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Monodisperse encapsulated phase change materials (PCMs) are fabricated via
microfluidic technology. To evaluate the thermoregulation ability of PCM capsules
applied in building thermal energy storage, a gypsum model house with PCM capsules
embedded is prepared. The temperature revolutions outside and inside the gypsummodel
house with different PCM capsules filling ratios are investigated. The effect of the filling ratio
of the PCM on the thermoregulation performance is discussed. The potential application of
monodisperse encapsulated PCMs in building thermal energy storage is verified.
Attributing to the PCM capsules, the thermal response of the gypsum model house to
the varying environmental temperature is retarded. As the filling ratios increase, the
thermoregulation performance of the gypsum model house is better.

Keywords: phase changematerials, thermal energy storage, encapsulation, droplet microfluidics, thermoregulation

INTRODUCTION

Phase change materials (PCMs), which can absorb or release heat during the melting or solidification
process, can be applied to indoor thermal comfort (Deng et al., 2021; Lamrani et al., 2021), personal
thermal management (Shi et al., 2021; Li et al., 2021), electronic cooling (Wang et al., 2021; Kothari
et al., 2021), photothermal functional surface (Wang et al., 2018; Wang et al., 2017), and solar energy
storage (Zhang et al., 2020; Javadi et al., 2020; Kumar et al., 2020), as shown in Figure 1. However, the
leakage of PCMs may lead to corrosion or fire risk (Hu, 2020). Hence, it is important to encapsulate
the PCMs with a shell or supporting matrix (Su et al., 2015).

There are several approaches for the encapsulation of PCMs (Milián et al., 2017), which are
usually categorized into physical methods and chemical methods, including spray drying
(Borreguero et al., 2011), interfacial polycondensation (Zhang and Rochefort, 2012), suspension
polymerization (Sánchez-Silva et al., 2010), and emulsion polymerization (Zhang et al., 2019).
However, traditional encapsulation approaches suffer from low encapsulation efficiency and poor
monodispersity, which makes it hard to obtain encapsulated PCMs with stable thermal properties
(Cárdenas-Ramírez et al., 2020). Recently, droplet microfluidics technology shed light on the
encapsulation of PCMs, for the precise control of a single droplet (Chen et al., 2015) and high
encapsulation efficiency (Liang et al., 2014; Chen and Deng, 2017; Zhang et al., 2018; Akamatsu et al.,
2019). Wen et al. prepared the phase change microfibers with core–shell structure by a facile and
controllable microfluidic strategy (Wen et al., 2015). Shi et al. prepared polyurea microcapsules
containing paraffin via a microfluidic device, with an encapsulation efficiency of 96.5% (Shi et al.,
2020). Han et al. achieved the precisely microfluidic encapsulation of PCMs with high
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monodispersity (Han et al., 2020). Hao et al. introduced
multilayer graphene to the preparation of encapsulated PCMs
via microfluidic technology (Hao et al., 2022). The
thermoregulation ability of the PCM capsules is enhanced
while the degeneration of energy storage capacity is negligible.
However, there are few studies on the thermoregulation capacity
of monodisperse encapsulated PCMs viamicrofluidic technology
for building thermal energy storage.

In this study, PCM capsules are generated via microfluidic
technology. A thermoregulation experiment system is built to test
the thermal performance of the gypsum model house embedded
with the PCM capsules. The temperature distributions inside the
gypsum model house and outside the gypsum model house are
investigated. The effect of the filling ratio of the PCM on the
thermoregulation performance is discussed. The potential
application of monodisperse encapsulated PCMs in building
thermal energy storage is verified.

EXPERIMENTAL SETUP AND METHODS

Preparation of PCM Capsules
In this study, the PCM capsule emulsion template is obtained by a
microfluidic chip made of two capillaries in this paper (Chen
et al., 2013). The details about the fabrication and structure of the
microfluidic chip can be found in our previous study (Hao et al.,
2022). The inner phase fluid is paraffin RT25 with a phase change
temperature of 22–27°C, and the outer phase fluid is low viscosity
sodium alginate (C6H7O6Na) aqueous solution with a mass
fraction of 3 wt%. The emulsion template is introduced into
the collection unit, and then the shell is solidified by chemical
reaction to prepare the wet PCM capsules. The calcium chloride

(CaCl2) aqueous solution with a mass fraction of 5 wt% is filled in
the collection unit. Subsequently, the dry PCM capsules are
obtained after putting the wet PCM capsules into an oven at
30°C. The coefficient of variation of the PCM capsules prepared in
this study is less than 2%, indicating that the PCM capsules have
goodmonodispersity. The dimensional parameterM is defined as
the mass ratio between the core material RT25 of the PCM
capsules and the shell calcium alginate to characterize the
core–shell structure of PCM capsules. The PCM capsules with
M = 11.2 are used in this study. The melting enthalpy and
solidification enthalpy of PCM capsules are △Hm = 165.9 (J/g)
and △Hc = 166.1 J/g.

