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This study proposes an artificial hummingbird algorithm (AHA) for energy management
(EM) for optimal operation of a microgrid (MG), including conventional sources and
renewable energy sources (RES), with an incentive-based demand response (DR). Due
to the stochastic nature of solar and wind output power and the uncertainty of prices and
load, a probabilistic EMwith hybrid AHA and point estimationmethod (PEM) is proposed to
model this uncertainty by utilizing the normal and Weibull distribution functions. The PEM
method is considered a good tool for handling stochastic EM problems. It achieves good
results using the same procedures used with the deterministic problems while maintaining
low computational efforts. The proposed AHA technique is employed to solve a
deterministic incentive DR program, with the goal of reducing the overall cost, which
includes the cost of conventional generator fuel and the cost of power transaction with the
main grid while taking into account the load demand. Two different case studies are tested.
The simulation results of the proposed AHA is compared with the results of well-known
metaheuristic algorithms to demonstrate its efficacy. According to AHA’s results, a total
reduction of energy consumption by 104 KWh for the first case study and 2677MWh for
the second case study is achieved while achieving the lowest overall operating cost. The
results demonstrate that the AHA is adequate for tackling the EM problem. Then, to
examine the effect of uncertainty on the MG state, a probabilistic EM problem is solved
using AHA-PEM.

Keywords: energy management, Microgrid, renewable energy sources, generation uncertainty, optimization,
artificial hummingbird algorithm

1 INTRODUCTION

In recent years, the integration of productive subsystems or distributed generation (DG), which are
called microgrids (MGs), into the main grid has played an essential role in resolving many energy-
related problems (Shivam and Dahiya, 2018). MG can be connected to other MGs or the main grid,
thereby exchanging energy between them or in a stand-alone configuration (Asano et al., 2007). For
supplying power demanded in MGs, both conventional and different types of RES, such as solar
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photovoltaic (PV), wind turbine (WT), biomass units,
microturbine units, and energy storage systems (ESS) (Khalili
et al., 2019), are used. MG energy management (EM) has received
significant attention in research for the optimal operation of
MGs. EM involves the maximization or minimization of one or
more objective functions, such as maximizing profit or
minimizing total cost. MG’s optimal operation is essential for
achieving effective EM at a low cost and maximum profit (Parisio
et al., 2014).

A deterministic EM in MG is employed in (Aghajani and
Ghadimi, 2018), in which the power generated from renewable
sources, load profile, and market prices are considered. Many
probabilistic EM approaches consider the uncertainties in
renewable source generation, load demand, and energy
prices (Tabatabaee et al., 2016, García Vera et al., 2019,
Alavi et al., 2015). In (Arabali et al., 2013), the uncertainty
of solar and wind generation, as well as the load demand, are
considered. The EM problem is solved using GA optimization
with the 2m point estimation method (PEM) in order to
enhance the efficiency and reduce the total cost. In (Baziar
and Kavousi-Fard, 2013), a probabilistic framework is
modeled using the 2m PEM method, thereby considering
uncertainties related to wind and solar power and market
bid variations. A modified glowworm swarm optimization
with PEM is proposed in (Ben Christopher and Carolin
Mabel, 2020). Gravitational search algorithm (GSA) and 2m
PEM are proposed in (Niknam et al., 2012a) to solve the EM
problem of MGs involving the existing uncertainties in the
MGs. Moreover, an improved bat algorithm is considered in
(Li et al., 2014).

In (Nguyen et al., 2020) an improved stochastic fractal
search algorithm is proposed to solve a multiobjective
problem, get lower generation fuel cost, reduce power losses

and emission, and enhance the voltage profile, with a faster
execution. A new approach for reducing the power loss is
proposed in (Nguyen et al., 2021), in which different
optimization algorithms, such as particle swarm
optimization (PSO), PPA, and TSA, are used.

Meanwhile, 2m + 1 PEM is used to solve the probabilistic EM
of MG (Alavi et al., 2015, Mohammadi et al., 2013, Li et al., 2014);
in (Alavi et al., 2015), PSO technique is used to reduce the total
operating cost and enhance reliability. (Mohammadi et al., 2013)
used 2m + 1 PEM with an adaptive modified firefly optimization
algorithm while considering the uncertainties.

DR may be considered a tariff that motivates the customers to
change their consumption as a response to the change in
electricity price over time or to reduce the usage of electricity
in response to incentive payments once the price of electricity in
the market is high or in the case of grid reliability issues (Aalami
et al., 2010).

DR is divided into two types: first, price-based DR (PDR), in
which consumers’ electricity prices are altered at varying
periods. For example, high prices during peak hours,
medium prices during off-peak hours, and low prices
during low-peak hours. Second, incentive-based DR (IDR),
in which consumers receive incentive awards for changing
their consumption (Jordehi, 2019).

In (Aghaei and Alizadeh, 2013), utilizing a hybrid augmented
weighted-constraint approach and lexicographic optimization,
DR and optimal power flow in a combined heat and power
(CHP) system were presented in a MG with an energy storage
system. In (Majidi et al., 2017), a multiobjective optimization
problem is described for using the DRP to reduce the emissions
and cost of a hybrid system. PSO technique was used in (Faria
et al., 2013) to manage MG resources and DR in order to reduce
the MG operator’s operating costs. Despite the previous studies,

FIGURE 1 | Grid-connected MG structure with DR mode.
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further study is needed to apply the DRP to power system issues
to include customers and reduce MG fuel prices.

According to the studies mentioned above, several
optimization techniques have been efficient in solving
engineering challenges, particularly those incorporating EM.
These research established the importance of applying new
and improved optimization techniques for solving particular
EM problems; moreover, according to Wolpert’s (1997) No-
Free-Lunch theorem, there are no metaheuristic optimization
algorithms capable of addressing all optimization problems.
These two considerations inspired us to apply a newly
developed optimization technique, artificial hummingbird
algorithm (AHA), to solve the EM problem in MGs.

To the best of the authors’ knowledge, no similar study has
been conducted. The uncertainties of load, market pricing, and
PV and WT output power in grid-connected MG while
considering DR and using AHA to solve the EM are
investigated in this study. Table 1 illustrates a comparative
analysis of the relevant literature in terms optimization
technique, uncertainty modeling and contribution.

