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Clean and low-carbon electricity-gas integrated energy system (EGIES) is being developed
rapidly in order to meet the dual-carbon target. Situation awareness can provide an early
warning of operational risks to the EGIES, which is helpful for its promotion and application.
In this paper, a data-driven situation awareness method of EGIES considering time series
features is proposed. The state and deviation vectors of EGIES are solved at the situation
perception level based on the state estimation. The recurrence plot (RP) is used at the
situation comprehension level to extract the time series features of historical deviations,
and the operating state of future deviations is encoded in the form of labels. A convolutional
neural network (CNN) is established at the situation projection level to project the future
operating state of the EGIES based on the RP of the historical deviations. A case study of
EGIES coupling a 14-node power system with a 7-node gas system shows that the
projection accuracy of the proposedmethod increases by 2.07 and 3.04% compared with
the long-short term memory (LSTM) neural network and the support vector machine
(SVM), respectively.

Keywords: situation awareness, data-driven, electricity-gas integrated energy system, convolutional neural
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1 INTRODUCTION

The steady advancement of carbon neutrality and carbon peaking goals has resulted in the concepts
of energy conservation, emission reduction and low-carbon living gradually becoming a consensus in
the development of the energy field (Zeng et al., 2014; Li et al., 2018; Cheng et al., 2020; Jiang et al.,
2021; Zhang et al., 2021). The electricity-gas integrated energy system (EGIES) is a new energy
system, which is environmentally friendly, low-carbon and clean. It not only promotes the
transformation of the energy structure, but also provides a strong support for the dual-carbon
goals (Clegg andMancarella, 2016; Wang and Bu, 2020). However, the multi-source heterogeneity of
EGIES affects the economy, efficiency, safety and reliability of system operations. Achieving efficient
and accurate situation awareness of EGIES is of great significance to ensure safety and reliability of its
operations.

Situation awareness originated from the aviation and military fields. It has been applied in the
fields of transportation, network security, and power system in recent years (Panteli and Kirschen,
2015; Xu et al., 2017; Li et al., 2018; Zhu, 2020). In the power systems, it is mainly divided into three
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levels: situation perception, situation comprehension and
situation projection (Panteli et al., 2013; Lin et al., 2016).
Situation awareness is defined as “the perception of the
elements in an environment within a volume of time and
space, the comprehension of their meaning, and the projection
of their status in the near future”. Situation perception represents
the perception of information related to key elements of the
system; situation comprehension is the understanding of what the
perceived data means in relation to the projection objectives, and
the mining of connections in perceived data; situation projection
denotes the projection of the future state of the system based on
the perceived data and comprehended information.

So far, research efforts have been devoted to different levels of
situation awareness in the power systems (Sayed et al., 2020; Chen
et al., 2021; Fang et al., 2021). However, only a small part of the
existing research work linked the three levels of situation
awareness, which caused a lack of interaction and progressive
logical relationship. On the other hand, most studies on situation
projection focused on quantitative regression forecasting, e.g.,
load forecasting and wind power forecasting (Sun et al., 2019;
Chen andWang, 2021). These studies did not consider qualitative
forecasting of system operation trend, which could provide an
intuitive and concise display for operation and maintenance
personnel. Subject to the availability of diverse and sufficient
data, it is a feasible method to qualitatively evaluate and project
the operation state of the system by establishing a situation
indicator system. However, there are industry barriers vis-a-vis
the electricity and gas aspects of the EGIES, and it is difficult to
share and interconnect a large amount of data or information
involving commercial privacy and confidentiality in the whole
EGIES. Therefore, it is considerably hard to establish a perfect
situation indicator system for situation awareness.

Meanwhile, the EGIES is more complex and diverse than the
power system in terms of energy flow, characteristic dimension
and time scale, which results in the generation of massive and
diverse measurement data (Wang et al., 2018). The effective use
and mining of hidden information in these measurement data for
situation awareness is one of the key directions that needs to be
explored urgently. In recent years, data-driven theory has been
widely used in the electric power field. It has become one of the
important means to promote the development of power systems
and integrated energy systems (Zhou et al., 2016; Fu et al., 2018;
He et al., 2018). The end-to-end relationship between “historical
state” and “future trend” can be automatically mined and
obtained by collecting raw measurement data and combining
data-driven technology. This can avoid complex mechanism
analysis, which provides new ideas for the application of
situation awareness in EGIES.

