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This article presents a comparative study of the state of charge (SOC) estimation using
Kalman filter (KF)-based estimators and H-infinity filter. The aim of this research is to obtain
the optimal estimator by evaluating the SOC accuracy, robustness, and computation time
under varying current noise assumptions. In the KF-based estimators, the extended
Kalman filter (EKF), unscented Kalman filter (UKF), and cubature Kalman filter (CKF) are
mostly used in the SOC estimation area. The mixed driving cycle profiles are used to test
the battery to simulate the complex driving conditions in real electric vehicles (EVs). Also,
white noise and bias noise are added into the current data to imitate the inaccurate sensors
in EVs. The normal equivalent circuit models (ECMs) and augmented ECMs with varying
RC branches are thoroughly compared to acquire the best estimator under varying
situations.
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1 INTRODUCTION

The state of charge (SOC) is defined as the ratio of Cremain/C available for a battery cell or a battery pack
(Wang et al., 2020). In EVs, the SOC of the battery pack is similar to the fuel gauge of gasoline
vehicles, except that the SOC is not directly measurable (Liu et al., 2022a). So, first, the accurate SOC
is eagerly needed by the customers who drive the EVs in a variety of operating conditions (such as
highway, local, or traffic jams) to avoid being stuck on the way. Second, accurate SOC is helpful to
manage the battery pack, such as draining out the energy stored in the pack while not damaging the
battery for over-discharging, running cell balancing, and state of health (SOH) estimation (Wei et al.,
2021a). Lastly, accurate SOC will save the cost of the battery pack since extra battery cells are not
needed to make sure the EVs reach a specific range (such as the Tesla Model S 90D, range: 473 km)
since the accurate SOC could guarantee the battery pack’s full discharge without damaging it.

In brief, the SOC is a critical parameter to the battery management system (BMS) in EVs; since it
cannot be obtained through a sensor test, a variety of methods have been proposed to estimate the
SOC (Wei et al., 2021b). Cuma and Koroglu (2015) categorized the existing SOC estimation
methodologies into five groups, as shown in Figure 1. All the acronyms in Figure 1 could be found in
the nomenclature table in the article. The conventional and adaptive filter algorithms are the focus of
this paper since they are easily implemented with relatively high SOC accuracy and reasonable
computation requirements (Wei et al., 2017). In the industrial field, the Ampere-Hour integral
(coulomb counting) method is still used to acquire the SOC, although it will accumulate the SOC
error and the accuracy is highly dependent on the sensor accuracy level (Lu et al., 2013). To enhance
the SOC accuracy, Yang et al. (2015) proposed a revised coulomb counting method which can
capture the dynamic responses of SOC during the pulse discharge operations by correlating the
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available capacity with the amount of dischargeable lithium ion in
the electrode particles. The other option is combining the open
circuit voltage (OCV) method with the ECM to estimate the SOC
based on estimators (such as EKF, SVSF, and H-infinity). Also,
for model-based methods, the other main part is the
electrochemical model (Li et al., 2021; Liu et al., 2022b).
Ahmed et al. (2014) proposed a reduced-order electrochemical
model to estimate the SOC considering the aging effect. Although
the model is highly simplified, there are still 18 parameters that
need to be identified, which could cause high computation effort.

For the ECM model, it only uses electrical components, such
as resistors and capacitors, to model the electrochemical physics
of a lithium ion battery, to estimate the SOC accurately, identified
battery model parameters and proper filters are needed to deal
with the noise (Wei et al., 2018). Since the noise is unknown
information, the ability to filter the noise will have an effect on the
estimated SOC accuracy (Wei et al., 2020a). For instance, the
Kalman filter-based estimators assume the noise is white
Gaussian form. Plett (2004) in his series of papers proposed a
mathematical model including terms that describe the dynamic
contributions due to OCV, ohmic loss, polarization time
constants, electrochemical hysteresis effect, and temperature
effect to estimate the SOC using EKF. Xiong et al. (2013a)
used the adaptive EKF to estimate the battery pack’s SOC with
2% SOC error by regarding the battery pack model as a unit
battery cell model. Sun et al. (2011) presented an AUKF to
estimate the SOC by adaptively adjusting the noise
covariances. Compared with AEKF, the UKF-based algorithm
shows better accuracy in SOC estimation. Xia et al. (2015)
propose an ACKF-based SOC estimator for lithium ion
batteries in EVs, which shows better performance in estimated
SOC accuracy, convergence speed, and robustness against voltage
measurement noise compared with EKF and CKF algorithms.
Nevertheless, the estimated SOC accuracy may decrease when the
process noise and the measurement noise are uncorrelated with
zero mean Gaussian white noise, especially when the cell’s battery
model is scaled up to estimate the battery pack’s SOC (Wei et al.,
2022a). To deal with the estimators’ robustness, a SVSF estimator
based on a sliding mode observer and an H-infinity filter is
proposed to estimate the SOC. Kim et al. (2014) used the iterated

SVSF to perform the SOC estimation, which shows the
application potential for real-time embedded BMS due to its
low complexity, high accuracy, and robustness. Since the
H-infinity filter was specially designed for robustness, which
means it can still guarantee the SOC estimation accuracy even
if no assumptions about the statistics of the process and
measurement noise are made. Zhang et al. (2012) used the
H-infinity observer to estimate the battery SOC under
different current and temperature operating conditions, the
estimated SOC errors increase with larger current, while it is
still less than 2%, also, the SOC accuracy is less than 2% at
different operating temperatures. Wei et al. (2021c) andWei et al.
(2022b) proposed a model-based current-unknown SOC
estimator based on the moving horizon observation theory.
Results suggested that the SOC was estimated with high
accuracy even if the current of the battery was not available.