The objective of this study is to use a newly developed
optimization technique, AHA, to solve the EM problem for a
MG with an incentive DR program. The proposed EM algorithm
is compared to those achieved by other well-known algorithms to
demonstrate its robustness. Also, a probabilistic EM using hybrid
AHA-PEM to consider the uncertainties of renewable sources,
load demand, and market prices is proposed. The main
contributions of this study, however, may be stated as follows:

1- Proposing a new application for a recent optimization
technique, AHA, for solving the EM problem of a MG
while considering DR.
2- Studying two different scenarios; the first is deterministic EM
with two different case studies. The first MG consists of one wind
generator, one solar PV generator, three conventional generation
units (diesel), and three residential customers withDRP, while the
second one consists of an aggregated model for solar PV and
wind, ten conventional generation units, and seven customers.
The second scenario is used for probabilistic EM.
3- Considering the probabilistic nature of the market pricing,
load, and produced power of the PV and WT generators and
modeling a stochastic energy cost function.

The rest of this paper is organized as follows: Section 2
presents the mathematical model for the MG with the DR
model. Section 3 presents the modeling for the EM
optimization problem. The uncertainty modeling is discussed
in Section 4. Section 5 focuses on the recent optimization
technique, AHA. Section 6 presents the simulation results
obtained. Finally, the paper is concluded in Section 7.

2 MATHEMATICAL MODEL FOR
GRID-CONNECTED MICROGRID

The structure of MG connected to the grid for this paper is shown
in Figure 1. This MG comprises conventional generation sources,

renewable generation sources (PV power generator and WT
generator), and customers with DR model.

2.1 Grid-Connected Microgrid Model
In this work, the MG is connected to the main grid, and a
power transaction is assumed to be bought or sold to the main
grid. In the case of surplus (more than the demand) in
generation from MG, power will be sold to the main grid,
and vice versa.

If Prt is the amount of power transaction MG and main grid at
a time t; locational marginal prices are used (given as γt) (Nwulu
and Fahrioglu, 2013) for purchasing power between main and
MG. Therefore, the cost of power transactions (Cr(Prt)) can be
obtained as:

Cr(Prt ) � ⎧⎪⎨⎪⎩ γt ×
∣∣∣∣Prt

∣∣∣∣ Prt > 0
0 Prt � 0

−γt ×
∣∣∣∣Prt

∣∣∣∣ Prt < 0

⎫⎪⎬⎪⎭ (1)

2.2 Modeling of DR
Let C(θ, x) be the cost customer incurred; where θ is customer
type and x is the amount of consumption reduction in (KW or
MW); thus, the benefit for the customer can be calculated as:

F1(θ, y, x) � y − C(θ, x) (2)
Equation 2 illustrates that the customer will participate in the

DR program and reduce his consumption only in the case of
F1 ≥ 0 , with y representing the total incentive that customers will
receive for consumption reduction.

Also, MG benefit can be expressed as:

F2(θ, λ, x) � λx − y (3)
where λ is the cost of power interruption from a particular
customer. Power interruptibility can be calculated using
optimal power flow analysis (Fahrioglu and Alvarado, 2000).

2.3 Customer Cost Function
The formulation for the customer’s cost function (C(θ, x)) can be
expressed mathematically as:

C(θ, x) � k1x
2 + k2x(1 − θ) (4)

where:

• θ is the customer willing: its value varies between 0 and 1 so
that the customer who has the most willing g has this value
as 1 and the lower willing customer has a value of 0.

• k1 and k2 are cost coefficients.

Customers’ contract formulation is computed as in
(Fahrioglu and Alvarado, 2000); thus, if yj is the payment
for customer (j) payment, the benefit for the customer can be
expressed as:

Uj � yj − (k1x2
j + k2xj(1 − θ)), for j � 1, 2, . . . . . . , J (5)

Moreover, MG benefit is calculated as:
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U0 �∑J
j�1
λjxj − yj (6)

3 FORMULATION OF THE EM PROBLEM

As previously mentioned, the grid-connected MG consists of
different generation sources, conventional generators and RESs,
and loads with a DR program. The operating cost consists of two
components, conventional generation cost and power transaction
cost. The main objective of MG management system is to
optimize the operation of MG resources by lowering the
generation cost and increasing the MG benefit while
marinating customers’ benefit and satisfying the operational
constraints.

3.1 The Operating Cost Function
For EM in grid-connected MG, one of the objectives in the
studied optimization procedure is the minimization of
conventional generators’ fuel cost and the transferred power’s
cost between the main grid and MG, and it is given as:

minf1(x) � min∑T
t�1
∑I
i�1
Ci(Pit ) +∑T

t�1
Cr(Prt ) (7)

The fuel cost for conventional generators (Ci(Pit )) is
represented by a quadratic model as follows:

Ci(Pit ) � aip
2
it
+ biPit (8)

where ai and bi are the fuel cost coefficients for any conventional
generator i.

3.2 MG Benefit Function
The objective of maximizing the expected MG benefits can be
formulated as follows:

maxf2(x) � max∑T
t�1
∑I
i�1
λjxj − yj (9)

Equation 9 indicates that the MG operator can benefit if he
selects not to supply specific customers with power or pay
incentive payments.

3.3 Constraints of Generation Sources
At any period t, the total power generated from conventional
generation and RESs units and power transacted between the MG
and main grid must supply total load demand with the DR
program. In this paper, the active power losses in the MG are
ignored. Hence, the power balance equation’s constraints can be
expressed as:

∑I
i�1
Pit + Pwt + Pst + Prt � Dt −∑J

j�1
xj,t (10)

Pimin ≤Pit ≤Pimax (11)

−DRi ≤Pit+1 − Pit ≤URi (12)
0≤Pst ≤Pstmax (13)
0≤Pwt ≤Pwtmax (14)

−Prmax ≤Prt ≤Prmax (15)
where

Dt (MW) is the total power demand at any time t.
xj,t is the customer (j) curtailed power at time t.
Pimin and Pimax are the minimum and maximum generation
limits of a generator i, respectively.
Pst is the hourly output power from the solar PV generator.
Pstmax is the maximum forecasted PV power at a time i.
Pwt is the hourly wind power at a time t.
Pwtmax is the maximum forecasted wind generator power at a
time t.
Prmax is the maximum permissible transacted power between
the MG and the main grid.
URi and DRi are the maximum ramp up and ramp down rates
for a generator i, respectively.

I and T are the total number of conventional generators and
dispatch interval, respectively.