Hence, a data-driven situation awareness method of EGIES
considering time series features is proposed in this paper,
which can be divided into three stages. A state estimation
model based on basic measurement data is established for
situation perception. The recurrence plot (RP) is used to
extract the time series features of the EGIES deviation
vectors for situation comprehension. A convolutional neural
network (CNN) model is built to project the operation trend of
EGIES for situation projection.

The remainder of this paper is organized as follows. Section 2
introduces the state estimation model of EGIES. Section 3
explains the differential comprehension of the historical and
future deviation vectors of EGIES. Section 4 establishes the
EGIES projection model based on CNN. Section 5 uses a case
study to verify the performance of the proposed method. Section
6 concludes the paper.

2 SITUATION PERCEPTION OF
ELECTRICITY-GAS INTEGRATED ENERGY
SYSTEM BASED ON STATE ESTIMATION
The key to situation perception lies in the collection of topology
information and measurement data, thereby realizing the
extraction of state and deviation vectors. Therefore, the first
step for achieving situation perception is to obtain the physical
topology of nodes and branches, and subsequently use the phasor
measurement unit, wide area measurement system, pressure
transmitter, turbine flowmeter and other measurement devices
in EGIES for acquiring measurement vectors. The measurement
vectors include voltage amplitude, voltage phase angle, power,
pressure, pipeline flow, etc., (Chen et al., 2021).

The measurement vectors obtained directly from the
measurement devices usually suffer from the problems of
measurement noise and missing measurements, resulting in
poor data accuracy and insufficient comprehensiveness. Thus,
these measurements cannot meet the actual operation
requirements of the EGIES. Using the state estimation to filter
the measurement vectors can achieve the state vectors solution,
and subsequently provide accurate information for the safe and
reliable EGIES operation. The state vectors include voltage
amplitude, voltage phase angle and pressure. Compared with
the methods in (Chen et al., 2015; Zang et al., 2019), the weighted
least square method is lacking in robustness, its calculation speed
is faster and meets the timeliness requirements of situation
awareness. Thus, the weighted least square method is adapted
to the state estimation model of EGIES, which can be written as
follows:

⎧⎪⎨⎪⎩
min J(x) � (ze − he(xe))TR−1

e (ze − he(xe))
+(zg − hg(xg))TR−1

g (zg − hg(xg))
s.t. c(x) � 0

(1)

where ze and zg are the measurement vectors of power and gas
systems, respectively, he and hg are the measurement functions of
power and gas systems, respectively, which are given in (Du et al.,
2019; Zhang et al., 2021), xe and xg are the state vectors of power
and gas systems, respectively, Re and Rg are the weight matrices of
power and gas systems, respectively, and c(x) is the zero equality
constraint including power constraint, voltage constraint, gas
flow constraint, etc., which is given in (Du et al., 2019; Zhang
et al., 2021).

The state vectors are the direct mappings to the operation state
of the EGIES. The most direct sign of the abnormality of
operation state is the exceeding of threshold by the state
vectors. Therefore, the power system voltage amplitude and
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the gas system pressure are selected as the key state vectors for per
unit processing. The mean absolute percentage error is used to
quantify the degree of operating deviation of the EGIES, which is
given by

d � ρ∑Me

i�1

∣∣∣∣∣∣∣Ui − UN

UN

∣∣∣∣∣∣∣ + (1 − ρ)∑Mg

j�1

∣∣∣∣∣∣∣Pj − PN

PN

∣∣∣∣∣∣∣ (2)

where d is the deviation vector of EGIES, ρ is the weight
coefficient, Me and Mg are the numbers of nodes in the power
and gas systems, respectively, Ui and Pj are the voltage
amplitude of ith node in the power system and the pressure
of jth node in the gas system, and UN and PN are the rated
voltage of the power system and the rated pressure of the gas
system, respectively.

3 SITUATION COMPREHENSION OF
ELECTRICITY-GAS INTEGRATED ENERGY
SYSTEM CONSIDERING TIME SERIES
FEATURES

Based on the situation perception, the deviation vectors of the
EGIES are obtained at time t during p~f period, t denotes an
intermediate timestamp and t∈(p, f). Assuming that p is a past
moment, f is a future moment, and t is the current moment,
then the p~f period can be regarded as a time domain that
includes the past and the future. Hence, in time domain, the
deviation vectors dp~t and dt~f during the p~t and t~f periods,
respectively, can be classified into historical information
(historical state) and future information (future trend),
respectively.