From the literature review, all estimators based on
equivalent circuit models are claimed to have high accuracy
and robustness to estimate the SOC. In this paper, these
estimators will be evaluated by examining their estimation
error, robustness, sensitivity to noise, and computational time.
Also, it is worth mentioning that many of the SOC papers use
the same current data to calculate the “actual” SOC (reference
SOC) and to obtain the estimated SOC by using the current
data as input to the ECM-based estimators. Here, the only
function of these estimators is to minimize the error of the
inaccurate preset initial SOC value and to filter the noise
caused by the inaccurate ECM model. However, in real EVs,
the current sensors may have some bias noise, which is difficult
for the KF based estimators to fully remove it. In this paper, the
augmented ECM (the idea comes from Dr. Daiwei Feng) is
proposed to handle the bias noise and guarantee that the
estimators are convergent.

The remainder of this paper is organized as follows. The
experimental setup to obtain the data is described in Section
2. The basic knowledge about the SOC estimation, which includes
the ECM model, parameters identification methods, and
hysteresis effect are described in Section 3. The key features
for implementing the four estimators (EKF, UKF, CKF, and
H-infinity) are described in Section 4. The estimators’

FIGURE 1 | Categorization of SOC estimation methodologies.
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comparison results are discussed in Section 5, followed by
conclusions presented in Section 6.

2 BATTERY TEST EXPERIMENTS

The current and voltage data used in this study are tested by the
Arbin BT 2000 (sensors’ accuracy 0.1%) and a thermal chamber.
The tested cylindrical Li-ion cells (LiNMC) with a nominal
capacity of 2.2 A h are from Xi’an New Energy. Since the
computation time of the estimators are compared in this
study, the MATLAB 2014a is used in the computer with
Intel®Core ™ i7 processor 4,790 to run the simulation.

In order to build the ECM model and to demonstrate the
performance of the proposed estimators, the following tests were
selected for the study.

a. OCV-SOC relationship

This test is used to obtain the open circuit voltage (OCV)-SOC
relationship. This test is important since the OCV (soc) function
in the ECM is obtained by fitting the OCV-SOC curve. In the
literature, very small C-rates (C/20) (Wei et al., 2021b), hybrid
pulse power characterization (HPPC) (U.S. Department of
Energy, 2001), and 0.5C-rate charge/discharge with 1 h
relaxation at 5% SOC interval are three of the most commonly
used methods to obtain the OCV-SOC curves. However, which
one is the best? In order to compare the C/20-rate charge/
discharge (Method A) and 0.5C-rate charge/discharge with 1 h
of rest (Method B), the same battery was tested at ambient
temperature, as shown in Figure 2A, B. From Figure 2, the
SOC error at 20%SOC and 55% SOC is 70 and 63.3 mV for
Method A, and 28.1 and 24.6 mV for Method B. The other 10
cells’ results are shown in Table 1. The mean values of Method
A at 20% and 55%SOC are 72.5 mV and 59.7 mV, respectively,
while the mean values of Method B are 25.6 mV and
20.4 mV, respectively. The results show that Method B to

obtain the OCV-SOC curves is more accurate than Method A.
The HPPC only has discharged OCV-SOC curves, so it is not
involved in the comparison. Even though the HPPC test is not
used to obtain the OCV-SOC curves in this study, it is still needed
to identify the model parameters.

b. UDDS and mixed driving cycle tests

To generate the current profiles needed for battery testing, an
electric vehicle model in the GT-SUITE 7.4 has been modified
under varying velocity profiles. The battery pack current profiles
have been scaled down to the cell level for validation purposes. In
this study, the urban dynamometer driving schedule (UDDS) and
mixed driving cycles

NYCC + 2UDDS + 2US06 + 2LA92 + 2HWY + UDDS + 1h rest

+ 2UDDS + 2US06 + 2LA92 + 2UDDS

are composed to simulate the real EV’s driving conditions. In
the mixed current profiles, the New York City Cycle (NYCC)
features low-speed stop-and-go traffic conditions. The UDDS
represents the city driving conditions. The US06 is a high-
acceleration, aggressive driving schedule. Compared to the
UDDS, the LA92 dynamometer driving schedule has a
higher top speed, a higher average speed, less idle time,
fewer stops per mile, and a higher maximum rate of
acceleration. The HWY represents a highway driving
condition.

3 ECM-BASED SOC ESTIMATION

3.1 The Normal 2RC-ECM and Augmented
2RC-ECM
In the literature about the equivalent circuit model, the normal
form of 2RC-ECM can be represented as follows (Wei et al.,
2020b):

FIGURE 2 | (A) OCV-SOC curve using method A (10–100% SOC); (B) OCV-SOC curve-method B (0–100%).
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x � [V1,k+1 V2, k+1 Zk+1 ]T, (1)
xk+1 � Axk + Bik + wk (2)

yk � OCV(zk) − V1,k − V2,k − R0ik + vk (3)

A �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp( − Δt
R1C1

) 0 0

0 exp( − Δt
R2C2

) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

B �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 − exp( − Δt
R1C1

))pR1
(1 − exp( − Δt

R2C2
))pR2

−ηi Δt
Cn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

where Zk represents the SOC, Cn is the battery nominal
capacity, V1,k V2,k is a state variable and represents the
voltages across the two capacitors. The state variables of the
system are Zk, V1,k, V2,k . The output of the model is yk, which
is the terminal voltage, the current ik is the input. The wk and
vk are system noise and measurement noise, respectively.

Based on the ECM model, the SOC can be estimated using
the estimator as shown in Figure 3. Here, the AEKF could be
switched with the other algorithms depending on which one is
suitable (Hu et al., 2021a). In the SOC research area, the
current profiles I (such as UDDS) are used to excite the

battery and the experimental current It and terminal voltage
Vt are obtained. Also, the reference SOC can be calculated by
using the coulomb counting method based on the current It.
Then, the same current data It is used to estimate the SOC
based on the ECM_AEKF estimator, which also includes the
coulomb counting method as shown in Eq. 1. So, the function
of the estimator used here is to remove the error of an
inaccurate preset initial SOC value and the system noise of
the battery model.