Constraint in Eq. 10 describes the power balance to ensure
that the total production and grid transacted power at any time t
will equal the total demand. While Eq. 11 ensures that any
conventional generation’s generation does not exceed its upper
and lower limits, the constraint (Eq. 12) do not violate the ramp
up and down rates for generators.

The constraints for maximum and minimum generation of
solar and WT generators are represented in Eqs 13 and 14,
respectively. Eq. 15 represents the transacted power constraint,
which limits the power transacted between the MG and the utility
grid to not exceed the maximum limit Prmax.

3.4 DR Constraints

∑T
t�1
yj,t − (k1x2

j,t + k2xj.t − k2xj,tθ)≥ 0 (16)

∑T
t�1
yj,t − (k1x2

j,t + k2xj,t − k2xj,tθ)≥∑T
t�1
yj−1,t − (k1x2

j−1,t + k2xj−1,t − k2xj−1,tθ)
For j � 2, 3, . . . . . . , J

(17)

∑T
t�1
∑J
j�1
yj,t ≤UB (18)

∑J
t�1
xj,t ≤CMj (19)

where the upper limit for the MG budget limit is UB and the
maximum daily power curtailment for customer j is CMj.

The demand management contract formulations in Eq. 5 are
expanded to cover the entire 24 h-period (1 day) rather than just
1 h, making them more practical and cost effective. The
constraint in Eq. 16 ensures that the client receives a total
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incentive for any power curtailed that is more than the cost of
interruption. In addition, if the client increases his or her
curtailment (constraint in Eq. 17), the customer should
receive a higher incentive. Constraint (Eq. 18) describes the
total MG budget limit constraint, thereby ensuring that the
daily budget is less than the maximum. Eq. 19 ensures that
any client’s total curtailment is within the allowable limits.

The mathematical model of the objective function is given as:

minw⎡⎣∑T
t�1
∑I
i�1
Ci(Pit ) +∑T

t�1
Cr(Prt ) ⎤⎦ + (1 − w) ⎡⎣∑T

t�1
∑I
i�1
yj − λjxj

⎤⎦
(20)

4 UNCERTAINTY MODELING

This study presents a mathematical model for the MG EM that
can deal with PV power, wind power generation, load
consumption, and market price uncertainty. The chance of a
discrepancy between the expected and actual components is
defined as uncertainty. The operational cost of MG is
substantially influenced by errors produced by the lack of
uncertainty. As a result, km + 1 PEM is combined with AHA
in this work to enhance MG EM on an uncertainty framework.

4.1 Probabilistic EM of the Micro Grid
In the presence of input variables, with random nature or
uncertainty, the EM problem becomes probabilistic instead of
deterministic. Because of the random nature of solar irradiance
and wind speed, the output power from solar PV and WT
generators are also random variables. Furthermore, load
demand will not be exactly the same as the forecasted load
due to forecasting errors, unexpected disturbances, load
variations, or energy prices (Niknam et al., 2012a, Soroudi and
Ehsan, 2011). Every probabilistic formulation requires statistical
characterization of the random input variables and a method for
evaluating statistical features of the output variables.

4.1.1 Statistical Characterization of the Input Random
Variables (IRVs)

• Wind power

The power output and wind speed can be calculated as:

Pw �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 v≤ vci and v≥ vco

v2 − v2ci
v2nom − v2ci

· Pnom vci ≤ v≤ vnom

Pnom vnom < v≤ vco

(21)

where Pnom is the rated power of WT, vnom is the rated wind
speed, vci is the cut-in wind speed, and vco is the cutout wind
speed, with Pw and v denoting the output power and the wind
speed, respectively.

The power curve of WT is represented by the quadratic model
(Eq. 21); thus, the quadratic approximationwill be used to obtain the
power probability density function (PDF) (Villanueva et al., 2011).

Weibull distribution can be used to express the wind speed’s PDF at
a certain location, such as what has been expressed in Eq. 22:

fv(v) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, v< 0

k

C
· (v

C
)k−1 · e(v

C )k

, v≥ 0
(22)

and cumulative density function (CDF) is given as:

Fv(v) �
⎧⎪⎪⎨⎪⎪⎩

0, v< 0

1 − e
−(v

C )k

, v≥ 0
(23)

CDF and its inverse are utilized for computing the wind speed
as following:

v � C · (−ln(r))1/k (24)
where C and k are the scale and shape parameters of the Weibull
distribution, respectively and r is a uniformly distributed random
number between 0 and 1. Different methods can be used for
calculating C and K parameters (Atwa et al., 2011, Jangamshetti
and Rau, 1999). Here, the parameters are approximately
calculated using the mean wind vm speed and the standard
deviation (STD) σ as follows (Atwa et al., 2011):

k � ( σ

vm
)−1.086

(25)

C � vm

Γ(1 + 1/k) (26)

where gamma function (Γ (x)) can be defined as in Eq. 27:

Γ (x) � ∫∞

0
tx−1 · e−tdt for x> 0 (27)

• Solar power

The output power of solar PV depends on the ambient
temperature, solar irradiation, and characteristics of the
module. The solar PV output power can be expressed as:

Ps � PSTC
I

1000
[1 + γ(T − 25)] (28)

where I is the solar irradiation (w/m2), T is the PV module
temperature (°C), γ is the module temperature coefficient (°C −1),
and PSTC is the PV module maximum output power at slandered
test conditions (I = 1000 w/m2 and T = 25°C).

The PV module temperature can be calculated based on the
module’s nominal operating cell temperature (TNOCT(°C)) as
(Radosavljević et al., 2016):

T � Ta + I

800
[TNOCT − 20] (29)

where Ta is the ambient temperature.
In this paper, solar irradiance is suggested to have a normal

distribution function. As a result, the PDF of any variable zi can
be expressed as:
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fzi(zi) �
1

σ
���
2π

√ · e−(zi−μ)2/2σ2 (30)

Normal distribution CDF can be formulated as:

Fzi(zi) �
1
2
[1 + erf(zi − μ�

2
√

σ
)] (31)

CDF and its inverse are used for determining the variable zi as
follows:

zi � μ + �
2

√
σ · erf−1(2r − 1) (32)

where r is a uniformly distributed random variable in the range
[0,1], μ is the mean value for the variable zi, σ is the variable STD,
and erf and erf−1 are the error function and its inverse,
respectively, which can be calculated as:

erf(z) � 2��
π

√ ∫z

0
e−t

2
dt (33)

erf−1(z) � 1 − erf(z) (34)
In technical literature, there are many probabilistic approaches

that deal with the uncertainties in renewable energy sources, load
demand, and market prices for solving the EM problem. These
approaches may be classified into three main categories (Morales
and Perez-Ruiz, 2007): Monte Carlo simulation, analytical
methods, and approximate methods.