3.1 Comprehension of Historical Deviation
The historical deviation implies the characteristics of time
series changes, which affect the future operation trend of the
EGIES. The RP can convert one-dimensional time series into
two-dimensional images, reveal the periodicity, chaos and
non-stationarity of time series, and enhance its features. It
is used to extract the time series features from deviation
vectors and encode them in the image form (Amiri et al.,
2022). The specific steps are as follows:

3.1.1 Normalization of the Deviation Vector dp~t

The normalization of deviation vectors dp~t used to scale the data
within the range of [0, 1] is given by

~di �
di −min(dp~t)

max(dp~t) −min(dp~t) (3)

where di and ~di denote the deviation vector and normalized
deviation vector at timestamp i, respectively, max (dp~t) and
min (dp~t) are the maximum and minimum values of
the deviation vector in the p~t period, respectively,
and i ∈(p, t).

3.1.2 Phase Space Reconstruction of the Deviation
Vector dp~t

For a one-dimensional time series ~di (i = 1, 2, ..., N) with a
timestamp length of N, the phase space reconstruction for
obtaining a high-dimensional phase space can be written as
follows:

�di � {~di, ~di+τ ,/, ~di+(k−1)·τ} i � 1, 2,/, Nk (4)
where τ is the delay time, k is the embedding dimension, andNk =
N-(k-1)·τ is the number of phase spaces. In this paper, the delay
time is set to zero, i.e., N timestamps correspond to N phase
spaces, which avoids the selection of embedding dimension and
further enhances the feature comparison between timestamps.

3.1.3 Recurrence Plot Matrix Calculation
Improper threshold selection will cause the loss of important
information of the RP. Therefore, the deviation obtained by the
phase space reconstruction is used to calculate the non-threshold
RP matrix. For vector �di (i = 1, 2, ..., Nk) in phase space, the non-
threshold RP matrix is defined in Eq. 5 as follows:

Rij �
������� �di − �dj

������� i, j � 1, 2,/, Nk (5)

where Rij is the element of the ith row and the jth column of the
RP matrix, and‖ · ‖represents the norm. In this paper, the 2-norm
is chosen to define the elements of the RP matrix R by using the
Euclidean distance between vectors in different phase spaces. The
defined RP matrix R extracts the time and space characteristics of
the deviation vector, and represents the recursive features of
deviation vectors between timestamps.

3.1.4 Generation of Recurrence Plot
The RP matrix elements are encoded in the RGB color form, and
subsequently the two-dimensional RP is plotted. Figure 1 shows
the diagram of the RP encoding of the deviation vectors.

The recursion between the timestamps of the Cartesian
coordinate in Figure 1 is mapped to the corresponding areas
in the RP by different colors. As can be seen from Figure 1, when
the Euclidean distance between the deviations of the two
timestamps is farther, the color is closer to red; when the
Euclidean distance between the deviations of the two
timestamps is closer, the color is closer to blue. By using RP
to encode and reconstruct the original one-dimensional deviation
vectors, the time series features of the deviation vectors in the
time domain are extracted. This step can improve the visual
inspection and learning ability of the CNN model in situation
projection.

3.2 Comprehension of Future Deviation
Although there is no clear definition of the operation state of the
EGIES, it is closely related to the temporal change in deviation.
Hence, according to the change of deviation, the operation state
can be divided into four categories based on the quantitative and
qualitative combined method: normal, recovery, critical and
emergency.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 9212963

Lin et al. Data-Driven Situation Awareness

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


The deviation is within the normal threshold in the normal
state, whereas it is in the transition process from critical or
emergency to normal in the recovery state. The deviation
exceeds the normal state deviation threshold and is lower
than the critical state deviation threshold in the critical state.
Meanwhile, the system has a certain self-adjustment ability
and it can slowly recover by itself after reaching the
maximum deviation. The deviation exceeds the critical
state deviation threshold in the emergency state, and
consequently, the system fails and cannot recover to the
normal state by itself.