However, in real EVs, the current sensors are not as
accurate as the ones used on the test bench, which means
the bias noise + white noise are coupled to contaminate the test
data (Hu et al., 2021b; Hu et al., 2021c; Wei et al., 2022c). For
the white noise, the proposed estimators (such as KF-based)
are easy to remove it, however, the challenging part is the bias
noise, which will cause the estimators to diverge. So, in this
paper, a novel SOC estimation strategy is proposed as shown in
Figure 4. The white current and voltage noise Iw and Vw with
0.5 amplitude and preset current bias noise Ib are used to
simulate the inaccurate current and voltage sensors in the EVs.
Meanwhile, the reference SOC could be regarded as the
“actual” SOC since it uses much more accurate sensors in
the test bench. Then, the noise-added test current and terminal
voltage are fed into the ECM_AEKF estimator to estimate the
SOC. Using this strategy, both the sensors’ noise and the
model’s inaccuracy are considered, which makes it more
applicable in real EVs.

As mentioned above, the bias current noise will cause the
estimator to diverge. The main reason is that current integration
in the ECM will accumulate the bias error due to the nonzero
integration (the numerical integration for white noise is zero).

TABLE 1 | Voltage error between Method A and Method B.

Cell no. 0.02C-rate charge/discharge 0.5C-rate charge/discharge 1 h rest

Voltage
error (mV) 20%

Voltage
error (mV) 55%

Voltage
error (mV) 20%

Voltage
error (mV) 55%

1 70 63.3 28.1 24.6
2 72.4 58.9 19.6 11.5
3 75.2 62.4 26.7 21.9
4 74.6 61 27.8 21.8
5 73.2 60.7 27.3 22.4
6 70.6 58 23.9 18.8
7 72.4 58.9 28.4 22.7
8 72.3 57.3 27.8 22.9
9 71.7 59.7 27.2 22.7
10 74.7 60.2 28 23.3
11 70.9 56.9 17.5 11.5

FIGURE 3 | SOC estimation strategy without sensors’ noise assumption.
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The augmented ECM may be a good solution to handle the bias
noise by adding one more state Ib to capture the variation of the
noise. Here, the 2RC augmented ECM is used for illustration
purposes. Compared with the normal ECM as shown in
Equations 1–5, the main differences exist in Equations 6 and
8, 9, where the system and measurement equations are revised
since the noise state Ib is added. It is obvious to see the noise Ib is
removed from the noise added current ik in equation (11)–(13)
by multiplying the term (ik − Ibk).

x � [Zk+1 V1,k+1 V2, k+1 I b
k+1]

T

(6)
xk+1 � Axk + Bik + wk (7)

yk � OCV(zk) − V1,k − V2,k − R0(ik − I
b

k
) + vk (8)

A �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
ηi Δt
Cn

0 e−
Δt

R1C1 0 −R1
⎛⎜⎜⎜⎜⎜⎜⎝1 − e−

Δt
R1C1
⎞⎟⎟⎟⎟⎟⎟⎠

0 0 e−
Δt

R2C2 −R2
⎛⎜⎜⎜⎜⎜⎜⎝1 − e−

Δt
R2C2
⎞⎟⎟⎟⎟⎟⎟⎠

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

B � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−ηi Δt
Cn

R1
⎛⎜⎜⎜⎜⎜⎜⎝1 − e−

Δt
R1C1
⎞⎟⎟⎟⎟⎟⎟⎠ R2

⎛⎜⎜⎜⎜⎜⎜⎝1 − e−
Δt

R2C2
⎞⎟⎟⎟⎟⎟⎟⎠ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

(10)

Rewriting Equation (7),

Zk+1 � Zk − ηi Δt
Cn

(ik − I
b

k
), (11)

V1,k+1 � e−
Δt

R1C1pV1,k + R1
⎛⎜⎜⎜⎜⎜⎜⎝1 − e−

Δt
R1C1
⎞⎟⎟⎟⎟⎟⎟⎠(ik − I

b

k
), (12)

V2,k+1 � e−
Δt

R2C2pV2,k + R2
⎛⎜⎜⎜⎜⎜⎜⎝1 − e−

Δt
R2C2
⎞⎟⎟⎟⎟⎟⎟⎠(ik − I

b

k
) (13)

3.2 Hysteresis Effect and Parameter
Identification
Plett (2004) illustrated the hysteresis effect by showing the
lithium-ion polymer batteries’ OCV-SOC charging and
discharging curves at a C/25 current rate and ambient
temperature. The difference between the two terminal
voltages exists across the whole SOC range. Most part of
the voltage difference is caused by the hysteresis effect,
while only a small part of it is due to R0 ik drop. V.
Srinivasan et al. (2001) gained insight into the hysteresis
during the exchange of protons in nickel hydroxide by
measuring and comparing the boundary curves from films
of different structure (pure Ni, cobalt doped Ni, and aged
films). Also, they evaluate various theories that have been
proposed to explain the hysteresis effect. In order to model
the slow transition by adding a “hysteresis state” to the battery
model, Plett (2004) proposed a discrete-time equation
(assuming i(t) and M(z, _z) are constant over the sample
period):

hk+1 � exp( −
∣∣∣∣∣∣∣ηiikγΔtCn

∣∣∣∣∣∣∣)hk + (1 − exp( −
∣∣∣∣∣∣∣ηiikγΔtCn

∣∣∣∣∣∣∣))M(z, _z)
(14)

Here ηi is the coulombic efficiency, γ is a positive constant,
which tunes the rate of decay, Cn is the available capacity, and
M(z, _z) is a function that gives the maximum polarization due to
hysteresis as a function of SOC and the rate-of-change of SOC.
Specifically, M(z, _z) is positive for charge ( _z> 0) and is negative
for discharge ( _z< 0). From papers (Plett, 2004) and (Hu et al.,
2012), we know theM is set to a fixed value, which is calculated by
choosing the absolute maximum value from the voltage difference
between charged OCV-SOC and discharged OCV-SOC curves as
shown in Figure 5. In this case, the M = 0.0135V. To improve the
model accuracy, one-state hysteresis is also considered in
this paper.

