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With the increase in the power system scale, the identification of electromechanical
oscillation mode parameters by traditional numerical methods can no longer meet the
requirements of complete real-time analysis. Therefore, a method based on machine
learning (multilayer artificial neural networks) is proposed to identify the electromechanical
oscillation mode parameters of the power system. This method can take the monitorable
variables of the WAMS as the input of the model and the key characteristic information
such as frequency and damping ratio as the output. After processing the input and output
data with randomized dynamic mode decomposition (randomized-DMD), their mapping
relationship can be analyzed by using the multilayer neuron architecture. The simulation
results of the 4-generator 2-area system and the IEEE 16-generator 5-area system show
that this method can accurately calculate the key characteristic parameters of the system
without considering the change in the control parameters and after the offline training of
historical data, which shows higher accuracy, stronger robustness, and sensitive online
tracking ability.

Keywords: multilayer artificial neural network, machine learning, randomized dynamic mode decomposition, data
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1 INTRODUCTION

With the rapid development of smart grids and ultra-high voltage AC/DC power transmission, the
dimension of the dynamic model of a power system has gradually increased in recent years. With the
regional interconnection of the power system and the accessibility of various components, the
stability analysis of a small disturbance in the power system is carried out using with a large-scale
differential-algebraic system (Shair et al., 2021). One of the challenges is how to analyze the key
oscillation mode parameters of a large-scale power system. The fluctuation and time variability of the
power system’s operation state are enhanced. This feature requires the small disturbance safety and
stability analysis to be completed in a shorter time scale to achieve the purpose of real-time analysis.
In addition, the changeable and uncertain operating state of the system generates the demand for
small disturbance stability security warnings. To ensure the security and stability of the system, it is
necessary to predict the running state of the system and evaluate the development direction of the
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stability of small disturbances on the premise of taking volatility
into account. Considering the characteristics of time variability
and volatility, it is a new challenge to evaluate the stability of small
disturbances in real time. With the popularity of the wide area
measurement system (WAMS), which is based on the phasor
measurement unit (PMU), the analysis method of random
response signals is based on ambient excitation that came into
being. A large number of WAMS-measured data can be recorded
during the normal operation of the power system. Due to random
disturbances such as random small fluctuations in load and
intermittent output of new energy, there is a random response
of small fluctuations at any time in the power grid.

1.1 Numerical Analysis Method
Pierre et al. (1997) verified the feasibility of using random
response signals to extract low-frequency oscillation mode
parameters of the system for the first time, laying a solid
theoretical foundation for the subsequent oscillation mode
identification based on random response signals. In recent
years, a large number of identification methods for random
response signals based on wide-area measurement have
emerged (Khalilinia et al., 2015; Khalilinia and
Venkatasubramanian, 2017).

There are two main categories of random data-driven low-
frequency oscillation mode parameter extraction methods: the
block processing method and recursive analysis. The block
processing method estimates the oscillation mode parameters of
the system that is based on the sampled measured data of a certain
length of the analysis window. This included the use of Yule-
Walker equations (Pierre et al., 1997), modified Yule-Walker
equations (Wies et al., 2003), and extended modified
autoregressive moving average (ARMA) equations estimated by
Yule-Walker (Wies, 1999), detecting the main oscillation modes in
ambient data. To improve the estimation quality, Anderson et al.
(2005) designed a confidence interval mode estimation based on
bootstrap. Recursive analysis updates the mode characteristic
information of that moment by using the updated data and the
mode identification results of the previous data after acquiring the
new sample measurement data. To suppress outliers and missing
data in ARMA-based main mode estimation, a robust recursive
least squares (RRLS) ARMAmodel was established to detect main
modes from ambient data (Zhou et al., 2007). Aiming at the
problem that the ARMA model based on RRLS cannot process
atypical data of power systems, an autoregressive moving average
exogenous (ARMAX) model based on regularized RRLS (R3LS)
was proposed, which considered both typical and atypical
measurement data (Zhou et al., 2008). ARMA model
parameters were calculated based on the recursive prediction
error method (RPEM), and then the mode parameters of the
system were estimated (Dosiek et al., 2013). An online tracking
method of low-frequency oscillation mode parameters based on
recursive adaptive random subspace was proposed (Nezam
Sarmadi and Venkatasubramanian, 2014).