Monte Carlo simulation (MCS) deals with uncertainties by
generating random values for the variables. These values help
solve the problem as a deterministic problem (Rubinstein and
Kroese, 2016). However, MCS uses a deterministic routine to
solve the problem in each simulation; its main drawback is that it
requires a large number of simulations to attain convergence.

Analytical methods are more effective, but they are based on
certain mathematical assumptions that simplify the problem to
analyze the statistical characteristics of random output function y
based on the statistical characteristics of random input variables p
(Pei and Lee, 2004, Niknam et al., 2012b), and they do not yield
optimal and accurate results (Ben Christopher and Carolin
Mabel, 2020).

Approximate methods provide an approximate description of
the statistical properties of output random variables. PEM is one
of the approximation approaches. PEM uses a deterministic
strategy to solve probabilistic problems, similar to MCS, but it
has a much lower number of simulations than MCS. In addition,
PEM has led to great reduction in calculation efforts in
comparison with the MCS method.

It uses a deterministic strategy to solve a probabilistic issue,
similar to MCS, but PEM has a significantly lower number of
simulations than MCS.

PEM firstly was developed by Rosenblueth (1975), which was
then modified in 1981 (Rosenblueth, 1981). However, this and
similar approaches (Wang et al., Seo and Kwak, 2002) give more
accurate estimates. The number of simulations required may be
very large in a system with high random variables. Hong (1998)
proposed PEM, where the number of required simulations grows
linearly with the number of random or uncertain variables.

4.2 Point Estimation Method
The PEM approximation method is a scheme to linearize output
variables with respect to IRVs. The basic idea of PEM is to
compute the moments of a function y, a function of IRV (m),
i.e., y = F(p1, p2, . . ., and pm), and use the forecasted information
of these variables to concentrate its first few central moments of
the statistical information on K = 2, 3, . . ., and 5 points for each
variable. By using these points statistical moments of output
function y, statistical information on y can be approximated. To
obtain the central moments, function y should be evaluated based
on the adopted scheme number of times equal to 2 m, 2 m + 1,
and 4 m + 1.

• 2m + 1 PEM scheme

Generally, in this scheme, three concentration points are used
for each IRV. One of them is the mean value. The standard
locations are:

ξt,k � λt,3
2

+ (−1)3−k ·
������
λt,4 − 3

4

√
λ2t,3 k � 1, 2 and ξt,3 � 0 (35)

where λt,3 and λt,4 denote the third and fourth standard central
moments and they are the skewness and kurtosis, respectively, of
the input random variable pt.

Variable locations are:

pt,k � μpt +
λt,3
2

+ ξt,k · σpt k � 1, 2, 3 (36)
and weights are:

wt,k � (−1)3−k
ξt,k(ξt,1 − ξt,2) k � 1, 2 (37)

wi,3 � 1
m

− 1

λt,4 − λ2t,3
(38)

It is noted from (Eq. 36) that setting ξt,3 � 0 yields pt,k � μpt
;

thus, the third location of all IRV will be the same as
(μp1

, μp2
, . . . , μpt

, ..., μpm
). Hence, it is enough to evaluate the

function F only once for this location, and the corresponding
weight will be:

w0 � 1 −∑m
t�1

1

λt,4 − λ2t,3
(39)

The moments’ vector of output random variables are
estimated as:

E(Yj) � E(Yj) +∑2
i�1
wi,t · [F(Pi)]j (40)

After knowing these statistical moments of the output
function, STD and mean can be obtained as:

σY �
���������
E(Y2) − μ2Y

√
(41)

μY � E(Y) (42)
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Using the values of σY and μY, the Gram–Charlier series
technique can be used to estimate the PDFs of the output random
variables of interest based on statistical moments (Radosavljevic,
2018).

5 OPTIMIZATION ALGORITHMS

5.1 Description
This algorithm, AHA, is one of the bioinspired optimization
techniques, which are better at balancing exploration and
exploitation in the search for global optimum (Boussaïd et al.,
2013). Recently, bioinspired algorithms have received the greatest
traction (Darwish, 2018). Those algorithms transfer the biological
activities of living organism algorithms into mathematical
models, such as PSO, ant colony optimization, artificial bee
colony, and cuckoo search, in an optimized manner. AHA was
proposed in 2021 in (Zhao et al., 2022), although AHA belongs to
the metaheuristics categories. It is pretty distinct from the
previously developed bioinspired algorithms. The major
difference is AHA’s particular biology background. This
algorithm is inspired by hummingbirds’ unique flying abilities
and sophisticated foraging techniques. AHA replicates three
flying patterns: axial, omnidirectional, and diagonal, as well as
three foraging strategies: guided, territorial, and migratory
foraging search strategies. Additionally, for selecting the food
source, the hummingbird’s memory function is implemented as a
visit table.

5.2 Mathematical Model for the AHA
5.2.1 Initialization
In first step, the population of N hummingbirds are initialized to
be placed at N food sources as:

xi � Lb + r1(Ub − Lb) i � 1, 2, . . . . . . , N (43)
where Xi is the ith food sources position (or solution) for the
hummingbird; Lb andUb are the lower and upper boundaries for
the variables in search domain, respectively; and r1 is a random
vector between 0 and 1.

The visit table, which mimics the memory for hummingbirds,
is initialized as:

VTi,j � { 0 if i ≠ j
null i � j

i � 1, 2, . . . , N; j � 1, 2, . . . , N (44)

The visit table at i = j is set to null, which means that this
hummingbird is taking its food from its food source, and it is zero
(VTi,j � 0) to indicate that in the current iteration, the ith
hummingbirds visit the jth food source.

5.1.2 Foraging
In AHA, there are mainly two strategies for foraging, guided
foraging and territorial foraging. Guided foraging involves
visiting food sources with the highest refilling nectar rate,
thereby choosing it to be the target food source, and then
trying to fly toward its target. In territorial foraging, after
eating from the target food source, hummingbirds try to find
a different food source. Therefore, it attempts to go to a nearby
location in the hope of discovering a new food source which is
superior to the existing one.