FIGURE 4 | SOC estimation strategy with sensors’ noise assumption.
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To improve the estimated SOC accuracy, an actuated battery
model is needed in model-based estimators (Chen et al., 2021).
The key part to guaranteeing the model’s accuracy is to identify
the model parameters in an appropriate way. The recursive least
squares (RLS) algorithm is one of the most widely used online
parameters identification algorithms (Wang et al., 2017; Xiong
et al., 2013b; Chen et al., 2015; Duong et al., 2015). Normally, the
HPPC data is used to identify the model parameters. For example,
the 1RC-ECM parameter are identified using the RLS as shown in
Figure 6. If the model parameters are used to estimate the SOC
based on EKF in each time step or by combining the RLS with the
EKF to estimate the SOC (Arasaratnam et al., 2014), the EKF-
based estimator will diverge easily due to the dramatically
changed parameters. Dual EKF and joint EKF (Plett, 2005)
may be an option for simultaneous SOC estimation, however,

the complexity and relatively high computation requirements will
drag it from a real application.

For the offline parameter identification method, the genetic
algorithm (GA) is normally used to identify the model parameters
by minimizing the error between the estimated terminal voltage,
and the measured terminal voltage as shown in Figure 7. In this
research, all the model parameters are identified using the GA
method based on the ambient temperature HPPC data.

4 KEY FEATURES OF THE PROPOSED
ESTIMATORS

In the literature, there are so many papers that describe the
equations of the KF-based estimators, so in this part, only the key

FIGURE 5 | (A) OCV-SOC curves; (B) OCV error (half of the difference of charged data minus discharged data).

FIGURE 6 | 1RC-ECM parameters using RLS based on HPPC data.
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features in the process of implementing these algorithms are
discussed here.

4.1 TwoVersions of Adaptive Laws for Q and
R Tuning
To ensure the KF-based estimator’s convergence and to improve
the estimated SOC accuracy, the process noise matrix Q and
measurement noise matrix R need to be well tuned by the trial-
and-error method, which is unlikely to be used in real EVs due to
the complex operation conditions (Ruan et al., 2021). So, to
improve the robustness of the estimators, two adaptive laws are
then proposed to update the Q and R iteratively, one is an
adaptive law with moving windows (Law 1) (Xiong et al.,
2013c) and the other is an adaptive law with a forgetting
factor (Law 2) (Hongwen He et al., 2011), the details are
shown as follows:

a. Adaptive law with moving windows

Hk � 1
M

∑k
i�k−M+1

eke
T
k

Rk � Hk − CkP
−
k
CT

k

Qk � KkHkK
T
k

where Hk is the innovation covariance matrix based on the
innovation sequence inside a moving estimation window of
size M.

b. Adaptive law with a forgetting factor

The system model is described as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xk � Ak−1Xk−1 + Bk−1uk−1 + Γk−1wk−1

Yk � CkXk +Dkuk + vk
vk ~ (rk, Rk)
wk ~ (qk, Qk)

where dk � 1−λ
1−λk+1 , 0< λ <1, where λ is called forgetting factor.

q̂k+1 � (1 − dk)q̂k + dkGk[X̂k+1 − AkX̂k − Bkuk]
Q̂k+1 � (1 − dk)Q̂k + dkGk[Kk+1ek+1eTk+1K

T
k+1 + Pk+1

− AkPkA
T
k ]GT

k

r̂k+1 � (1 − dk)r̂k + dk[Yk+1 − CkX̂
−
k+1 −Dkuk]

R̂k+1 � (1 − dk)R̂k + dk[ek+1eTk+1 − Ck+1P−
k+1C

T
k+1]

where Gk � [ΓTkΓ−k ]−1ΓTk ; error matrix ek+1 � Yk+1 −
Ck+1(Ak+1 X̂ −

k+1 + Bk+1uk+1) −Dk+1uk+1 − r̂k ; gain matrix Kk+1 �
P−
k+1 C

T
k+1[Ck+1P−

k+1C
T
k+1 + R̂k]−1 ; and estimate of the

convariance P−
k+1 � AkPkAT

k + ΓkQ̂kΓTk and Pk+1 � (I −
Kk+1Ck+1)P−

k+1.

4.2 UKF With Two Types of Noise
For EKF, a Taylor-series expansion is used to linearize the
nonlinear system by only considering the first-order term, this
assumption will definitely lose some estimated accuracy when the
system has much stronger nonlinearity. The UKF uses a statistical
approach called the Unscented Transformation (UT) to handle
the nonlinearity.

λ � α2(L + κ) − L

ηm0 � λ/(L + λ)

FIGURE 7 | 1RC-ECM optimized terminal voltage versus measured voltage using GA.
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ηc0 � λ/(L + λ) + 1 − α2 + β

ηmi � η
c

i
� 1/[2(L + λ)], i � 1, . . . , 2L

χk−1 � [x̂k−1 x̂k−1 +
�����
L + λ

√ ����
Pk−1
√

x̂k−1 −
�����
L + λ

√ ����
Pk−1

√ ]
where α, β, κ are the scaling parameters (default � 1, β � 2, κ � 0
), L is the length of the state vector.

In general, there are two types of UKF (Rhudy and Gu, 2013),
one is standard (un-augment) UKF and the other one is
augmented UKF, the main difference is how to handle the
noise. For standard UKF, the process and measurement noise
terms are assumed to be additive, as in

xk � f(xk−1, uk−1) + wk−1
yk � h(xk, uk) + vk

The augmented UKF is

xk � f(xk−1, uk−1, wk−1)
yk � h(xk, uk, vk)

To improve the SOC estimation accuracy and stability of the
estimator, adaptive UKF (Sun et al., 2011) and square root

unscented KF (SRUKF) (Zhou et al., 2015) are used to
estimate the SOC. The implementation of UKF and the
comparison study between EKF and UKF are shown in detail
in the work of Rhudy and Gu (2013), and further study could be
seen in the work ofRhudy et al. (2013).