1.2 Artificial Intelligence Method
With the large-scale access of a high proportion of wind power,
photovoltaics, and other new energy sources, the power grid

presents characteristics such as greater time variability and
volatility, which requires the safety and stability assessment of
small disturbances in operation scheduling to be completed
within a shorter time scale to achieve the purpose of real-time
analysis in the process of system operation. The stability
assessment method based on the deterministic linear model
and data is widely used in engineering. However, the
dimension of the dynamic mathematical model of the large-
scale system is very large with high computational complexity, so
it is difficult to meet real-time requirements. In recent years,
machine learning has been applied to the power system. It can
obtain results quickly without building a complex mathematical
model. For stability assessment of small disturbances, artificial
intelligence can be combined with traditional methods to achieve
real-time performance. Artificial intelligence has some
applications in power system oscillation (Chan and
Nopphawan, 2020; Shi et al., 2020) and damping control
(Ravikumar and Govindarasu, 2020).

The dimension of the dynamic mathematical model of a large-
scale system is huge (Li et al., 2016), and to calculate all
eigenvalues, numerical methods such as orthogonal
trigonometric decomposition (QR/BR) (Ma et al., 2006) can
no longer adapt to small disturbance stability analysis. For
calculating a part of the eigenvalues, numerical methods such
as the Arnoldi method (Angelidis and Semlyen, 1996) also have
high computational complexity, and it is difficult to meet the real-
time requirements of computing speed even if parallel computing
is adopted.

The traditional small disturbance stability assessment method
has a low computational complexity in directly analyzing the
measured data. With the rapid development of artificial
intelligence, methods based on machine learning in power
system transient stability assessment have a lot of applications,
such as offline time-domain simulation and the study of the
sample set to extract the unknown mapping function relations,
which are often used for system transient stability analysis. The
machine learning method accepts samples without accepting the
limitation of the system model. Once the functional relation is
determined, stability analysis for the new operation mode can be
very fast with intuitively featured results. Thus, it becomes a very
attractive method for safety assessment.

There are some methods of small disturbance stability analysis
that are data-driven (You et al., 2020; Liu et al., 2021). Taking the
infinite size of a single machine as an example, Lima and Alden
(1994) used a three-layer neural network to classify small
disturbance stability and instability, achieving an accuracy rate
of more than 99%. Each piece of the node information of the
system was used as the input variable for the selection of PCA
(Teeuwsen et al., 2003); according to the spatial distribution, the
system’s key characteristic value can be grouped by symbols;
different neural networks for the various key oscillation modal
simulation systems were modeled, which realized the accurate
characteristics’ category classification.

Another method is based on the support vector machine
(SVM) and its variants, Mohammadi and Gharehpetian (2009)
used various nodes of active power, reactive power, and voltage as
input using the decision tree method for input variable selection.
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The SVM method can identify small disturbance stability or
instability. The New England 39 node system for small
disturbance stability classification has been verified to obtain
good results. In addition, Mohammadi and Gharehpetian
(2009) improved to adopt a multiclassification method (Han-
SVM). By changing the load power from 50% to 200%, the
corresponding training set and test set were obtained. The
stable state of small disturbances could be classified after
training (Mohammadi and Gharehpetian, 2008). To improve
the training speed, an improved SVM method, the BVM (ball
vector machine), was adopted for modeling by Mohammadi et al.
(2010), and the small disturbance stability was divided into four
categories. The training time was significantly shorter than that of
the SVM. However, the SVM-based method is difficult to be
applied to large-scale interconnected power grids because the
kernel function used by the SVM is difficult for large-scale
interconnection network design. Moreover, SVMs use one-
time optimization to solve the training set data. Since the
training set data of a large-scale interconnected power grid is
large, the calculation time is very long.

Since the small disturbance stability analysis methods based
on artificial intelligence are all classification methods, that is, the
analysis of small interference stability or small disturbance
instability fails to provide an early warning for the normal
operation of the system, in this paper, a multilayer artificial
neural network is applied for parameter identification of the
electromechanical oscillation mode of the power system, and the
potentially weakly damped mode in the system is found under the
normal operation state.

We can monitor theWAMS variables (generator speed, power
angle, and active power) and arrange them in two-dimensional
matrix forms as the input and construct the structure of the
multilayer ANN; after training, a large number of historical data
on the system critical oscillation characteristics such as frequency
and damping ratio of the real-time computation model were
established, and this method has achieved a good effect on the 4-
generator 2-area system and the 16-generator 5-area system.

The applications of the randomized-dynamic-mode-
decomposition-multilayer artificial neural network (R-M-
ANN) model in the electrical power system oscillation mode
parameter identification are presented in this paper. The WAMS
system can monitor the variables (generator speed, power angle,
and active power) arranged in two-dimensional matrix forms as
the input; the construction of the structure of the R-M-ANN has
the advantages of the R-M-ANN’s feature extraction without
considering the system control equipment under the condition of
parameter change; after a lot of historical data training, a key
oscillation information system under the random response data
real-time vibration model is established, and the method has
achieved a better effect on the case study. The rest of this study is
structured as follows: Section 2 provides a brief review of the
multilayer ANN. Section 3 provides the process of
electromechanical oscillation identification using the
randomized-DMD-multilayer ANN model. Section 4 shows
the case studies for the 4-generator 2-area system and the
IEEE 16-generator 5-area system. Section 5 presents the
concluding remarks.