During foraging, a direction vector is used to model the three
flights patterns. The patterns for those flights in a d-D space, in
which a diagonal flight is defined as following:

FIGURE 2 | Flow chart of proposed PEM-AHA.
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TABLE 1 | A summary of the relevant literature.

References Formulation Uncertainty
modelling

Modeling
approach

DR Renewable PV
and wind

Objective
function

(Aghajani and Ghadimi, 2018) PSO No - NO yes Multi
(Arabali et al., 2013), GA optimization Yes 2m PEM No Yes Multi
(Baziar and Kavousi-Fard, 2013), Modified PSO Yes 2m PEM No Yes single
(Ben Christopher and Carolin Mabel,
2020)

modified glowworm
swarm optimization (MOGSO)

Yes 2m and 2m + 1 PEM No Yes Single

(Niknam et al., 2012a) Gravitational search algorithm (GSA ) Yes 2m PEM No Yes Multi
(Alavi et al., 2015) PSO Yes 2m + 1 PEM No Yes single
(Mohammadi et al., 2013) an adaptive modified firefly

optimizations
Yes 2m + 1 PEM No Yes single

(Li et al., 2014) an improved bat algorithm Yes 2m PEM No Yes Single
(Aghaei and Alizadeh, 2013) lexicographic optimization No - Yes No Multi
(Majidi et al., 2017) PSO No - Yes PV only Multi
(Faria et al., 2013) PSO No - Yes Yes Multi
Proposed AHA Yes 2m + 1 PEM Yes Yes Multi

TABLE 2 | Conventional generators and customers data (case study 1).

i,j Conventional generators Customer

ai($/
kW2h)

bi($/
KW
h)

Pi,min (KW) Pi,max(KW) DRi

(KW/
h)

URi

(KW/
h)

θ K1,j K2,j CMj

(KW)

1 0.06
0.5

0 4 3 3 0 1.079 1.32 30

2 0.03
0.25

0 6 5 5 0.45 1.378 1.36 35

3 0.04
0.3

0 9 8 8 0.9 1.847 1.64 40

TABLE 3 | λi,t values and total initial hourly demand (case study 1).

Time (h) λi,t($) Total demand(KW)

t = 1 1.57 31.83
t = 2 1.4 31.4
t = 3 2.2 31.17
t = 4 3.76 31
t = 5 4.5 31.17
t = 6 4.7 32.1
t = 7 5.04 32.97
t = 8 5.35 34.1
t = 9 6.7 37.53
t = 10 6.16 38.33
t = 11 6.38 40.03
t = 12 6.82 41.17
t = 13 7.3 39.67
t = 14 7.8 41.7
t = 15 8.5 42.1
t = 16 7.1 41.67
t = 17 6.8 40.7
t = 18 6.3 40.07
t = 19 5.8 38.63
t = 20 4.2 36.4
t = 21 3.8 34.1
t = 22 3.01 32.8
t = 23 2.53 32.5
t = 24 1.42 32

TABLE 4 | Forecasted power from solar PV and wind generators (case study 1).

Time (h) Solar (KW) Wind (KW)

t = 1 0 7.56
t = 2 0 7.5
t = 3 0 8.25
t = 4 0 8.48
t = 5 0 8.48
t = 6 0 9.42
t = 7 0 9.82
t = 8 7.99 10.35
t = 9 10.56 10.88
t = 10 13.61 11.01
t = 11 14.97 10.94
t = 12 15 10.68
t = 13 14.78 10.42
t = 14 14.59 10.15
t = 15 13.56 9.67
t = 16 11.83 8.98
t = 17 10.17 8.37
t = 18 7.66 7.61
t = 19 0 6.7
t = 20 0 5.72
t = 21 0 7.21
t = 22 0 7.75
t = 23 0 7.88
t = 24 0 7.69
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D(i) � { 1 if i � p(j), j ∈ [1, k], p randperm(k), k ∈ [2, r2 · (d − 2) + 1]
0 else

i

� 1, 2, . . . , d

(45)

The axial flight can be mathematically modeled:

D(i) � { 1 if i � randi([1, d])
0 else

i � 1, 2, . . . , d (46)

and the omnidirectional flight is defined as:

D(i) � 1 i � 1, 2, . . . , d (47)
where randperm(k) creates a random permutation of integers
between 1 and k, randi([1, d]) creates a random integer between 1
to d, and r2 is a random number in [0, 1].

Hummingbirds visit the target food source using their flights, and
the resulting food source is obtained. The candidate food source is
updated based on the target food source for guided foraging as:

vi(t + 1) � xi,tar(t) + a ·D · [xi(t) − xi,tar(t)]
a ~ N(0, 1) (48)

The mathematic simulation for territorial forging (local
search) hummingbirds for a candidate food source is modeled
as follows:

vi(t + 1) � xi(t) + a ·D · xi(t)
b ~ N(0, 1) (49)

where xi(t) is the position of the ith food source at current
iteration t, xi,tar(t)+ is the position that ith hummingbirds

TABLE 5 | Forecasted power from solar PV and wind generators (Scenario-1,
case study 2).

Time (h) Solar (MW) Wind (MW)

t = 1 0 113.44
t = 2 0 112.55
t = 3 0 123.76
t = 4 0 127.21
t = 5 0 127.33
t = 6 0 141.44
t = 7 0 147.39
t = 8 79.94 155.38
t = 9 105.69 168.33
t = 10 136.18 165.28
t = 11 149.75 164.23
t = 12 150 160.32
t = 13 147.89 156.31
t = 14 145.92 152.3
t = 15 135.65 145.05
t = 16 118.36 134.8
t = 17 101.71 125.64
t = 18 77.68 114.2
t = 19 0 100.63
t = 20 0 85.95
t = 21 0 108.26
t = 22 0 116.38
t = 23 0 118.33
t = 24 0 115.38

TABLE 6 | Ten conventional generators units data (Scenario-1, case study 2).

i ai($/MW2h) bi($/MWh) Pi,min(MW) Pi,max(MW) DRi(MW/h) URi(MW/h)

1 0.00043 21.6 30 370 200 200
2 0.00063 21.05 35 360 200 200
3 0.000394 20.81 33 240 150 150
4 0.0007 23.9 30 200 100 100
5 0.00079 21.62 33 143 80 80
6 0.00056 17.87 37 60 30 30
7 0.00211 16.51 20 30 30 30
8 0.0048 23.23 27 120 60 60
9 0.10908 19.58 20 80 40 40
10 0.00951 22.54 25 55 30 30

TABLE 7 | Coefficients of the customer cost function, customer type, and daily
customer curtailment limitations (case study 2) (Scenario-1).

