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In order to cope with the challenges of dispatching of power grids brought by large-scale
distributed photovoltaic power generation related to production and consumers, a
maximum expected sample weighted convolutional neural network (EM-WS-CNN) is
proposed to forecast the distributed photovoltaic output. First, the distance correlation
coefficient and the principal component analysis method are used to extract the
comprehensive meteorological factors from the original meteorological data, and then
the 6 statistical indexes of the comprehensive meteorological factors and historical power
data are used as the clustering characteristics. The historical data are divided into different
weather types by using the maximum expectation clustering, and the training samples are
weighted based on the membership matrix. Finally, the weighted training data are used to
construct the EM-WS-CNN model. In the experimental analysis, the above-mentioned
method is compared with the CNNmodel, and the results show that the proposedmethod
has higher accuracy and robustness.
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INTRODUCTION

In recent years, with the reduction of the cost of distributed photovoltaic power generation
equipment, more application models of distributed photovoltaics for prosumers have come into
being, and the photovoltaic assembly capacity of prosumers is also getting higher (Zhang et al., 2021).
In order to improve photovoltaic consumption, accurate day-ahead power forecast of distributed
photovoltaic power generation has become an increasingly important requirement (Zhou, 2019). At
present, there are twomainmethods (Zhang et al., 2016) to realize photovoltaic power forecast: one is
the traditional forecast method represented by time series modeling; the other has been widely used
in the field of photovoltaic power forecast in recent years because of its good nonlinear expression
ability and fault tolerance performance (Lin and Pai, 2016).

However, in order to achieve high forecast accuracy, the input of the meta-heuristic model should
mostly contain irradiance data (Zhao et al., 2016), and the model should be more suitable for
scenarios with sufficient data such as large-scale centralized photovoltaic power plants. Most of the
distributed user photovoltaic systems with low capacity and few data are not installed with radiation
forecasting equipment (Zameer et al., 2017), which greatly increases the difficulty of photovoltaic
power forecasting.

In order to solve the problem of limited radiation forecast data, some studies have carried out
classification and clustering of weather and fully mine the weather type information to improve the
forecast accuracy (Alonso-Montesinos et al., 2015). In 2020, Chen et al. and Wang et al. (Chen et al.,
2020; Wang et al., 2020) divided the original data by clustering the meteorological factors such as
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seasons and weather types and established a classification forecast
model suitable for different weathers. A few scholars (Hai et al.,
2015; Wang et al., 2017; Eseye et al., 2018) fully explored the
characteristics of photovoltaic power and divided the day types
based on power information clustering. In addition, considering
the similarity between the PV power of the day to be forecast and
the PV power of the historical days with the same meteorological
conditions (Gaudereto de Freitas et al., 2020), some scholars
proposed the concept of similar days (Lopes et al., 2018) Themost
basic method for selecting similar days is to use relevant
meteorological factors to construct daily feature vectors to
select similar days (Pang et al., 2020). In addition, some
studies have effectively avoided the phenomenon of wrong
selection by improving the similarity degree of the fuzzy
clustering algorithm, considering seasonal differences (Hu
et al., 2020), and using mutual information entropy weighting
to consider correlation differences (Bi et al., 2016).

The weather type classification provides the basis for the
classification training of the model, and the similar day search
provides a reference for the input feature selection of the model.
However, it can be seen from the above-mentioned analysis that
weather classification and similar day search are usually separated
into two different research fields and there is a lack of methods
and model studies that combine the advantages of the two. In
addition, in order to solve the problem of the small number of
historical samples, some studies have integrated the historical
data of multiple users. Different distributed users are
geographically dispersed and have different models. The
existing similar daily methods are all based on meteorological
information and do not consider the implicit system internal
information such as the actual output power of the distributed
photovoltaic system and user power consumption data. This is a
large error in the forecast scenario.