2 BRIEF REVIEW OF MULTILAYER ANN

The core idea of the R-M-ANN is to build a model of a class of
algorithms based on neuroscience. When given input data,
neurons can transmit information layer by layer (Zupan,
1994), and neurons can be activated if the signal is strong
enough. The data travel through the network until the final
step is reached—the output layer—from which we derive our
predictions. These predictions can then be compared with the
expected output to calculate the predicted errors, which the
network uses to learn and improve future predictions
(Gershenson, 2003). The multilayer ANN has nonlinear
properties. This helps the network learn any complex
relationship between the input and output (Kenji, 2011). A
multilayer artificial neural network consists of several neurons,
including three types of layers (Teoh et al., 2006), shown in
Figure 1. The common learning algorithm of artificial neural
networks is the backpropagation algorithm. The weights of a
neural network are updated through this backpropagation
algorithm by finding the gradients. Error is often calculated
by the mean square error function, which is returned to the
neural network, and the weight is modified accordingly (Rai
et al., 2011). This process is called backpropagation. Through
this algorithm, the artificial neural network can adjust the
ownership weight and reach the set threshold through
multiple adjustments to complete the training of the neural
network (Goh, 1995).

3 ELECTROMECHANICAL OSCILLATION
IDENTIFICATION BASED ON
RANDOMIZED-DMD-MULTILAYER ANN
MODEL

The dynamic mode decomposition (DMD) algorithm is a
numerical decomposition method; under certain conditions, it
is based on the modal decomposition of the Koopman operator
(Tu et al., 2014).

Supposing the kth sampling point of the state variable at tk is
Δxk � Δx (tk). The snapshot data are a moving window,
including the latest sampling point in the window interval.
The snapshot data can be described by the following matrix:

X(m−1) � [Δx0,Δx1, . . . ,Δxm−1] ∈ Rm×n (1)
X(m) � [Δx1,Δx2 . . . ,Δxm] ∈ Rm×n (2)

We have

X(m) � AX(m−1) (3)
A � X(m)X(m−1)† (4)

where † represents theMoore–Penrose pseudoinverse. Therefore,
we can obtain that if a system is linear (or approximately linear in
reality), we can recover the system through the state’s “trajectory
data”, which are

[Δx1,Δx2 . . . ,Δxm] (5)
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Because of the huge high dimensionality of the data, the X(m)
matrix ism × n, but n≫ 1. Therefore, it is difficult to calculate the
eigenvalues and eigenvectors of X(m)X(m−1)† , which need to be
decomposed by the DMD method.

First, the r order approximately truncated singular value
decomposition (SVD) of the original data matrix X(m−1) is
calculated using Eq. 6. Keeping only the first r order of the
SVD process can decrease the calculation cost and ensure
accuracy.

X(m−1) � UrΣrV
T
r (6)

A matrix ~A � UT
r X

(m)VrΣ−1
r is set, and then the

eigendecomposition of matrix ~A is calculated, which means
calculating ~ω and λ using the formula ~A~ω � λ~ω.

The DMD mode corresponding to the DMD eigenvalue λ is
then given by

φ̂ � Urw (7)
Then the return to the dynamic modes and corresponding
eigenvalues λ can be calculated by the following formula:

ω � λ−1X(m)VrΣ−1
r ~ω (8)

It can be seen that the SVD algorithm is the main part of the
DMD algorithm, so the improvement of the SVD algorithm will
greatly improve the DMD algorithm. In the next section, we will
introduce an improved DMD algorithm.

3.1 Randomized Dynamic Mode
Decomposition
Randomized algorithms have various applications, which have
more advantages in solving the linear least squares problems and
low-rank matrix approximation (Drineas and Mahoney, 2016).
In this paper, we can multiply matrix A with a random matrix on

its right side or left side to identify the subspace capturing the
dominant actions of matrix A and then obtain the subspace’s
orthonormal basis matrix Q. We can further provide the
approximate truncated SVD after computing a low-rank
approximation of matrix A with matrix Q. This method can
facilitate the results of near-optimal decompositions of matrix A
because the dimension of the subspace is much smaller than that
of range (A).

We claim four inputs for randomized-SVD, which are
A ∈ Rm×n, rank parameter k, power parameter p, and
oversampling parameter s. Furthermore, the three outputs
presented in the randomized-SVD are Ur ∈ Rm×m, Σr ∈ Rm×n,
and Vr ∈ Rn×n.