J θ K1,j K2,j

1 0 1.847 11.64
2 0.14 1.378 11.63
3 0.26 1.079 11.32
4 0.37 0.9124 11.5
5 0.55 0.8794 11.21
6 0.84 1.378 11.63
7 1 1.5231 11.5

FIGURE 3 | Initial hourly load demand for case study 2 (Scenario -1).

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 9057889

Alamir et al. Probabilistic Energy Management of Microgrid

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


intend to visit (target food source), and a and b are a
guided factor and a territorial factor, respectively, which
have a normal distribution with standard deviation = 1 and
mean = 0.

Then, the position of the current food source for guiding
foraging and territorial forging is updated as follows:

xi(t + 1) � { xi(t) if f(xi(t))≤f(vi(t + 1))
vi(t + 1) f(xi(t) )>f(vi(t + 1)) (50)

Equation 50 implies that if the current food source’s nectar-
refilling rate is less than that of the candidate, the hummingbirds
leave the current position and stay at the candidate food source
for feeding instead, with f(·) referring to the fitness function
value for (.).

In AHA, the visit table serves as the memory for indicating
how long it has been since this hummingbird visited that food
source location. Each hummingbird tends to visit a food
source with the highest visit level. The guiding foraging
with the update process for the visit table is indicated in
Algorithm 1 for guided foraging and in Algorithm 2 for
territorial forging.

Algorithm 1. Guiding foraging for AHA.

FIGURE 4 | Convergence characteristic curve of all studied techniques
for Case 1.

FIGURE 5 | Optimal output power for conventional generation units
obtained by AHA (case 1).

TABLE 8 | Comparison of the EM problem for Case 1.

Total
operating cost ($)

Technique Worst Best Mean SD
PSO (Moghaddam et al., 2011) 807.35 477.4 658.49 90.47
JAYA (Warid et al., 2016) 790.67 647.49 711.32 41.57
HBA (Hashim et al., 2021) 672.81 460.39 545.31 40.11
INFO (Ahmadianfar et al., 2022) 747.1355 509.374 615.9763 66.60
AHA 389.3867 279.7346 337.9311 33.85
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Algorithm 2. Territorial forging for AHA.

Migration foraging: migration for the hummingbird occurs
when the most frequently visited region lacks food. Themigration
happened after a predefined number of iterations depending on
the migration coefficient, given as:

m � 2N (51)
In migration, the food source with the lowest (or worst)

nectar-refilling rate will migrate to a new food source
randomly generated across the search space. At this point,
the hummingbird will leave the previous feeding location in
favor of feeding on the new one. The migration from the source
with the worst nectar-refilling rate to a new position is
described in Eq. 52, and the visit table is updated, as
described in Algorithm 3.

xwrst(t + 1) � LB + r3 (UB − LB) (52)

Algorithm 3. Migration forging for AHA.

In this paper, the advantages of two strategies were merged
to address the MG EM problem and provide reliable statistical
cost results. Figure 2 illustrates the suggested PEM-AHA
algorithm.

6 RESULTS AND DISCUSSION

In this section, the proposed algorithm is validated as:

6.1 MG Design
To investigate the performance and the effectiveness of the EM
using AHA, a simulated MG comprising DG units and customers
with DR is used. TheMG is equipped with PVmodules and aWT
unit with different ratings in different scenarios. In addition,
diesel generators are used. A typical illustration of a simulated
MG is shown in Figure 1.

6.2 Operating Scenarios
To show the behavior of the EMwith AHA in theMG test system,
two different scenarios have been formulated. Both deterministic
and probabilistic frameworks have been used to solve EM in MG,
thereby studying the influence of uncertainty on MG financial
assessments and cost estimates. In the first scenario for
deterministic EM, the output powers of renewable energy
units, PV and WT generators, are assumed to be equal to
their forecasted values and at the maximum available power at
each hour. Two different case studies are evaluated.

Through 2m + 1 PEM, the uncertainty in random renewable
power production, market bids, and total demand are evaluated
for probabilistic analysis. In this case, three concentrations were
determined for each IRV, one of which was estimated at its mean
and the other two were estimated on either side of the mean in the
associated distribution function.

6.1.1 Scenario-1 Deterministic EM
In this scenario, two separate case studies are given. Based on the
MG shown in Figure 1, the first case study (case study 1) is a
small MG that consists of one PV and wind generator, three
conventional generating units (diesel), and three residential
customers with DRP. This 6.2.1 scenario will last for only

FIGURE 6 | Optimal output power for solar, wind and grid power
transaction (case study 1) obtained by AHA.
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1 day (24 h). Table 2 presents the specifications of conventional
generators (cost coefficients, upper and lower generating limits,
and ramp up and down rates) and shows the customer
information (customer type, cost function coefficients, and
daily power curtailment maximum limit). The values of hourly

power interruptibility (λi,t) are presented inTable 3, as well as the
hourly total initial MG demand; all customers are assumed to
have the same hourly power interruptibility. Table 4 presents the

FIGURE 7 | Optimal power curtailed and incentive paid to customers obtained by the AHA.

TABLE 9 | Total amount of energy saved and the total amount of incentive received (case study 1).

PSO JAYA HBA INFO AHA

Saving (kWh)
j

1 25.02 27.21 25.18 30 29.61
2 33.20 32.599 32.49 34.79 34.92
3 35.38 39.15 35.03 38.81 39.90
Total(KWh) 93.6 98.96 92.70 103.60 104.44

Incentive($)
j

1 69.18 77.78 61.62 58.74 57.95
2 82.23 88.05 77.71 74.28 81.33
3 84.56 111.72 85.42 80.16 89.21
Total ($) 235.97 277.56 224.77 213.1847 228.51

FIGURE 8 | Cost breakdown for the studied optimization techniques
(case study 1). FIGURE 9 | Optimal output power for solar, wind and grid power

transaction (case study 2) obtained by the studied optimization techniques.
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solar PV and wind hourly data. The MG daily budget (UB) in this
case study is $500 cost.