The above-mentioned mainstream forecast methods often
only improve the model to varying degrees without
considering the importance of different samples to the model
during model training, resulting in low model accuracy. In
addition, the time interval of distributed photovoltaic power
forecast is usually 1 h, which cannot meet the higher precision
scheduling requirements. In response to these problems, this
paper proposes a model based on the maximum expected sample
weighted convolutional neural network (EM-WS-CNN), which
mines potential weather information from historical data and
fully considers the similarity between historical power generation
data and forecast days. The forecast time interval is 15 min, and
the time granularity is finer, which provides more detailed
forecast information for power grid scheduling.

INTRODUCTION OF DISTRIBUTED
PHOTOVOLTAIC MODULES

Generally, the PVmodule uses toughened glass as the upper plate
and Tedlar as the lower plate, and the three are bonded and
encapsulated with ethylene vinyl acetate (EVA), with a size of
839 mm × 537 mm × 50 mm. Because the silicon material will
reflect a part of the sunlight, a thin ARC layer (ARC) is added

between the photovoltaic cell layer and the EVA layer, which is
usually ignored. The structure of each layer of a typical producer
consumer distributed photovoltaic module is shown in Figure 1.

When working outdoors, the environmental factors that affect
photovoltaic behavior mainly include solar irradiance, ambient
temperature, ambient wind speed, pressure gradient, air
humidity, cloud height, and air quality. These factors vary in
different geographical locations. The most crucial ones are solar
irradiance, ambient temperature, and ambient wind speed. Since
the radiation incident on the photovoltaic panel mainly includes
beam radiation, diffuse radiation, and reflected radiation, the
altitude and air quality will directly affect the ratio of beam
radiation to diffuse radiation, that is, the solar irradiance includes
altitude and air quality, two hidden variables.

Correlation Analysis of Meteorological
Factors
The meteorological factors that affect the output power of
photovoltaics mainly include irradiance, temperature,
humidity, pressure, and wind speed. First, the correlation
analysis is carried out on these influencing variables, and the
main factors affecting the photovoltaic power output are screened
out. The distance correlation coefficient (DCC) is a commonly
used correlation measurement method, which can quantitatively
analyze the correlation between different factors. The closer the
correlation coefficient is to 1, the greater the correlation with the
output power. Hence, this paper uses the DCC to weigh the
correlation between output power and meteorological factors.
The distance correlation coefficient between two random samples
X and Y can be defined as

dCor � ( dCov(X,Y)������������������
dCov(X,X)dCov(Y,Y)

√ )1
2

(1)

In the above-mentioned formula, when the denominator is 0,
dCor = 0, where the X and Y distance covariances are defined as

dCov(X,Y) � 1
n2

∑n
k,l�1

XklYkl (2)

Here, n is the length of the random variable, and k is the
position of the variable.

The correlation analysis is carried out using the actual
operation data of a photovoltaic power station, and the
meteorological factors used are horizontal radiation, horizontal
scattering, oblique radiation, oblique scattering, ambient
temperature, relative humidity, wind speed, and rainfall. In
order to display the analysis results more intuitively, the
correlation coefficients are sorted in descending order. The
correlation coefficient analysis results between the sorted
photovoltaic output power and meteorological characteristics
are shown in Table 1.

Among the meteorological factors affecting photovoltaic
output power, horizontal radiation and oblique radiation have
a strong correlation with photovoltaic power; second, ambient
temperature, relative humidity, horizontal scattering, wind speed,
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and oblique scattering have a certain correlation, while rainfall
has almost no correlation. This paper selects sevenmeteorological
features with high correlation, namely, horizontal radiation,
horizontal scattering, oblique radiation, oblique scattering,
ambient temperature, relative humidity, and wind speed, as
the main meteorological input parameters affecting
photovoltaic power generation.