A Gaussian-independent and identically distributed (i.i.d)
matrix Ω is set as shown below:

Ω � randn(n, k + s) (9)
In order to obtain better accuracy, s could enable Ω with more
than k number of columns, which is a small integer such as 5
or 10.

Furthermore, Ω can be replaced by other kinds of random
matrices to decrease the computational cost AΩ, but they also
bring some sacrifice on accuracy.

With the subspace’s orthogonal basis matrix Q, A and ω are
used to compute the subspace orthogonal basis matrixQ, which is

Q � orth(AΩ) (10)
We have the approximation A ≈ QB � QQTA. Then, performing
the economic SVD on the (k + s) × n matrix B, we obtain the
approximate truncated SVD ofA. To improve the accuracy of theQB
approximation, a technique called the power iteration (PI) scheme
can be applied; setting i = 1, 2. . ., p, the iteration is carried out with

G � orth(ATQ) (11)

FIGURE 1 | Multilayer artificial neural network.
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Q � orth(AG) (12)
where the equation of orth is used to alleviate the round-off error
in the floating-point computation and achieved by QR
factorization. Then it forms as

B � orth(QTA) (13)
which yields a low-rank factorization A ≈ QQTA. When there are
few columns in Q, it is efficient to construct B easily and compute
its SVD rapidly.

It is based on the fact that matrix (AAT)pA has exactly the
same singular vectors as A, but its singular value decays more
quickly. Thus, performing a randomized QQTA procedure on
(AAT)pA can achieve better accuracy.

U can be calculated through singular value decomposition
(SVD) of the original small matrix B, which is[Ur,Σr, V

T
r ] � svd(B) (14)

Then the first-k columns of QU are returned: the first-kmatrix of
Σ and first-k columns of V. Eq. 6 can be replaced by Eq. 14 to
continue the DMD process.

We can often avoid forming B explicitly by means of a subtler
technique. In some cases, it is not even necessary to revisit the
input matrix A during matrix approximation framework. This
observation can allow us to develop a single pass method to look
at each entry of A only once.

Using the randomized-DMD algorithm, some descriptions are
presented to provide oscillation temporal characteristics (oscillation
frequencyfi and damping ratio σ i) from themeasurement data. For
example, we extract the eigenvalues ηi, which are transformed from
the measured data into continuous system mode expression.

ηi � log λi/Δt (15)
Then the frequency and damping ratio of the ith mode are
calculated, which are

fi � Imag{ηi}/2π (16)
σ i � Re{ηi} (17)

The mode matrix is defined as

ϕ � [φ1, . . . ,φn] (18)
which is the corresponding dynamic mode ϕi.

3.2 Multilayer ANN Model
In the traditional small-signal stability analysis method, each
dynamic element of the system needs to be linearized at the
operating point, and the state matrix is calculated as an input to
further analyze the eigenvalues. However, the calculation of the
state matrix is time-consuming for large systems. To achieve
stable real-time analysis with small disturbances, it is obviously
impossible to use the state matrix as the input.

At present, the WAMS is widely being used in power systems
above the provincial level (Phadke, 2002) and is becoming an
important data platform for dynamic monitoring and control of
wide-area power systems (De La Ree et al., 2010). The power of each
node and branch measured by the WAMS is directly taken as the

input so as to avoid complex modeling of the system. Combined
with the characteristics of R-M-ANN fast calculation (only less than
0.0001 s), real-time calculation of frequency and damping ratio
values for main oscillation modes can be realized to a certain extent.

We choose the generator speed, power angle, and active power
as the input set, which can be arranged as

NN �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11x12 . . . . . .x1j

. . .
xn1xn2 . . . . . .xnj

y11y12 . . . . . .y1j

. . .
yn1yn2 . . . . . .ynj

z11z12 . . . . . . z1j
. . .

zn1zn2 . . . . . . znj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

where n is the number of generators and j is the number of observed
timing sequences. x11 . . .x1j are all the corresponding generator
speeds obtained by the first generator measuring j times, xn1 . . .xnj
are all the corresponding generator speeds obtained by measuring
the nth generator j times, and y11 . . .y1j are all corresponding power
angles obtained by measuring from the first generator j times.
yn1 . . .ynj are all corresponding power angles obtained by
measuring the nth generator j times; z11 . . . z1j are all the
corresponding active powers obtained by measuring from the
first generator j times, and zn1 . . . znj are all corresponding active
powers obtained by measuring the nth generator j times.

