1, the term ΛT
nΔn

satisfies

ΛT
nΔn ≤ ‖Λn‖ϕn1 (‖X‖) + ‖Λn‖ϕn2 (‖ς‖) . (50)

For the term ‖Λn‖ϕn1 (‖x‖) in Eq. 50, one can obtain

‖Λn‖ϕn1 (‖X‖) ≤ Λ
T
n
̂ϕn1 (X, Λn) + ε

′
n1, ε
′
n1 = 0.2785εn1, (51)

with ε′n1 and εn1 being positive constants and

̂ϕn1 (X, Λn) = ϕn1 (‖X‖) tanh(
Λnϕn1 (‖X‖)

εn1
).

For the term ‖Λn‖ϕn2 (‖ς‖), from Lemma 2, we have

‖Λn‖ϕn2 (‖ς‖) ≤ ‖Λn‖ϕn2 (ω−11 (r +Φ)) . (52)

Based on the facts that ϕn2(⋅) is strictly increasing and non-
negative from Assumption 1 and r +Φ ≤max {2r,2Φ}, one has

‖Λn‖ϕn2 (ω−11 (r +Φ)) ≤ ‖Λn‖ϕn2 (ω−11 (2r))
+ ‖Λn‖ϕn2 (ω−11 (2Φ)) . (53)
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From Lemma 1, we can obtain

‖Λn‖ϕn2 (ω−11 (2r)) ≤ Λ
T
n
̂ϕn2 (Λn, r) + ε′n2, ε′n2 = 0.2785εn2, (54)

where ε′n2 > 0 and εn2 > 0 are constants and

̂ϕn2 (Λn, r) = ϕn2 (ω−11 (2r)) tanh(
Λnϕn2 (ω−11 (2r))

εn2
).

Applying Young’s inequality, we have

‖Λn‖ϕn2 (ω
−1
1 (2Φ)) ≤

1
4
ΛT

nΛn + dn (t) , (55)

with dn (t) = ϕ2
n2 (ω
−1
1 (2Φ (t))). From Eqs 48–55, the derivative of

Vn becomes

̇Vn = Λn(−Gn−1Λn−1 −KnΛn

−
Θ̂n

2ηn
Λnφ

T
nφn +Dn +Δn)− Θ̃

T
n
̇Θ̂n

≤ −Gn−1Λ
T
n−1Λn −Λ

T
nKnΛn −

Θ̂n

2ηn
ΛT

nΛnφ
T
nφn

+ 1
2
DT

nDn +
1
2
ΛT

nΛn +Λ
T
n
̂ϕn1 (X, Λn) + ε

′
n1

+ΛT
n
̂ϕn2 (Λn, r) + ε

′
n2 +

1
4
ΛT

nΛn + dn (t) − Θ̃
T
n
̇Θ̂n. (56)

Inserting Eqs 19, 51, 52 into Eq. 56 results in

̇Vn ≤ −Gn−1Λ
T
n−1Λn −Λ

T
nKnΛn −

Θ̂n

2ηn
ΛT

nΛnφ
T
nφn

+ΛT
nHn (Yn) +

1
2
DT

nDn + ε
′
n1 + ε
′
n2 + dn (t) − Θ̃

T
n
̇Θ̂n, (57)

where Hn (Yn) = ̂ϕn1 (X, Λn) + ̂ϕn2 (Λn, r) +
3
4
Λn, Yn =

[X, Λn, r]
T. The unknown function Hn (Yn) can be estimated

as

̂Hn (Yn|W
∗
n ) =W

∗T
n φn (Yn) , (58)

withW∗n being the ideal weight vector defined as

W∗n = argmin
Wn∈ΩWn

[ sup
Yn∈ΩYn

‖ ̂Hn (Yn|Wn) −Hn (Yn)‖] ,

where ΩWn
and ΩYn

are compact regions for Wn and Yn,
respectively, with the approximation error ε∗n defined as

ε∗n =Hn (Yn) − ̂H1 (Yn|W∗n ) ,

with ε∗n satisfying ‖ε∗n‖ ≤ εn and a positive constant 𝜀n.
From the definition of𝛩n, combining with Young’s inequality,

we can obtain

ΛnHn (Yn) ≤
Θn

2ηn
ΛT

nΛnφ
T
nφn +

ηn
2
+ 1
2
(ΛT

nΛn + ε2n) . (59)