4.3 Cubature Kalman Filter
CKF was first proposed by Arasaratnam and Haykin (2009),
which shares the common characteristics with UKF, the main
difference is how to generate the sigma points, as shown in
Figure 8. For UKF, there are 2n+1 sigma point, while there are 2n
sigma points for CKF. The other difference is that CKF needs to
recalculate the covariance matrix and sigma points as shown in
the following two equations (Wei et al., 2016):

Sk|k−1 � chol(Pk|k−1)
χ(i)k|k−1 � Sk|k−1ξ

(i) + x̂k|k−1, i � 1, 2, . . . , 2n

4.4 H-Infinity Filter
Compared with the KF-based estimators, the H-infinity filter does
not need the exact and known statistical properties of the system and
measurement errors, and it still guarantees the estimation accuracy
in the worst noise case. Although the theory of H-infinity is easy to
understand, different forms of H-infinity and their complexity in
coding have limited its application. Here, based on the work of Xue-
min and Deng (1997), VanAntwerp and Braatz (2000), Zhang and
Han (2008), and Lin et al. (2016), an easily understood and coding
H-infinity filter is proposed as follows.

Recall that the system model is formulated as

xk � Axk−1 + Buk + wk

yk � Cxk +Duk + vk
zk � Lxk

The H∞ filter is required to provide a uniformly small
estimation error ek � zk − ẑk for any wk, vk. The measurement
of performance is then given by

J � ∑N−1
k�0
""""Zk − Ẑk

""""2Qk
‖x0 − x̂0‖2po−1 + ∑N−1

k�0 {‖Wk‖2Wk−1 + ‖vk‖2Vk
− 1}

The performance criterion becomes

min
ẑk

max
(wk ,vk,x0)

J � − 1
2γ
‖x0 − x̂0‖2p−10 + 1

2
∑N–1

k�0 {‖zk − ẑk‖2Qk

− 1
γ
(‖wk‖2W−1

k
+ ‖vk‖2V−1

k
)}

In an SOC estimation problem, the noise wk is mainly caused
by current noise w′

k, the weighting factor is Q ′
k, and then,

wk � Bw′
k

Qk � BQ′
k BT

�Sk � LTSkL

Tk � (I − θ�SkPk + CT
kR

−1CkPk)

FIGURE 8 | Two kinds of distributions of point sets in two-
dimensional space.
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TABLE 2 | AEKF with forgetting factor λ = 0.95

RC branches Mixed driving cycles UDDS

MSE Mean SOC error MSE Mean SOC error

1 1.98E-04 1.3239% 3.15E-04 1.7134%
1 + one hysteresis 6.17E-05 0.4364% 1.04E-04 0.8492%
2 1.24E-04 0.5516% 1.63E-04 0.9438%
2 + one hysteresis 5.88E-04 2.2836% 6.77E-05 0.4469%
3 2.93E-04 1.5535% 1.19E-04 0.9428%
3 + one hysteresis 1.38E-04 0.8781% 1.38E-04 1.0278%

The bold values in the mentioned tables are the minimum values.

TABLE 3 | Time consuming of AEKF with varying RC branches.

RC branches Mixed driving cycles UDDS

1 0.623414 0.874592
1 + one hysteresis 0.704906 0.993805
2 0.683496 0.979811
2 + one hysteresis 0.764954 1.09408
3 0.704004 1.013164
3 + one hysteresis 0.873314 1.272123

TABLE 4 | AUKF with moving windows M = 150.

RC branches Mixed driving cycles UDDS

MSE Mean SOC error MSE Mean SOC error

1 6.36E-05 0.4978% 4.82E-05 0.4792%
1 + one hysteresis 5.90E-05 0.3832% 5.11E-05 0.2934%
2 2.65E-04 1.3504% 8.70E-05 0.4232%
2 + one hysteresis 3.13E-04 1.5724% 1.03E-04 0.7738%
3 9.80E-05 0.4865% 9.85E-05 0.716%
3 + one hysteresis 1.05E-04 0.7356% 5.80E-05 0.4036%

The bold values in the mentioned tables are the minimum values.

TABLE 5 | Time consuming of AUKF with varying RC branches.

RC branches Mixed driving cycles UDDS

1 2.619153 3.810963
1 + one hysteresis 3.290903 4.774251
2 3.231504 4.653444
2 + one hysteresis 3.93948 5.66124
3 3.829177 5.480512
3 + one hysteresis 4.682725 6.790386

The bold values in the mentioned tables are the minimum values.

TABLE 6 | ACKF with moving windows M = 150.

RC branches Mixed driving cycles UDDS

MSE Mean SOC error MSE Mean SOC error

1 7.44E-05 0.3895% 1.15E-04 0.8643%
1 + one hysteresis 1.63E-04 0.9603% 8.09E-05 0.508%
2 4.13E-04 1.8038% 1.50E-04 1.0084%
2 + one hysteresis 6.48E-04 2.2831% 1.35E-04 0.9548%
3 6.53E-05 0.334% 1.17E-04 0.5374%
3 + one hysteresis 8.63E-05 0.5656% 1.02E-04 0.6082%
The bold values in the mentioned tables are the minimum values.

TABLE 7 | Time consuming of ACKF with varying RC branches.