We know that the parameters of the electromechanical oscillation
model can only be obtained after a certain period of observation.
Thus, how to determine the frequency and damping ratio for a
relative generator speed, power angle, and active power of a time
point is a problem. In order to solve this problem, the concept of
sliding window samples is introduced, and we are going to treat each
observation period as a sliding window, as an observation sample.
Thus, we can calculate the corresponding frequency and damping
ratio in a slide window sample. We take the sliding window as a
statistical sample, and the sample variance of the generator speed,
power angle, and active power in the sliding window are the
characteristics of this sample. The sample variable is generally
averaged or median; thus, we form a sliding window sample. We
do not require each slider to have the same length, but in the actual
process, we will generally take the same length of the slider. As the
number of sliding window samples increases, we can carry out the
multilayer ANN model analysis, specified as follows:

Assuming that we have m sliding window samples and the kt
observation value of the kth sliding window sample, the above-
mentioned matrix can be rewritten into the following form:

NN �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11x12 . . .x11t . . .x1k1 . . .x1kt . . .x1m1 . . . x1mt

. . .
xn1xn2 . . .xn1t . . .xnk1 . . .xnkt . . .xnm1 . . .xnmt
y11y12 . . .y11t . . .y1k1 . . .y1kt . . .y1m1 . . .y1mt

. . .
yn1yn2 . . .yn1t . . .ynk1 . . .ynkt . . .ynm1 . . .ynmt

z11z12 . . . z11t . . . z1k1 . . . z1kt . . . z1m1 . . . z1mt

. . .
zn1zn2 . . . zn1t . . . znk1 . . . znkt . . . znm1 . . . znmt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(20)
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In addition, assuming that the frequency and damping ratio
corresponding to the k slide-window sample are freqk and
dampk, respectively, the frequency and damping ratio can be
calculated by using the randomized dynamic mode
decomposition algorithm (randomized-DMD) method.
Therefore, the above-mentioned matrix can be rewritten as
follows:

NN �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�x11 . . . �x1k . . . �x1m

. . .
�x11 . . . �x1k . . . �x1m
�y11 . . . �y1k . . . �y1m

. . .
�y11 . . . �y1k . . . �y1m
�z11 . . . �z1k . . . �z1m

. . .
�z11 . . . z1k . . . �z1m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(21)

where

�x1k � 1
kt − k1 + 1

∑kt

l�k1 x1l (22)

�xnk � 1
kt − k1 + 1

∑kt

l�k1 xnl (23)

�y1k �
1

kt − k1 + 1
∑kt

l�k1 y1l (24)

�ynk �
1

kt − k1 + 1
∑kt

l�k1 ynl (25)

�z1k � 1
kt − k1 + 1

∑kt

l�k1 z1l (26)

�znk � 1
kt − k1 + 1

∑kt

l�k1 znl (27)

It is essential to average each slide window and produce a slide
window sample. We have m samples, analyzed with the R-M-ANN
for frequency and damping ratio. In order to look for the mapping
relationship between key oscillation information (frequency and
damping ratio) and random response data, the R-M-ANN training
model algorithm is set up, which is shown in Figure 2.

As the multilayer artificial neural network model requires a large
number of data, and the random response data of the timing
sequence are too small to support the R-M-ANN training; hence,

FIGURE 2 | Electromechanical oscillation mode parameter identification model based on the R-M-ANN.
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a large number of data samples are needed. Therefore, the sliding
window method is adopted to select the sample set of window data
2,000 times as the input of the artificial neural network model.

The key characteristic information in this paper selects relevant
information of frequency and damping ratio. According to the
magnitude of the oscillation frequency, the oscillation mode can
be divided into local oscillation and interregional oscillation. The
local oscillation frequency is relatively high, generally 0.7–2 Hz,
while the inter-area oscillation frequency is 0.1–0.7 Hz. Interarea
low-frequency oscillation makes a more serious oscillation mode
because it involves the dynamic process of a large number of
generators in the system.

The loss function of the model is selected as the mean square
error function; when the sample size is fixed, the index used to
evaluate the quality of a point estimate is always the function of
the distance between the point estimate and the true value of the
parameter. The most commonly used function is the square of the
distance. Due to the randomness of the estimator, the expectation
can be obtained from this function, which is expressed as

MSE(θ̂) � E(θ̂ − θ)2 (28)
When the data set is input into the trained neural network, the
average error of the key feature information result E is

E �

����������������
1
H

∑M

i�1(∣∣∣∣z′i − zi
∣∣∣∣

|zi| )2

√√
(29)

where H is the number of test data sets, zi′ is the calculation
results of the characteristic parameters of oscillation of this

method, and zi is the calculation result of the characteristic
parameters of oscillation of the randomized-DMD method.