Principal Component Analysis Method to
Extract Comprehensive Meteorological
Factors
The principal component analysis (PCA) method is a commonly
used and effective data dimensionality reduction method. Due to
the redundancy between various meteorological factors, too
much redundant information will affect the computational
efficiency and reduce the accuracy of the model. Therefore,
this paper uses the principal component analysis method to
comprehensively analyze the seven main meteorological factors
and extracts the comprehensive meteorological factors (CMFs)
related to high output power. Experiments show that the
extracted statistical indexes of output power and CMFs can
reflect the fluctuation of photovoltaic output well.

A matrix composed of 7 important meteorological factors is
set as an n ×mmatrix X, where n is the number of samples andm

is the feature dimension, where m = 7. First, the average value is
calculated for each dimension feature, and the calculation
formula is shown as follows:

�X � 1
n
∑n
i�1
Xi (3)

Then its covariance matrix C is calculated using the following
formula:

C � 1
n
∑n
i�1
(Xi − �X)(Xi − �X)T (4)

Eigenvectors of C ei and eigenvalues of C λi = 1,2,. . .,m can be
calculated as follows:

Cei � λiei (5)
From this, the matrix after dimensionality reduction can be

obtained as Z = XE, in which E = [e1,e2,. . .ek],k is the dimension
after dimensionality reduction.

In order to determine the size of k, that is, the number of
principal components in Z, the contribution rate of each principal
component after feature reduction is calculated according to Eq.
6. λi is the eigenvalue of the eigenvector, and ri is the contribution
rate of the ith eigenvalue.

ri � λi∑x
i�1
λi

× 100% (6)

Different k values (from 1 to 6) are taken to carry out PCA
analysis on 7 main meteorological factors, and the data are
divided according to the seasons—spring, summer, autumn,
and winter. After calculation, the contribution rates of the six
groups of principal components in different seasons and
throughout the year are shown in Table 2. It can be seen that
after the dimensionality reduction of meteorological features, the
contribution rate of principal component 1 in spring, summer,
and autumn reaches more than 97%, of which summer and
autumn can reach more than 98%. In the whole year,

FIGURE 1 | PV module structure diagram.

TABLE 1 | Results of DCC.

Weather variables Correlation coefficient with
photovoltaic output

Oblique radiation 0.996
Horizontal radiation 0.989
Oblique radiation 0.667
Oblique scattering 0.652
Wind speed 0.501
Ambient temperature 0.492
Relative humidity 0.359
Rainfall 0.022
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principal component 1 can achieve a contribution rate higher
than 97%, retaining most of the information in the original
meteorological data, so principal component 1 is used as the
extracted CMF feature.

Figure 2 shows the comprehensive meteorological factors
extracted by PCA on a certain day in 2019 and the output
power of that day. It can be seen that the changing trends of
the output power and the comprehensive meteorological factors
at the same time are roughly the same, which proves the validity
of the extracted comprehensive meteorological factors.

EM-WS-CNN FORECAST MODEL

Overall Framework of the Model
The overall framework of the EM-WS-CNN model proposed in
this paper is shown in Figure 3.

1) First, the original data are preprocessed, including processing
of outliers. In daily units, values other than mean ± 3 ×
standard deviation are determined as outliers, and the values
from the previous moment are used to fill in. The imputed
data are then normalized.

2) A total of 7 main features with a greater correlation are
selected by the distance correlation coefficient, namely,
horizontal radiation, horizontal scattering, oblique
radiation, oblique scattering, ambient temperature, relative
temperature, and wind speed.

3) Based on the 7 main weather factors, principal component
analysis is used to extract comprehensive meteorological
factors to reflect the overall weather factors.

4) The historical power data and six statistical indexes of CMFs
are extracted, and the maximum expectation algorithm is used
to cluster the historical power data and divide them into
sunny, cloudy, rainy, and extreme weather according to the
weather type. The weather type to which the forecast day
belongs is determined, and the historical days of the same
weather type are considered as similar days. Then, the
membership degree of each sample in similar days is
determined as the weight of the sample; the greater the
similarity, the greater the weight, and the greater the
impact on the model forecast.