A second case with a larger MG is simulated for scalability
validation of the algorithm. This case (case study 2) comprises an
aggregated model for solar PV and wind and generators (data in
Table 5), ten conventional generating units (parameters in
Table 6), and seven customers to evaluate the algorithm’s
scalability (data in Table 7). The initial load demand for case
2 is shown in Figure 3, and the load data and values of power
interruptibility utilized were given in (Nwulu and Xia, 2017).

The next subsections summarize the results of the two
examples analyzed, which have been produced using various
optimization approaches, including PSO, JAYA, and AHA:

i) Case study 1

All simulations have been executed usingMATLAB 2021b on
a 2.9 GHz i7 PC with 8 GB of RAM. A 20 independent run was
performed, and the obtained results were compared with the
results of the techniques reported in (Moghaddam et al., 2011,
Warid et al., 2016, Hashim et al., 2021, Ahmadianfar et al.,
2022), as shown in Table 8; the effectiveness of AHA with the

best value of operating cost can be noticed when compared with
other techniques. The convergence characteristic curve of the
objective function for all studied techniques is shown in
Figure 4, which demonstrates the effectiveness and
robustness of the AHA technique in achieving faster
convergence and the best value for the fitness function.
Using the AHA technique, the optimal power produced by
the three conventional generators (diesel generators) is
depicted in Figure 5. Figure 6 depicts the optimal power
produced from solar PV generators, wind generators, and
electricity transacted between the main grid and the MG.
The optimal curtailed power from all customers and their
incentives during the day are shown in Figure 7. Table 9
shows the total power curtailed for each customer using all
studied techniques and AHA during the day. A comparison of
the total cost for the studied techniques is shown in Figure 8.

i) Case study 2

Using the AHA technique, the output power from PV and
wind generator and the power transacted with the main grid is
illustrated in Figure 9. Table 10 presents the total curtailed power

TABLE 10 | Total amount of energy saved and the total amount of incentive received (case study 2).

PSO JAYA HBA INFO AHA

Saving (kWh)
j

1 179.47 179.8 179.92 179.03 179.86
2 229.74 226.42 229.87 229.96 229.91
3 309.8 306.80 309.34 309.87 309.32
4 389.58 389.14 389.9 389.87 389.45
5 394.73 439.33 439.97 438.488 438.89
6 529.86 528.10 528.93 529.48 529.09
7 594.18 598.81 598.57 599.82 599.98
Total(KWh) 2627.4 2668.40 2676.5 2676.50 2676.5

Incentive ($)
j

1 8980.90 8994.90 8873.90 7748.892 8873.90
2 11,390.80 11,333.90 12,300.50 10,504.28 12,300.50
3 15,372.00 15,439.70 15,323.70 16,655.23 15,323.70
4 19,470.80 19,438.90 20,328.05 21,152.74 20,328.05
5 19,893.70 21,888.80 21,927.80 26,017.29 21,927.80
6 26,474.10 26,470.80 25,982.80 35,103.39 25,982.80
7 29,890.90 29,964.40 29,352.40 28,140.71 28,352.40
Total ($) 131,473.2 133,531.30 125,683.28 145,322.5 133,089.2

TABLE 11 | Cost breakdown for the studied optimization techniques (case study 2).

PSO JAYA HBA INFO AHA

Total Conventional Power (MW) 29,621.88 30,330.53 30,032.43 29,997.52 30,383.60
Total Conventional Power Cost ($) 649,490 665,480 658,960 664,310 653,520
Total Transferred Power (MW) 4302.092 3229.667 3642.39 3781.241 3291.242
Total Transferred Power Cost ($) 31,835.48 23,899.536 26,317.925 28,358.34 24,355.1908
Total Power Curtailment 2670.26 2668.40 2676.50 2676.50 2676.5
Total Customer Incentive ($) 131,473.2 133,531.30 125,799.2 145,322.5 133,089.2
Total Cost ($) 812,798.7 822,910.84 811,077.1 837,990.84 810,964.4
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and total incentive for each customer (seven customers) during
the day for all studied techniques. Table 12 details a thorough
comparison of the studied optimization strategies for generation
cost, incentive payment cost, and power-transacted cost.
Supplementary Appendix Table S1 presents the optimum
power produced from ten conventional units in the Appendix,
and Supplementary Appendix Table S2 presents a
comprehensive curtailed power from seven customers.

Looking at the simulation results for case study 1, Table 9
reveals that in the case of AHA, the overall power curtailment is
the highest compared with other techniques. Also, it can be noted
from Figure 8 that the overall amount of power transacted with
the grid is substantially lower in the case of AHA as well as the
total cost.

In case study 2, the results in Table 10 show that AHA has a
larger overall power curtailment than the PSO and the JAYA
cases. Table 11 shows that employing the AHA approach has a
lower overall cost than the other procedures.

6.1.2 Scenario-2 Probabilistic EM
In this scenario, the point estimation technique (2m + 1) is
combined with the AHA algorithm in order to provide the
optimal solution for probabilistic EM. The WT and PV output
power, market price, and demand load level are utilized as
uncorrelated RIVs. Furthermore, the PV and WT generators’
output power, market price, and demand load level are
determined using proper PDF modeling for hourly data of
wind power and solar power, as specified in Section 4.1.1. It is
assumed that PV output power, market prices, and load demand
follow a normal distribution, with a standard deviation of 5% for
PV and market prices (Radosavljevic, 2018) and 3% for load
demand. The Weibull distribution is considered for the output

TABLE 12 | Locations of the input random variables for EM and corresponding costs.

t (h) PV1 KW PV2 (KW) WT1 (KW) WT2 (KW) Load1
(KW)

Load2
(KW)