With a large-scale interconnected power system, a power grid
operation mode, a diversified structure, all kinds of new electric
components of access, and construction of the smart grid, the power
system is faced with a high dynamic model dimension when the
volatility is high, and the effective use of small disturbance stability is
the precondition of power system stability. The WAMS can collect
system data in real-time, data-driven methods can quickly analyze
the stable state of the system, and the combination of the two can
achieve fast online analysis. Based on the above-mentioned starting
point, this paper mainly has the following innovations:
1. Input variables only depend on the measured data

Randomized dynamic mode decomposition (randomized-DMD)
can identify the electromechanical oscillation mode parameters.
However, the randomized-DMD needs to accumulate a certain
number of data for identification, and a large number of new
energy sources such as wind power and photovoltaics are connected
to the power system, which poses certain challenges to the real-time
identification of mechanical and electrical oscillation parameters.

Most methods of numerical calculation require parameters of
each element in the power system, but the component parameters
are difficult to obtain sometimes in the actual system; the method
only using the WAMS can monitor variables (generator speed,
power angle, and active power); the data acquisition in the
system is convenient, and the input data can be collected by real-
time update for steady-state tracking assessment.
2. Rapid evaluation speed

As a data-driven approach is adopted to evaluate the stability of
small disturbances, there is no need to build a complex dynamic
model inside the power system.When the R-M-ANNmodel is well-

FIGURE 3 | Single-line diagram for the 4-generator 2-area power system.

TABLE 1 | Randomized-DMD electromechanical oscillation mode parameter identification results for the four-generator two-area system.

Mode Method Frequency/Hz Damping ratio/%

Mean Var Mean Var

1 SSAT 0.5784 2.38
Randomized-DMD 0.5829 7.7455 × 10−4 2.40 0.0021

2 SSAT 1.0763 11.96
Randomized-DMD 1.0293 8.8028 × 10−4 8.45 2.8057 × 10−4

3 SSAT 1.0825 15.36
Randomized-DMD 0.9542 0.0014 14.98 9.3619 × 10−4
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trained, only one forward calculation process is needed to calculate
the electromechanical oscillation parameter of the system. Since the
forward calculation process is composed of simple basic operations,
the calculation complexity is low, and the calculation time is fast. In
addition, since the input variables can be obtained by the WAMS in
real-time, the real-time performance of the small disturbance
stability assessment is further improved.

4 CASE STUDY

4.1 Calculation and Analysis of 4-Generator
2-Area System
This section takes the 4-generator 2-area system as an example
and uses the randomized DMD algorithm to quickly identify the
mode parameters of the power system for simulation analysis.

The results of frequency and damping ratio of electromechanical
oscillation modes are obtained as the target data set of R-M-ANN
model training. The structure of the 4-generator 2-area system is
shown in Figure 3.

The sliding window sample contains the generator speed,
power angle, and active power with 3% random load
fluctuation. We choose 2,000 sliding windows, and each
sliding window uses the randomized-DMD algorithm to
calculate the sliding window sample. Table 1 shows the
identification results of the randomized-DMD algorithm and
small-signal stability analysis (SSSA).

During the training process, the R-M-ANN model with the
damping ratio is selected as an example to demonstrate the
regression effect, as well as the error distribution diagram of
the R-M-ANN model with the damping ratio of three oscillation
modes, which are shown in Figure 4 and Figure 5.

FIGURE 4 | R-M-ANN model training regression chart for mode 3.
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Taking the regression diagram of mode 1 as an example, the
R-M-ANN model in the weakly damped mode has a particularly
good regression effect, and the point density of the training and
test data sets is high, which is shown in Figure 4.

The error distribution diagram in Figure 5 shows the
error distribution of data training, which can be obtained
from the error distribution of the three graphs. The data
error quantity decreases from zero error to a larger error
distribution in turn and is uniformly distributed around the
zero-error line.

Thus, it can be seen that R-M-ANN regression has a very good
effect, with small data fluctuations and a small proportion of data
with large errors.

It can be concluded from Table 2 that different random
response data can be obtained by calculating the change in
ambient excitation, and the applicability and accuracy of the
R-M-ANN model can be further verified through different
random response data. It can be found from the results that
changing the ambient excitation has little effect on the results, the
mean error of the frequency and damping ratio of all the models
is very small, and the variance is also very small. For example,
mode 1 is weakly damped, and the R-M-ANN model can
accurately identify the weakly damped mode. Under 7%
ambient excitation, the mean damping ratio of the
interregional oscillation of the system is 2.42%, and the
variance is 0.0030.

As can be seen from Table 3, for the same sample, the training
time of the R-M-ANN is one order of magnitude smaller than
that of the other two machine learning methods, which can
achieve a relatively fast update and retraining of the training
set, and the R-M-ANN’s performance on the test set is also
significantly better than that of the other two methods. There are
two main reasons for this difference. On the one hand, with the
increase in the system scale, shallow learning methods will have
the problem of dimension disaster, resulting in long optimization
time. However, the R-M-ANN can adjust its structure flexibly,

FIGURE 5 | Error histogram of R-M-ANN model training.