RC branches Mixed driving cycles UDDS

1 2.306256 3.343073
1 + one hysteresis 2.848857 4.093163
2 2.793222 4.013798
2 + one hysteresis 3.391637 4.915385
3 3.35171 4.817241
3 + one hysteresis 4.020114 5.840877
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Kk � APkTkC
T
kR

−1

x̂k+1 � Ax̂k + Buk + Kk[yk − (OCV(ŝock) + R0uk + x̂k,2 + x̂k,3)]
Pk+1 � APkTkA

T + BQ′
kB

T

5 SIMULATION RESULTS AND
DISCUSSION

In this part, the normal ECM and augmented ECM with varying
RC branches and hysteresis effects are combined with the four
proposed estimators (EKF, UKF, CKF, and H-infinity) to
estimate the SOC under different noise assumptions. And the
model parameters are identified by GA using ambient
temperature HPPC data. The temperature and aging effects
are not considered here. For the noise assumptions, the
voltage noise is fixed type, which is 5mV (the mainstream
voltage sensors’ accuracy level) + 0.5 V amplitude white noise.
While for the current noise assumptions, firstly, only the 0.5 A
amplitude white noise are added to the current data, the
estimation results are discussed in Section 5.1. Secondly, the
1% of 1C-rate bias current noise (0.022 A)+ 0.5 A amplitude
white noise is used to contaminate the tested current data. The
estimated SOC results are discussed in Section 5.2. Lastly, to
evaluate the robustness of the proposed estimators, the 5%, 10%,

TABLE 8 | H-infinity filter with varying RC branches.

RC branches Mixed driving cycles UDDS

MSE Mean SOC error MSE Mean SOC error

1 4.86E-05 0.3954% 8.69E-05 0.5736%
1 + one hysteresis 2.94E-05 0.2708% 5.48E-05 0.5054%
2 2.91E-04 1.5093% 1.24E-04 0.7432%
2 + one hysteresis 4.29E-04 1.8134% 3.20E-04 1.633%
3 5.75E-05 0.2649% 6.28E-05 0.4335%
3 + one hysteresis 6.87E-05 0.3182% 7.84E-05 0.6082%

The bold values in the mentioned tables are the minimum values.

TABLE 9 | Time consumption of H-infinity with varying RC branches.

RC branches Mixed driving cycles UDDS

1 0.411761 0.571345
1 + one hysteresis 0.515896 0.716525
2 0.448291 0.633399
2 + one hysteresis 0.531628 0.750855
3 0.46535 0.654545
3 + one hysteresis 0.59286 0.847776

The bold values in the mentioned tables are the minimum values.

FIGURE 9 | Comparison results of the four estimators with white noise.

TABLE 10 | AEKF with 1% current bias noise added.

RC branches Mixed driving cycles UDDS

MSE Mean SOC error MSE Mean SOC error

1 2.96E-04 1.348% 3.45E-04 1.5174%
1 + one hysteresis 2.57E-04 1.1654% 6.57E-04 2.15%
2 3.79E-04 1.634% 0.001234 2.8858%
2 + one hysteresis 0.002619 4.6574% 0.00148 3.3015%
3 4.56E-04 1.7456% 5.35E-04 1.5442%
3 + one hysteresis 6.92E-04 2.1506% 3.61E-04 1.4472%

The bold values in the mentioned tables are the minimum values.
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20%, and random bias (with 0.44 A amplitude) of 1C-rate bias
noise+ 0.5 A amplitude white noise are added into the tested
current data, the estimation results are discussed in Section 5.3.

5.1 Estimation Results With Only White
Noise
In this study, the two aforementioned adaptive laws are the
moving window version and the forgetting factor version. It is
worth mentioning that the forgetting factor adaptive law seems to
be more suitable for the EKF since the moving window one needs
to be well tuned due to its sensitivity to the preset initial SOC
value. Here, since the adaptive laws are used to update the Q, R
iteratively in KF-based estimators, the initialized values of the Q
and R related matrix could be set arbitrarily. In the following, I
just show the initialized parameters which are used in the normal
KF-based estimators; forgetting factor λ = 0.95, moving windows
M = 150 for UKF and CKF, p = 0.01*eye(sN), Q = 0.01*eye(sN), R

TABLE 11 | AUKF with 1% current bias noise added.

RC branches Mixed driving cycles UDDS

MSE Mean SOC error MSE Mean SOC error

1 2.70E-04 1.4355% 4.69E-04 1.7026%
1 + one hysteresis 4.44E-04 1.8238% 3.85E-04 1.6367%
2 0.001196 3.0985% 8.65E-04 2.5085%
2 + one hysteresis 0.001379 3.3542% 0.00106 2.8208%
3 3.42E-04 1.5551% 2.24E-04 1.1264%
3 + one hysteresis 4.03E-04 1.736% 3.92E-04 1.6129%

The bold values in the mentioned tables are the minimum values.

TABLE 12 | ACKF with 1% current bias noise added.

RC branches Mixed driving cycles UDDS

MSE Mean SOC error MSE Mean SOC error

1 1.51E-04 0.9793% 3.55E-04 1.4404%
1 + one hysteresis 7.02E-04 2.2454% 0.001288 2.9048%
2 9.60E-04 2.7682% 7.25E-04 2.3733%
2 + one hysteresis 0.001321 3.3247% 0.001235 3.1532%
3 2.87E-04 1.4025% 7.09E-04 2.1438%
3 + one hysteresis 8.70E-04 2.5454% 7.80E-04 2.4736%

The bold values in the mentioned tables are the minimum values.

TABLE 13 | H-infinity filter with 1% current bias noise added.

RC branches Mixed driving cycles UDDS

MSE Mean SOC error MSE Mean SOC error

1 2.04E-04 1.1447% 1.83E-04 1.156%
1 + one hysteresis 7.80E-04 2.329% 8.46E-04 1.6538%
2 9.76E-04 2.7704% 6.43E-04 2.2911%
2 + one hysteresis 0.00149 3.4699% 0.001226 3.1828%
3 2.13E-04 1.2097% 5.08E-04 1.8536%
3 + one hysteresis 8.59E-04 2.4864% 0.001154 2.9956%

The bold values in the mentioned tables are the minimum values.

FIGURE 10 | Comparison results of the four estimators with 1%
current bias.
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= 0.01, sN means state number, Γ, q, r are also set to be 0.01
multiplying the number of rows and columns.