Applying Young’s inequality, substituting Eqs 21, 59 into
Eq. 57 yields

̇Vn ≤ −Gn−1ΛT
n−1Λn −ΛT

nKnΛn +
Θ̃n

2ηn
ΛT

nΛnφ
T
nφn +

ηn
2

+ 1
2
(ΛT

nΛn + ε2n) +
1
2
DT

nDn + ε′n1 + ε′n2 + dn (t)

− Θ̃n
̇Θ̂n. (60)

Theorem 1: Under Assumptions 1–2, with the virtual control
(Eqs 9, 14), the CF design (Eqs 10, 15), the adaptive laws (Eqs 12,
17, 21), the compensating signals (Eqs 11, 16, 20), and the
controller (Eq. 19), the following facts hold.

1. The tracking errors will converge to the neighborhood of
the origin asymptotically.

2. The boundedness of all signals in the closed-loop system
(Eq. 1) can be guaranteed.

Proof: Define V =
n

∑
i=1

Vi, applying Young’s inequality yields

Θ̃T
i Θ̂i ≤

1
2
ΘT

i Θi −
1
2
Θ̃T

i Θ̃i.

Based on Eqs 34, 47, 60, the overall Lyapunov function
satisfies

̇V ≤ −
n

∑
i=1

ΛT
i (Ki −

1
2
Im)Λi −

n

∑
i=1

γi
2
Θ̃T

i Θ̃i

+ 1
2

n

∑
i=1
[ηi + ε2i +D

T
i Di + γi +ΘT

i Θi + 2ε′i1

+ 2ε′i2 + 2di (t)]
≤ −aV + b,

where Im is them-dimension identity matrix,

a = min
i=1,…,n
{λmin (2Ki − Im) , γi} ,

b = 1
2

n

∑
i=1
[ηi + ε2i +D

T
i Di + γi +ΘT

i Θi + 2ε′i1 + 2ε′i2 + 2di (t)] .

Therefore, Λi, Θ̃i, and Θ̂i are bounded. Next, we investigate the
boundedness of Zi, and the dynamics of the filter error Zi can be
expressed as

̇Zi = ̇Ai − ̇Si = −
Zi

τi
− ̇Si, (61)

where

̇si =
1
Gi
(− ̇Fi −Gi−1

̇Ei−1 −Ki
̇Ei −
̇Θ̂i

2ηi
Λiφ

T
i φi −

Θ̂i

2ηi
̇Λiφ

T
i φi

−
Θ̂i

ηi
Λiφ

T
i ̇φi + ̈Ai−1)

is continuous on the compact set Ωi ×ΩXd
with

ΩXd
={(Xd, ̇Xd, ̈Xd)|X2

d + ̇X
2
d + ̈X

2
d ≤ R0} ,

Ωi ={(Ei,Zi, Θ̃i)|E2
i +Z

2
i + Θ̃

2
i ≤ Ri} ,

and R0 > 0,Ri > 0. Thus, ̇Si is bounded, which derives that Zi is
also bounded from Eq. 61. According to Eqs 11, 16, 20, Bi is
bounded.Thus,Ei,Ai, Si,U, andXi are all bounded, which invokes
ς, Δ, and r to be bounded based on Lemma 2 and Eq. 6. In the
end, we can conclude that the boundedness of all the signals in
the closed-loop system can be guaranteed. This completes the
proof.
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5 SIMULATION STUDY

The system considered in this section is a voltage source
converter-high voltage direct current transmission system with
the following dynamics (Hu et al. (2020)).