TABLE 2 | Identification results for the R-M-ANN model with different ambient
excitations (AEs) for the four-generator two-area system.

Mode Method Frequency/Hz Damping ratio/%

Mean Var Mean Var

1 R-M-ANN 2% AE 0.5892 7.1597 × 10−5 1.92 3.1402 × 10−6

R-M-ANN 3% AE 0.5874 2.7194 × 10−4 2.02 2.7486 × 10−4

R-M-ANN 7% AE 0.5841 1.8539 × 10−4 2.42 0.0030
2 R-M-ANN 2% AE 1.0282 3.0275 × 10−5 8.53 1.0915 × 10−5

R-M-ANN 3% AE 1.0284 2.6317 × 10−4 8.08 6.1511 × 10−5

R-M-ANN 7% AE 1.0371 5.7618 × 10−4 7.69 1.9218 × 10−4

3 R-M-ANN 2% AE 0.9413 9.3168 × 10−5 16.23 9.4472 × 10−5

R-M-ANN 3% AE 0.9409 1.0753 × 10−4 14.21 1.6798 × 10−5

R-M-ANN 7% AE 0.9467 3.2949 × 10−4 14.45 5.9899 × 10−5
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and its weight sharing attribute forces the network to train fewer
parameters to achieve faster training. On the other hand, the
shallow learning method has a weak learning ability for high-
dimensional data and cannot extract its features from a large
amount of input information, resulting in a weak generalization
ability.

4.2 Calculation and Analysis of
16-Generator 5-Area System
The 16-generator 5-area system includes 16 generators, 68 nodes,
and 83 lines, which is shown in Figure 6.

Depending on the size of the system input, the R-M-ANN
structure is designed as follows: The first layer is the input

layer, there are ten hidden layers in the middle, and the last
layer is the output layer. To verify the accuracy and
effectiveness of the R-M-ANN method proposed for the
identification of modal parameters of the power system
and to simulate the random fluctuation of the actual
system load, this paper assumes that the load at node 4
and node 14 fluctuates randomly at 5% of the basic
operating value. The random response data selected for
R-M-ANN model training include generator speed, power
angle, and active power.

Using the randomized-DMD algorithm for calculation,
random response data are selected with a duration of 5,000 s

TABLE 3 | Comparison of three machine-learning techniques for the 4-generator 2-area system.

Algorithm MSE of training set/% MSE of validation set/% MSE of testing set/% Training time/s

Single-layer ANN 0.32 0.86 0.35 1,023
SVM 0.42 0.95 0.56 945
R-M-ANN 0.29 0.013 0.013 133

FIGURE 6 | Single-line diagram for the 16-generator 5-area power system.

TABLE 4 | Randomized-DMD electromechanical oscillation mode parameter
identification results for the 16-generator 5-area system.

Mode Algorithm Frequency/Hz Damping ratio/%

1 SSAT 0.4811 7.92
Randomized-DMD 0.4886 7.57

2 SSAT 0.5934 8.23
Randomized-DMD 0.6172 8.47

3 SSAT 0.5549 3.20
Randomized-DMD 0.5467 2.90

4 SSAT 0.8491 7.77
Randomized-DMD 0.7670 8.40

TABLE 5 | Identification results for the R-M-ANN model with different ambient
excitations for the 16-generator 5-area system.

Mode Method Frequency/Hz Damping ratio/%

Mean Var Mean Var

1 Randomized-DMD 0.4886 0.0219 7.57 0.0006
R-M-ANN 0.4863 0.0009 7.69 7.0971 × 10−5

2 Randomized-DMD 0.6172 0.0624 8.47 0.0011
R-M-ANN 0.6019 0.0008 8.31 4.7022 × 10−4

3 Randomized-DMD 0.5467 0.0019 2.90 0.0002
R-M-ANN 0.5522 0.0001 3.32 1.3611 × 10−5

4 Randomized-DMD 0.7670 0.0733 8.40 0.0013
R-M-ANN 0.8365 0.0050 7.68 3.5945 × 10−5
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as the basis, taking 50 s as the data window, and the calculation
window data are slid every 2 s, sliding 2,000 times; the average
value of the statistical results is shown in Table 4.

For these four inter-area oscillation modes, the statistical
means of each sliding window data are selected as the input of
the R-M-ANN, and the statistical means of frequency and
damping ratio are selected as the training target; 70% of the

sample data are used as the training set, 15% of the sample data
are used as the validation set, and 15% of the sample data are used
as the test set.