As shown in Table 2, the two driving cycles are used to
evaluate the estimators, and it is obvious that the accuracy level
for two types of data is not the same, which is caused by the
fixed model parameters since the identified parameters may be
more accurate and suitable for mixed driving cycles. For
example, for mixed driving cycles, the 1RC + one hysteresis
state has the best accuracy of 0.4364% mean SOC error, while
in the UDDS case, the 2RC + one hysteresis state has the best
accuracy of 0.4469%. It is well known that increasing RC
branches will improve the model accuracy, however, if the
model is accurate enough, more RC branches will cause the

model overfitting problems as shown in the 2RC and 3RC
cases. That is also the reason why in the following tables only
up to 5RC branches ECM are studied since the aim of this
research is to obtain the optimal estimator with relatively high
accuracy level and less computation time-consuming. The
more RC branches may decrease the model accuracy and
increase the computation time, as shown in Table 3.

Similarly, Tables 4–9 shows the simulation results of the UKF,
CKF, and H-infinity filters only under the white noise
assumption. The moving windows adaptive law is used for

FIGURE 11 | Zoom-in of the random bias noise.

FIGURE 12 | Normal ECM based AEKF_1RC with 5% bias noise.

FIGURE 13 | Augmented ECM based AEKF_1RC with 5% bias noise.
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UKF and CKF, the reason is that the Cholesky factorization of
covariance matrix P in the algorithms is more sensitive to the
forgetting factor, which means the inappropriate λmay cause the
P to violate the positive definite requirement for the Chol(P).
From the simulation results, it is obvious that the UKF and CKF is

more accurate than the EKF compared with the same order RC
model, which is reasonable since the UKF and CKF use the sigma
points to deal with the nonlinearity of the model while the EKF
only uses the first order Taylor series linearization process. The
strategy used in the UKF and CKF is much more accurate than

TABLE 14 | Augmented ECM-based AEKF with 5% bias.

RC branches Mixed driving cycles UDDS

MSE Mean SOC error MSE Mean SOC error

1 1.36E-04 0.9632% 1.64E-04 1.1243%
2 4.50E-04 1.7093% 2.01E-04 0.6632%
3 1.81E-04 0.931% 2.23E-04 1.1973%
4 1.19E-04 0.521% 1.48E-04 0.9135%
5 4.90E-04 1.8785% 1.14E-04 0.6326%

The bold values in the mentioned tables are the minimum values.

TABLE 15 | Augmented ECM-based AEKF with 10% bias.

RC branches Mixed driving cycles UDDS

MSE Mean SOC error MSE Mean SOC error

1 2.11E-04 1.1581% 2.75E-04 1.5063%
2 4.76E-04 1.7761% 1.77E-04 0.8099%
3 2.17E-04 0.978% 2.19E-04 1.1829%
4 2.42E-04 0.9167% 1.59E-04 0.7971%
5 5.46E-04 1.9776% 1.40E-04 0.6529%

The bold values in the mentioned tables are the minimum values.

TABLE 16 | Augmented ECM-based AEKF with 20% bias.

RC branches Mixed driving cycles UDDS

MSE Mean SOC error MSE Mean SOC error

1 3.41E-04 1.5457% 2.41E-04 1.3191%
2 0.001056 1.9063% 3.98E-04 0.8321%
3 2.77E-04 1.1942% 3.06E-04 1.4411%
4 3.02E-04 0.7748% 2.43E-04 1.0609%
5 7.52E-04 1.886% 2.56E-04 0.6159%

The bold values in the mentioned tables are the minimum values.

TABLE 17 | Augmented ECM-based AEKF with 20% random bias.

RC branches Mixed driving cycles UDDS

MSE Mean SOC error MSE Mean SOC error

1 2.43E-04 1.3523% 2.75E-04 1.5172%
2 3.96E-04 1.5051% 1.98E-04 0.5954%
3 2.84E-04 1.3446% 2.62E-04 1.3528%
4 1.35E-04 0.5697% 1.59E-04 0.9525%
5 3.55E-04 1.5232% 8.91E-05 0.4184%

The bold values in the mentioned tables are the minimum values.
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the EKF in dealing with the nonlinearity, however, the drawback
of these two estimators is that they are too much more time
consuming than the EKF, as shown in Tables 5, 7.

So far, no adaptive law for the H-infinity filter, since it may still
have good performance even in the worst noise case. The following
shows the preset parameters for H-infinity estimation, � 10−7,
Q ′

k � 0.022, R � 0.005, L � (1 0 0) for 2RC, Sk � 1. The most
attractive feature of the H-infinity filter is that it is the least time-
consuming as shown in Table 9. All the four candidates with
relatively high accuracy and less time-consuming in the proposed

TABLE 19 | Augmented ECM-based H-infinity with 5% bias.

RC branches Mixed driving cycles UDDS

MSE Mean SOC error MSE Mean SOC error

1 1.59E-04 1.0098% 7.79E-05 0.6183%
2 0.001033 2.9521% 4.74E-04 1.8654%
3 2.08E-04 1.0933% 8.64E-05 0.5339%
4 3.86E-04 1.7233% 2.44E-04 1.2372%
5 0.00103 2.9569% 5.63E-04 1.938%

The bold values in the mentioned tables are the minimum values.

TABLE 20 | Augmented ECM-based H-infinity with 10% bias.

RC branches Mixed driving cycles UDDS

MSE Mean SOC error MSE Mean SOC error

1 1.64E-04 0.9558% 8.10E-05 0.5372%
2 0.001043 2.9774% 5.60E-04 1.9919%
3 2.31E-04 1.0941% 1.23E-04 0.709%
4 5.58E-04 2.0764% 2.17E-04 1.1479%

The bold values in the mentioned tables are the minimum values.

TABLE 21 | Augmented ECM-based H-infinity with 20% bias.

RC branches Mixed driving cycles UDDS

MSE Mean SOC error MSE Mean SOC error

1 2.32E-04 1.0392% 1.28E-04 0.6748%
2 0.001487 3.304% 7.92E-04 2.1894%
3 2.13E-04 1.0053% 1.87E-04 0.746%
4 5.23E-04 1.8832% 2.56E-04 1.1456%

The bold values in the mentioned tables are the minimum values.