5) The convolutional neural network is used to train the
weighted samples to highlight the importance of similar
day samples in model training so that the model can
acquire more useful knowledge from similar day samples
during training. Using the weather data forecasted a few
days ago, with the help of the powerful feature mapping
capability of the CNN, the output power with a finer time
interval of 15 min is forecasted.

Model Input Matrix and Parameter Settings
Since the power generation at night is 0, it is considered to
forecast the power from 07:00 to 19:00, with a time interval of
15 min and a total of 48 power points per day. The 48 power
points are sequentially split into a 4 × 12matrix as the input of the
CNN model. In the training phase, the weighted similar day
samples are sorted according to the membership degree, and the
two adjacent days of the membership degree are used as the input
and output of the training phase, respectively. The input is 4 × 12
power data, and the output is the 48 power points of the day. The
forecast stage selects a day adjacent to the membership degree of
the forecast day among the similar days as the input of the
forecast stage, and the output is the 48 power points of the
forecast day.

The CNN structure used in this paper is shown in Figure 4.
The model consists of an input layer, two convolutional layers, a
fully connected layer, and an output layer. The input layer of the
CNN is a 4 × 12matrix, and the convolution kernel dimensions of
the two convolutional layers are 2 × 3 × 4 and 2 × 3 × 16,
respectively. It can be seen that after the input data pass through
two convolutional layers, a 4 × 12 × 16 three-dimensional matrix
is obtained, and after the Flatten operation, a one-dimensional
vector with a length of 768 is obtained as the input of the fully
connected layer. The activation function of the fully connected
layer uses the Relu function, and the output is 48 power points.

TABLE 2 | Results of PCA.

Contribution rate%

Season Main ingredient
1

Main ingredient
2

Main ingredient
3

Main ingredient
4

Main ingredient
5

Main ingredient
6

Spring 9.7841 × 10−1 1.8618 × 10−2 2.3690 × 10−3 3.7444 × 10−4 1.4475 × 10−4 7.0020 × 10−5

Summer 9.8158 × 10−1 1.6902 × 10−2 1.1542 × 10−3 2.0583 × 10−4 8.8806 × 10−5 5.5146 × 10−5

Autumn 9.8111 × 10−1 1.7279 × 10−2 1.0061 × 10−3 4.4723 × 10−4 7.4972 × 10−5 6.9815 × 10−5

Winter 9.5285 × 10−1 4.2709 × 10−2 2.7775 × 10−3 1.3502 × 10−3 1.6467 × 10−4 1.0870 × 10−4

Annual 9.7183 × 10−1 2.3256 × 10−2 3.9632 × 10−3 6.7310 × 10−4 1.4128 × 10−4 1.0870 × 10−4

FIGURE 2 | CMF and output power.
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Thanks to the powerful feature extraction capability of the CNN,
all 48 power data for the 15 min time interval of the forecast day
are finally obtained.

CASE ANALYSIS

Considering the influence of different weather conditions on
distributed photovoltaic power generation involving prosumers,
this paper proposes a distributed photovoltaic power generation
forecast method based on the EM-WS-CNN. The hardware

environment of this paper is an Intel(R) CoreTM i7-7700 CPU
@ 3.6 GHz, 16G DDR4 memory, and GeForce GTX 1050Ti (6 GB
video memory) 64-bit computer. The software platform isWindows
10 professional edition operating system, Python 3.6 (64-bit), and
TensorFlow 2.0 deep learning framework.

Data Description
This paper uses the actual load data of a certain area to verify the
model. The total rated power of the distributed photovoltaic
power generation of the prosumer is 5 kW, and the sample
sampling interval is 15 min.

FIGURE 3 | EM-WS-CNN overall framework.

FIGURE 4 | Structure of CNN.
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Evaluation Indicators
To evaluate the performance of the proposed forecasting model,
this paper uses root mean square error (RMSE) and mean
absolute percentage error (MAPE) to measure the forecasting
accuracy of the model. The formulae are as follows:

ERMSE �

�������������
1
N

∑N
i�1
(yi − ŷ2

i )2
√√

(7)

EMAPE � 1
N

∑N
i�1

∣∣∣∣yi − ŷi

∣∣∣∣
yi

× 100% (8)

Here, yi represents the actual power value, and ŷi represents
the model forecasted value.