After training the R-M-ANN model, we need to test the
feasibility and accuracy of the model. Therefore, assuming that
the load at node 4 and node 14 fluctuates randomly at 3% of the
basic operating value, we choose the same random response data

FIGURE 7 | Frequency histogram of frequency and damping ratio of four interval oscillation modes for the 16-generator 5-area system.
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with a duration of 5,000 s as the basis, taking 50 s as the data
window, and slide the calculation window data every 2 s, sliding
2,000 times; the mean value of the statistical results is selected as
the measured data set using the R-M-ANN model and the
randomized-DMD algorithm to calculate the measured data
set. The comparison of the results of frequency and damping
ratio for four main inter-area oscillation modes is carried out.

From Table 5, four interval oscillation mode frequencies and
damping ratios can be recognized by the two methods. Using
mode 3 (weakly dampedmode) as an example for two algorithms,
two kinds of pattern recognition for the damping ratio are
obtained as 2.90% and 3.32%, respectively. It can be seen that
the mean value of the two methods is similar to the statistical
average results, but the R-M-ANN model identification results
have a small variance; hence, it is proved that the R-M-ANN
model has stronger stability.

As can be seen from the frequency histogram (Figure 7), every
kind of inter-area oscillation mode is evenly distributed near the
average value as a uniform measure of reduction; it proves that
the R-M-ANN model recognition has good stability, the
calculation results are more accurate from the frequency
histogram for four inter-area oscillation mode damping ratios.

In the electromechanical oscillation parameter identification
process, the operation mode of a small-scale change seriously
affects the system safety and stable operation, and the operation
mode changes directly affect the damping of the system level.
Therefore, it is important to verify the R-M-ANN model under
the condition of operation mutation of damping level tracking
precision. Due to the continuous increase in grid-connected scale
and the capacity of new energy, the operation mode of the
modern power grid is very complex, and small-scale operation
mode changes often occur, which seriously affects the safe and
stable operation of the system. In the stability assessment of
electromechanical small disturbances, the change in operation
mode directly affects the damping level of the system. To verify
the multilayer artificial neural network under the condition of the

operationmodemutation of damping level tracking precision, the
R-M-ANN studies the data offline with a large number of
running modes.

Using mode 3 as an example, suppose that the power
system operation mode has changed the system at 20 and
25 s, randomized-DMD calculation results show that the
damping ratio increased from 2.9% to 9.2% at 20 s and
then increase to 12.4% at 25 s. The online tracking result
of the damping ratio of the R-M-ANN model is shown in
Figure 8.

From Figure 8, we can see that the R-M-ANN model can
accurately track the change in the damping ratio. The curve
changes at 20 and 25 s. The curve is stable before and after the
change and fluctuates slightly around the mean value.

At the same time, since the computing time of the R-M-ANN
model can be ignored, if the system operation mode changes, the
damping ratio of the system changes, and the R-M-ANN model
can accurately track this situation without time delay, providing a
certain time margin for the scheduler to make a damping
modulation strategy.

5 CONCLUSION

For deep learning methods, accuracy is essential, and
generalization ability is more important. In this paper, an
R-M-ANN-based electromechanical oscillation mode
parameter identification method is proposed, which can
calculate the key characteristic information of the power
system in real-time by monitoring the data of the WAMS and
verify the reliability of the 4-generator 2-area system and the IEEE
16-generator 5-area system. The conclusions are shown as
follows:

• The R-M-ANNmodel for the random response of the input
data is an effective identification method for the local

FIGURE 8 | Identification results of the interval oscillation damping ratio under the abrupt operation mode.
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oscillation mode and inter-area oscillation mode frequency
and damping ratio and has certain adaptability to the simple
network topology change; the weakly damped oscillation
modes can be quickly identified without a time-delay and a
power system model due to its advantages such as
instantaneity; the small signals of the power system can
be accurately and completely evaluated in quasi-real-time.

• Through the simulation of the 4-generator 2-area system, it
can be seen that by changing the ambient excitation of
motivation to three groups of random response data, the
R-M-ANN model is trained for parameter identification of
electromechanical oscillation mode and obtaining the result
of the mean value of the frequency and damping ratio close
to the results of variance, which is very small, which shows
that the R-M-ANN identification method is stable and has
strong robustness. The R-M-ANN can also adapt to
incomplete data or abnormal data. In addition, the R-M-
ANN model is more reliable than other shallow machine
learning algorithms. With respect to the online tracking
ability, the R-M-ANN has a sensitive tracking capability to
provide real-time information to dispatchers of the power
system.

In the future, the R-M-ANN needs to constantly update the
likely scenario. The model can be richer, as well as the actual

application. Online learning should be strengthened and
combined with artificial intelligence to improve the learning
efficiency.
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