Experimental System for Characterization
of Thermoregulation
In order to systematically characterize the thermal regulation
ability, a gypsum model house filled with PCM capsules (radius
of 1.5-mm) is designed and built, and then the temperature changes
on the surface and inside the model house with different filling
ratios (FRs) of PCM capsules under the condition of infrared
radiation heating are observed experimentally. The dimension of
the gypsum model house is 50mm in length, 25mm in width, and
30mm in height. The experimental system diagram of thermal
regulation characterization of PCM capsules is shown in Figure 2.
The gypsummodel house is heated by radiant heat, and the surface
and internal temperatures of the model house are measured and
recorded using an infrared thermal imager (TH9260, Japan Electric
Co., Ltd., Japan) and a thermocouple thermometer (K type, Omega
Co., Ltd., United States), The temperature measuring points inside
the gypsum model house are arranged as TI1, TI2, and TI3
successively from the heat source side (as shown in Figure 1).

In this experiment, the FR of PCM capsules in the gypsum
board is adjusted by changing the number of filled PCM capsules
of the same size. The number of PCM capsules filled in a single
gypsum board is 0, 20, 35, and 60, respectively, and the FR of
PCM capsules is 0%, 11.91%, 20.85%, and 35.74%, respectively,
according to Eq. 1.

FR(%) � NcapsuleVcapsule

Vgb
. (1)

Here, Vcapsule and Vgb represent the volume of PCM capsules and
gypsum board, respectively, and Ncapsule indicates the number of
PCM capsules inside the gypsum board.

RESULTS AND DISCUSSION

During the heating process, the initial temperature of the model
house with filling rates of 0%, 11.91%, 20.85%, and 35.74% is the
same as the ambient temperature (15.5°C). Figure 3 presents the
comparison of infrared thermal images of the model house surface
during the heating and cooling stages under infrared light source
thermal radiation with different FRs of PCM capsules. As expected,
the surface temperature of the gypsum model house increases
significantly after the infrared light source is turned on. At the
initial stage of the heating process (before 4.5 min), there is no clear

FIGURE 1 | Applications of the PCMs.
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difference between the infrared thermal images on the gypsum
model house surface with different FRs. It can be explained that the
change of the surface temperature mainly depends on the radiation
heat of the infrared light source. As time goes on, the surface
temperature of the gypsum model house further rises and reaches
the melting point of RT25. At this time, the surface temperature of
the gypsummodel house begins to be affected by the PCM capsules
filled inside. Since the PCM contained in the capsules absorb part
of the energy from the external environment in the melting
process, the rising surface temperature of the gypsum model
house can be effectively reduced. Therefore, it can be seen that
the surface temperature of the gypsum model house filled with
PCM capsules is significantly lower than that without PCM
capsules at the same time. In addition, with the increase in
heating time, the continuous endothermic melting process of
the internal PCM further slows down the rise of the surface
temperature. Therefore, it can be seen that as heating time goes
on, the difference in the surface temperature between the gypsum
model house with FR > 0% and that with FR = 0% becomes more
obvious. In addition, for the gypsum model house with higher FR,
the volume of PCM inside the model house is higher, so more heat
can be absorbed from the surrounding environment. Thus, the
thermal response of the gypsum model house to the rising
environmental temperature is retarded.

Under the thermal radiation of an infrared light source, three
thermocouples (TI1, TI2, and TI3) are used to measure the inside

temperature of the gypsummodel house with different FRs, andTavg
is the arithmetical average of the temperature measured by the three
thermocouples. As seen in Figure 4A, at the initial heating stage,
there is little difference in the internal temperature of the gypsum
model house with different FRs, because the melting point of most
PCMs has not been reached at this time, and the rising temperature
mainly depends on sensible heat of gypsum board and PCM
capsules. In addition, when the environment temperature rises to
the melting point of PCM, the PCM begins to melt and absorbs heat
from the environment, thus reducing the rising rate of the
temperature inside the model house. Compared with the gypsum
model house filled with PCM capsules, the overall temperature
variations of the gypsum model house filled with PCM capsules are
significantly less. As FR increases, there are more PCMs in the
gypsummodel house, somore heat can be absorbed by PCMduring
the melting process. The retarded thermal response of the gypsum
model house to the rising environmental temperature is more
obvious. Therefore, the curve of the inside temperature of the
gypsum model house is gentler with the increasing FR.