λ1,t($) λ2,t($) PVµ WTµ Loadµ λt($)µ

1 0.0000 0.0000 8.5469 7.2273 33.4839 30.1761 1.7060 1.4340 0.0000 7.8871 31.8300 1.5700
2 0.0000 0.0000 8.4810 7.1719 33.0316 29.7684 1.5212 1.2788 0.0000 7.8264 31.4000 1.4000
3 0.0000 0.0000 9.3054 7.8653 32.7896 29.5504 2.3905 2.0095 0.0000 8.5853 31.1700 2.2000
4 0.0000 0.0000 9.5582 8.0780 32.6108 29.3892 4.0856 3.4344 0.0000 8.8181 31.0000 3.7600
5 0.0000 0.0000 9.5582 8.0780 32.7896 29.5504 4.8897 4.1103 0.0000 8.8181 31.1700 4.5000
6 0.0000 0.0000 10.5914 8.9471 33.7680 30.4320 5.1070 4.2930 0.0000 9.7692 32.1000 4.7000
7 0.0000 0.0000 11.0310 9.3169 34.6832 31.2568 5.4765 4.6035 0.0000 10.1740 32.9700 5.0400
8 8.6820 7.2980 11.6136 9.8070 35.8719 32.3281 5.8133 4.8867 7.9900 10.7103 34.1000 5.3500
9 11.4745 9.6455 12.1961 10.2970 39.4801 35.5799 7.2802 6.1198 10.5600 11.2465 37.5300 6.7000
10 14.7887 12.4313 12.3390 10.4172 40.3217 36.3383 6.6935 5.6265 13.6100 11.3781 38.3300 6.1600
11 16.2664 13.6736 12.2621 10.3525 42.1100 37.9500 6.9325 5.8275 14.9700 11.3073 40.0300 6.3800
12 16.2990 13.7010 11.9763 10.1121 43.3093 39.0307 7.4106 6.2294 15.0000 11.0442 41.1700 6.8200
13 16.0600 13.5000 11.6905 9.8717 41.7313 37.6087 7.9322 6.6678 14.7800 10.7811 39.6700 7.3000
14 15.8535 13.3265 11.3937 9.6220 43.8668 39.5332 8.4755 7.1245 14.5900 10.5079 41.7000 7.8000
15 14.7343 12.3857 10.8661 9.1782 44.2876 39.9124 9.2361 7.7639 13.5600 10.0222 42.1000 8.5000
16 12.8545 10.8055 10.1077 8.5403 43.8352 39.5048 7.7149 6.4851 11.8300 9.3240 41.6700 7.1000
17 11.0507 9.2893 9.4373 7.9763 42.8148 38.5852 7.3889 6.2111 10.1700 8.7068 40.7000 6.8000
18 8.3234 6.9966 8.6019 7.2736 42.1521 37.9879 6.8456 5.7544 7.6600 7.9377 40.0700 6.3000
19 0.0000 0.0000 7.6017 6.4322 40.6373 36.6227 6.3023 5.2977 0.0000 7.0169 38.6300 5.8000
20 0.0000 0.0000 6.5245 5.5261 38.2914 34.5086 4.5637 3.8363 0.0000 6.0253 36.4000 4.2000
21 0.0000 0.0000 8.1622 6.9037 35.8719 32.3281 4.1291 3.4709 0.0000 7.5330 34.1000 3.8000
22 0.0000 0.0000 8.7558 7.4030 34.5043 31.0957 3.2707 2.7493 0.0000 8.0794 32.8000 3.0100
23 0.0000 0.0000 8.8987 7.5232 34.1887 30.8113 2.7491 2.3109 0.0000 8.2109 32.5000 2.5300
24 0.0000 0.0000 8.6898 7.3475 33.6628 30.3372 1.5430 1.2970 0.0000 8.0187 32.0000 1.4200

TABLE 13 | Statistical moments of total expected cost for Case 1.

E(Y) ($) E(Y2) ($)2 E(Y3) ($)3 E(Y4) ($)4 μY ($) σY ($)

378.9548 1.6026e + 05 7.4056e + 07 3.6618e + 10 378.9548 129.0465

FIGURE 10 | Probability density function (PDF of forecasted cost
function based on the AHA for Scenario 2.
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power of the WT units, with an STD of 5%. Following that, the
2m + 1 approach is used to solve the probabilistic EM problem;
IRVs’ concentrations (locations) during the implementation of
2m + 1 are calculated, as indicated in Table 12. AHA approach is
employed using data acquired from (2m + 1) for each case.
Finally, the statistical moments are calculated, and then, the mean
value (μY) and standard deviation (STD) of the EM output
random variables (MG’s operating cost) are calculated; the
results are shown in Table 13.

The PDF of the total expected cost for case study 1 is shown in
Figure 10. These results demonstrate that the proposed strategy
with AHA could solve the EM problem in unpredictable
environments.

7 CONCLUSION

In this paper, a new application of an efficient optimizer, AHA,
has been proposed for solving the EM problem of grid-
connected MG with DRP. Moreover, a probabilistic EM
using hybrid AHA and 2m + 1 PEM has been investigated.
The main objective of this study is to get the lowest
conventional generating and transaction costs to maximize
the MG operator benefit. For deterministic operation, different
optimization techniques have been utilized to solve the EM
problem in MG over 24 h (1 day) to achieve the optimum
operation on both sides of generation and demand. According
to AHA’s results, in the first case study, energy consumption
has been reduced by 104 KWh, while that in the second case
study was reduced by 2677 MWh. The results of two case
studies for the studied optimization strategies evaluated have
been discussed, thereby proving that the AHA has the lowest
overall cost. A probabilistic EM is solved using AHA-PEM,
which allows operators of the MG system to make more

realistic decisions and examine the effect of input random
variable uncertainties on the statistical indicators, which
describe the MG system state.
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NOMENCLATURE

Variables and parameters
Cr(Prt ) Transaction cost

γt Locational Marginal Prices

Prt Power truncationTransacted power

F1 Customer benefit function

y Incentive payment

C(θ, x) Customer cost

F2 MG operator benefit function

λ power interruption cost

θ customer willing

k1 , and k2 Customer cost coefficients

Ci(Pit ) fuel cost for conventional generator

Pimin and Pimax Minimum and maximum generation limits generator i

Pst PV output power

Pwt Wind turbine output power

Prt Power truncationTransacted power

Dt Total power demand

f v Probability Density Function

Fv cumulative density function (CDF)

ξt,k Concentration points

λt,3 and λt,4 skewness and kurtosis

E(Yj) Moments vector

σ Slandered deviation

μ mean

N Hummingbirds number (population)

VT Visit Table

Abbreviations
MG Microgrid

DR Demand response

AHA Artificial Hummingbird Algorithm

EM Energy Management

RES Renewable Energy Sources

PEM Point Estimation Method

PV Photovoltaic

WT Wind turbine

PDR price-based DR

IDR incentive-based DR

PSO Particle swarm optimization

HBA Honey Badger Algorithm
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