TABLE 22 | Augmented ECM-based H-infinity with 20% random bias.

RC branches Mixed driving cycles UDDS

MSE Mean SOC error MSE Mean SOC error

1 7.62E-05 0.5281% 7.18E-05 0.4966%
2 8.41E-04 2.6739% 3.91E-04 1.6731%
3 1.45E-04 0.8467% 1.01E-04 0.5642%
4 3.12E-04 1.5168% 2.01E-04 1.0527%

The bold values in the mentioned tables are the minimum values.

TABLE 18 | Time consumption of the augmented ECM-based AEKF.

RC branches Mixed driving cycles UDDS

1 0.660001 0.942093
2 0.676165 0.949211
3 0.721047 1.015646
4 0.735255 1.040624
5 0.771258 1.078617

The bold values in the mentioned tables are the minimum values.

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 91429114

He et al. Battery SOC Estimation

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


estimators are shown in Figure 9, in which the H-infinity with 3RC
is the optimal estimator under only white noise added assumption.
Here, the KF is well known to be the optimal estimator under white
noise assumption; however, in this case, the current data are assumed
to be white noise added while the noise in the batterymodel may not
be of Gaussian distribution, which leads to the H-infinity filter being
the best option.

5.2 Estimation Results With 1% (1C-Rate)
Current Bias Noise
The aforementioned results are only based on white noise
assumptions, which is unlikely to happen in real EVs since the
current sensors do have some bias noise disturbance. Here, 1%
of 1C-rate bias noise + white noise is used to simulate the
inaccurate current sensors in a real application. Since the
battery model is not changed and the measurement noise
(terminal voltage) is fixed in all estimation processes, the
pre-set parameters for all the estimators remain the same as
shown in Section 5.1. The estimation results are shown in
Tables 10-13, it is obvious that all the estimated mean SOC
errors with varying RC branches are slightly larger than the

ones shown before, which means the current bias noise does
have an effect on the SOC accuracy. The possible solution is to
add one more state to the ECM to capture the noise variations
as discussed in Section 3.1, and the effectiveness of the
augmented ECM will be discussed later. In this part, since
the data points of the current and voltage used here are the
same as in Section 5.1, the computation time of the four
estimators is not shown here. As shown in Figure 10, the
ACKF_1RC has the least mean SOC error (0.9793%), however,
the about 2.3 s computation time hinders it from being the
optimal estimator, the H-infinity_1RC may be the best option
with the tradeoff of accuracy and time-consuming.

5.3 Estimation Results With 5–20% Bias
Noise and Random Bias Noise
To validate the robustness of the augmented ECM based estimators,
the 5, 10, 20% fixed bias and the 20% random bias current noise are
added to the current data. The 20% random bias noise means the
amplitude of the noise is 20% of the 1C-rate while the specific bias
value is randomly generated, which could be partially seen in
Figure 11. Compared with the SOC error using 1% current bias,
when the 5% bias current noise is added to the current data, the
absolute maximum SOC error of the normal ECM based AEKF
estimator reaches about 40%, as shown in Figure 12, and a similar
SOC error happens in the other three estimators. However, if the
augmented ECM is used, the SOC error will decrease to about 1.5%,
as shown in Figure 13. It is worth mentioning that the augmented
ECM based UKF and CKF estimators could not decrease the SOC
error, and the details of the reason are not discussed here. So, only
the augmented ECM based EKF and H-infinity filter are compared
with different current bias noise, and the estimated SOC error and
the computation time are listed in Tables 14–23.

The estimated SOC error of the augmented ECM using the
same RC branches increases with the varying bias noise. For
example, the SOC error trend of the augmented ECM_1RC based
AEKF is 0.9632% → 1.1581% →1.5457%, while the computation
time of the normal ECM_1RC based AEKF and the augmented
one is 0.623414 and 0.660001s, respectively. For the augmented
ECM, the added state for noise estimation has a slight effect on
the computation time, which means two or three more states
could be added to the ECM to improve the robustness of the
estimator when the accuracy of the current sensors is dramatically
changed under complex driving conditions. The comparison
results of the two estimators with varying bias noise are
shown in Figure 14. The AEKF_4RC seems to have slightly
better accuracy than the H-infinity_1RC, the possible reason may
be that non-adaptive laws are used in the H-infinity based
estimators, which means the Q, R related matrix are not tuned
to their optimized values. However, H-infinity based estimators
are still a potential candidate to be used in real applications
considering their less time-consuming computation. In fact, the
results of the robustness evaluation process show that the
proposed two estimators are both suitable for SOC estimation.

FIGURE 14 | Comparison results of the two estimators with varying
current bias.

TABLE 23 | Time consumption of the augmented ECM-based H-infinity.

RC branches Mixed driving cycles UDDS

1 0.463775 0.652417
2 0.495241 0.695954
3 0.53066 0.75639
4 0.573406 0.796384
5 0.614732 0.87387

The bold values in the mentioned tables are the minimum values.
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6 CONCLUSION

In this paper, the three most proposed KF-based estimators
(EKF, UKF, and CKF) and H-infinity filter in the SOC
estimation research area are compared and evaluated based
on the SOC accuracy and algorithms’ complexity. Also, some
basics of the SOC estimation are validated, such as constant
current (0.5C-rate) with proper relaxation time (1 h) and
SOC interval (5%) is more accurate than the small C-rate
(0.02C-rate) charge/discharge to obtain the OCV-SOC
curves, while the forgetting factor adaptive law is better for
the EKF and the moving windows adaptive law is better in
UKF and CKF. For the results of SOC estimation, the
H-infinity filter is the optimal estimator to estimate the
SOC with relatively higher accuracy and less computation
time under Gaussian noise and 1% current bias noise, while
for the worse bias noise assumption, the Augmented

AEKF_4RC and H-infinity filter_1RC are both suitable for
SOC estimation. Further work will be conducted in the state
of power (SOP) and SOC joint estimation areas and the
temperature and aging effects will also be considered.
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