As seen in Figure 3, during the heating stage, before the
melting of the PCMs, the surface temperature of the gypsum
model house is not affected by FR. So, the initial temperature of
the cooling stage is set at 30°C. First, the gypsum model house is
heated by infrared thermal radiation till its internal temperature
reaches 30°C. The gypsum model house with different FRs is
cooled by natural convection at ambient temperature (18°C). It

FIGURE 2 | Thermal regulation characterization experiment of PCM capsules: (A) schematic diagram; (B) structure of the model house; (C) photograph of the
experimental system.
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can be seen from the variations of the infrared thermal image of
the gypsum model house (shown in Figure 3B) that the gypsum
model house surface temperature drops rapidly when the infrared
light source is turned off. As it reaches the solidification range of
RT25 (22–27°C), PCM solidifies and releases heat which can
offset part of the heat in the environment released by the gypsum
model house and slow down the drop in surface temperature of
the house. As a result, it can be seen that the gypsummodel house
surface temperature filled with PCM capsules is significantly
higher than that without PCM capsules. In addition, when FR
increases, the heat released during solidification also increases,
and the gypsum model house surface temperature is higher at the
same time. Combined with what is presented in Figure 3B, at the

initial cooling stage, there is basically no difference in the internal
temperature of the gypsum model house with different filling
rates. This is because the temperature of PCM has not reached the
solidification point, and the drop in the temperature is mainly
caused by the sensible heat decrease of the gypsum board and
PCM under natural convection. When the ambient temperature
drops to the solidification temperature of PCM, the PCM releases
heat to the surrounding environment under the action of latent
heat, thus slowing down the decrease of the internal temperature
of the gypsum model house. It can also be seen that when the FR
increases, the declining trend of the internal temperature of the
gypsum model house filled with more PCM capsules will be
slower.

FIGURE 3 | Surface temperature distribution of model house with different FRs: (A) heating stage; (B) cooling stage.
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In order to more intuitively characterize the thermoregulation
ability of PCM capsules, the time required for the temperature of
the gypsummodel house to reach the three set point temperatures
(SPTs) of 20°C, 27°C, and 35°C in the heating stage are calculated,
respectively. In addition, the time required for the temperature of
the gypsum model house to reach 25°C, 20°C, and 17°C in the
cooling stage are also calculated. As seen in Figures 4C,D, both
during the heating and cooling stage, the time required to reach
the three SPTs increases with the increasing FR, and the
difference in the required time is most obvious at 30°C and
17°C. At this temperature, the PCM filled inside the capsules has
completely absorbed or released all its latent heat through the
melting or solidification process. For the filling ratio of 11.91%,
20.85%, and 35.74%, the time required to reach the SPT of 17°C
during the cooling stage increases by 44.8%, 69.9%, and 198.8%,
respectively. So, the thermoregulation effect of the PCM on the
gypsum model house is strongest at this temperature.

CONCLUSION

In this study, the PCM capsules with good monodispersity are
generated via microfluidic technology. The potential application
of monodisperse encapsulated PCMs in building thermal energy
storage is tested by the thermoregulation experiment of the
gypsum model house embedded by the PCM capsules. The

results indicate that the variation of the inside and outside
surface temperatures of the model house decreases due to the
heat capacity of the PCM capsules. Attributing to the PCM
capsules, the thermal response of the gypsum model house to
the varying environmental temperature is retarded. As the filling
ratios increase, the thermoregulation performance of the gypsum
model house is better. For the filling ratio of 11.91%, 20.85%, and
35.74%, the time required to reach the SPT of 17°C during the
cooling stage increases by 44.8%, 69.9%, and 198.8%, respectively.
Hence, the application of the monodisperse encapsulated PCMs
in building thermal energy storage is verified.
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FIGURE 4 | Thermal performance of the model house with different FRs: (A) temperature distributions inside the model house during the heating stage; (B)
temperature distributions inside the model house during the cooling stage; (C) time required for the model house to reach SPTs during the heating stage; (D) heating
stage; (B) time required for the model house to reach SPTs during the cooling stage.
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