̇ς =q (ς, x) ,

̇x1 =− b2x1 −
xn
L2
+ωx2 +T1 + δ1 (ς,x) ,

̇x2 =− b2x2 −
x4
L2
−ωx1 + δ2 (ς,x) ,

̇x3 =
x1 − x5
C2
+ωx4 + δ3 (ς,x) ,

̇x4 =
x2 − x6
C2
+ωx3 + δ4 (ς,x) ,

̇x5 =− b1x5 +
x3
L1
+ωx6 −

ud

L1
+ δ5 (ς,x) ,

̇x6 =− b1x6 +
x4
L1
+ωx5 −

uq

L1
+ δ6 (ς,x) ,

where L1 and L2 are the electrical inductances, and C1 and C2
are the capacitances. Applying variable transformation Xi =
[x2i−1, x2i]

T, X i = [x2i, x2i−1]
T, X = [X1, X2, X3]

T, T = [T1, 0]T,
c1 = diag {1, −1}, and U = [ud, uq]

T, the aforementioned

equation becomes

̇ς =q (ς,X) ,

̇X1 =− b2X1 −
X2

L2
+ωc1X1 +T +Δ1 (ς,X) ,

̇X2 =
X1 −X3

C2
+ωX2 +Δ2 (ς,X) ,

̇X3 =− b1X3 +
X2

L1
+ωX3 −

U
L1
+Δ3 (ς,X) .

By applying the presented control scheme, the control design
is developed as

S1 = L2(−b2X1 +K1E1 +
Θ̂1

2η1
Λ1φ

T
1φ1 +ωc1X1 − ̇Xd),

S2 = C2(
X1

C2
−
E1

L2
+K2E2 +ωX2 +

Θ̂2

2η2
Λ2φ

T
2φ2 − ̇A1),

U = L1(−b1X3 +
X2

L1
+ωX3 −

E2

C2
+K3E3

+
Θ̂3

2η3
Λ3φ

T
3φ3 − ̇A2),

with the compensating signal design

̇B1 =−K1B1 −
B2

L2
−
Z1

L2
,B1 (0) = 0.

̇B2 =
B1

L2
−K2B2 −

B3

C2
−
Z2

C2
,B2 (0) = 0.

̇B3 =
B2

C2
−K3B3,B3 (0) = 0.

FIGURE 1 | Output tracking performance and evolution of dynamic uncertainties.
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In addition, the CF design and adaptive law design are the
same as Eqs 10, 11, 15, 16, 20.

The design parameters are given as L1 = 4 mH,
L2 = 8 mH, C2 = 0.1μF, T = [0.01,0.02]T, ω = 100π rad/s,
K1 = diag {1258, 1646}, K2 = diag {124630, 161622}, K3 =
diag {188539, 138474}, γ1 = 0.00085, γ2 = 0.00066, γ3 = 0.00059,
η1 = 0.00005, η2 = 0.000003, η3 = 0.000004.

The RBFNNs are chosen in typical Gaussian form. To
be specific, the RBFNN φ1 (X1, Λ1, r) contains 32 nodes
with the center and width being [−2,2] × [−2,2] × [−2,2]
× [−2,2] × [−2,2] and 2, respectively. RBFNN φ2 (X2, Λ2, r)
contains 128 nodes and the center and width are distributed
in [−2,2] × [−2,2] × [−2,2] × [−2,2] × [−2,2] × [−2,2] × [−2,2]
and 2. RBFNN φ3 (X, Λ3, r) contains 512 nodes with the
center and width selected as [−2,2] × [−2,2] × [−2,2] × [−2,2]
× [−2,2] × [−2,2] × [−2,2] × [−2,2] × [−2,2] and 2, respectively.

The simulation results are shown in Figure 1. From Figure 1,
it can be observed that the output tracking objective can be
achieved and the system output can track the reference output
asymptotically.The dynamic uncertainties can also converge with
the convergence of system states.

6 CONCLUSION

In this study, a control approach for MIMO strict feedback
nonlinear unmodeled dynamical systems with CFs is developed.
Thedynamic signal design introduced togetherwithRBFNNs can
efficiently prevent the effect of the dynamic uncertainties. The
CFs employed in the controller design can not only prevent the

explosion of complexity, but can also eliminate the effect of filter
errors through the compensating signal design. Compared with
single-input single-output strict feedback nonlinear systems, the
approach proposed in this study is suitable formore general cases.
Finally, in the simulation experiments, the presented method is
applied to power systems, where the simulation results validate
the effect of the scheme proposed.
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