Analysis of Photovoltaic Output Forecast
Results
In order to test the performance of the EM-WS-CNN forecast
model, the sample data of different weather types in the test set
were forecasted, and the EM-CNN model without sample
weighting improvement and the original one were designed
for sunny, cloudy, rainy, and extreme weather conditions. The
CNN model is used as a comparative experiment to verify the

effectiveness of the similar daily sample weighting method
optimized by the EM algorithm proposed in this paper. One
day was selected for each weather type for visual analysis.

Figure 5 shows the output power forecast results using the
EM-WS-CNN model and the comparison model under three
weather types. The abscissa is the forecasted data point, and the
ordinate is the power value. It can be clearly seen from Figure 5
that the forecast based on the CNN model has large fluctuations
and large errors and the EM-WS-CNN forecast is more accurate
in comparison, so the method proposed in this paper can improve

FIGURE 5 | Predict results for different weather types.

TABLE 3 | RMSE and MAPE of four weather types.

Index Weather type CNN EM-WS-CNN

RMSE/kW Sunny day 0.183 0.056
Cloudy day 0.342 0.189
Rainy day 0.549 0.360
Extreme weather 0.675 0.478
Average 0.437 0.271

MAPE/% Sunny day 7.878 2.170
Cloudy day 8.413 2.735
Rainy day 8.539 4.771
Extreme weather 9.635 5.662
Average 8.616 3.835
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the distributed photovoltaic power generation of producers and
sellers and improve forecast stability and accuracy.

Table 3 shows the root mean square error (kW) and mean
absolute error (%) of the two models for the forecast of four
weather types. Under different weather conditions, the RMSE
(kW) and MAPE (%) forecasted by the EM-WS-CNN model are
better than those forecasted by the CNN model. The average
RMSE is 0.437 kW, and the average MAPE reaches 3.835%. For
the CNN model, the average RMSE is 0.358 kW, and the average
MAPE score is 8.616%. Therefore, the weather clustering model
using improved maximum expected clustering is better than the
single convolutional neural network model forecast, which
improves the anti-interference ability and stability of the
model, thus verifying the effectiveness of the model proposed
in this paper.

The distributed forecast model involving prosumers proposed
in this paper can be summed up as follows: the forecast results of
the EM-WS-CNN model are the closest to the actual results, the
error fluctuation of the PV power is the smallest, and the
robustness is strong. It shows that the EM-WS-CNN model
can more accurately reflect the PV power characteristics on
the forecast day, provide more useful information for
photovoltaic grid-connected scheduling, and provide a better
forecast basis and research ideas for subsequent forecast research.

CONCLUSION

With the further increase in the penetration rate of photovoltaic
grid connection, refined photovoltaic output forecast can enable
the grid dispatching department to customize a more detailed
dispatching plan, which is crucial to the stable and safe operation
of the power grid. This paper proposes a distributed photovoltaic
power forecast model involving prosumers, called the EM-WS-
CNNmodel. First, the distance correlation coefficient was used to
separate the main variables, and the principal component analysis
method was used to extract the comprehensive meteorological

factors. Second, the maximum expectation clustering is used to
divide the historical data into four similar weather types.
Different weather types can reflect the fluctuation difference in
photovoltaic power, and the training samples are weighted
according to the weather type of the forecast day. Finally, the
EM-WS-CNN model is constructed using the training data. The
example verification shows that the EM-WS-CNN model
proposed in this paper is superior to the CNN model in both
accuracy and stability. Therefore, the model can effectively
coordinate the power sector to formulate power generation
plans, reduce the impact of randomness of photovoltaic power
generation on the power grid, and improve the economic benefits
of prosumers.
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