Figure 2 shows the specific operation state classification
process for the deviation vector dt~f in the t~f period. In the
figure, dn is the normal state deviation threshold, dc is the critical
state deviation threshold, dm is the maximum deviation in the
period t~f, Dc and Dd are the critical state fluctuation and the
emergency state fluctuation thresholds, respectively, and Δt is the
timestamp interval.

4 DATA-DRIVEN SITUATION PROJECTION
OF ELECTRICITY-GAS INTEGRATED
ENERGY SYSTEM
4.1 Basic Theory of Convolutional Neural
Network
The CNN improves the multi-level perceptron with respect to
two features: reducing the number of weights that speeds up the
training process, and lowering the risk of overfitting. The CNN is
not limited to one-dimensional data input and can receive two-
dimensional image data with a higher amount of complex feature
information. Therefore, it has been widely used in natural
language processing, image identification, computer vision,
and other fields (Mei et al., 2017; Zheng et al., 2018; Du et al.,
2019). The CNN is mainly composed of convolutional layers,
pooling layers, fully connected layers, drop-out layers and
activation functions. The function of each layer is explained as
follows:

FIGURE 1 | RP encoding of deviation vectors.

FIGURE 2 | Classification of operation state.
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The convolution layer traverses the input image by sliding a
convolution kernel and calculating the inner product between the
kernel and the local pixel information of the image. It strengthens
and filters the information features, and greatly reduces the
computational burden. The convolution operation can be
described as

yi,j � ∑M−1

u�0
∑N−1

v�0
wu,vxi−u,j−v + b i ∈ M, j ∈ N (6)

where X is the input matrix of the convolution calculation, W
denotes the convolution kernel of size M×N, Y is the output
matrix of the convolution calculation, and b represents the bias.

The purpose of pooling layer is to reduce the size of the two-
dimensional image as much as possible, and reduce the number of
parameters to avoid overfitting the model. This layer normally
uses max-pooling or average pooling operations.

The activation function is usually a nonlinear function. It can
enhance the nonlinear fitting and representation ability of the
CNN, and effectively adapt the model to the strong nonlinearity
of the EGIES (Martínez-Ceseña and Mancarella, 2019). Common
activation functions include Sigmoid, Tanh and ReLU. The
calculation of the ReLU function saves the computational time
as it does not contain any exponential term, and consequently, the
calculation efficiency can be improved during the
backpropagation calculation. Therefore, ReLU is selected as
the activation function, that is, given by Eq. 7 as follows:

ReLU(x) � { x, x≥ 0
0, x< 0 (7)

4.2 Situation Projection Model Based on
Convolutional Neural Network
Using the deviation vectors data set over the p~t period and the
operation state label set over the corresponding t~f period
obtained by the situation comprehension in Section 3, the
CNN can supervise the training and learning of RP, which can
improve the classification and projection performance. In this
paper, a CNN model with a total of ten layers (one input layer,
two convolution layers, two activation layers, two pooling layers,
one flattening layer, one fully connected layer and one output

layer) is established for EGIES situation projection. Section 5
describes the selection of hyperparameters and Table 1 provides
the parameters, operations, input and output of each layer of
the model.

The input layer uses RP over the p~t period and converts them
into a RGB pixel matrix of size 32 × 32 × 3. Subsequently, 128
feature maps of size 5 × 5 are obtained through two convolution,
activation and pooling operations. The ReLU is selected as the
activation function, and the pooling layer uses the max-pooling
method. The flattening layer F1 is used to compress the three-
dimensional feature maps into a one-dimensional array with a
length of 3,200. The information of the flattening layer is
transmitted to the output layer through the fully connected
layer, and the softmax classifier is used to obtain the
projection result of the operation state over the t~f period. In
Table 1, k represents the size of the convolution kernels, f is the
number of convolution kernels, and s is the stride.

5 CASE STUDIES

The measurement data used in this paper are collected from an
EGIES, including voltage amplitude, voltage phase angle, active
power, reactive power, gas pressure, and pipeline flow. As shown
in Figure 3, the EGIES includes a 14-node power system and a 7-
node gas system, where node 8 of the power system and node 6 of
the gas system are connected by power to gas equipment, node 14
of the power system and node 7 of the gas system are connected
by gas turbine. The time interval is 5 min, and the lengths of the
p~t and t~f intervals are equal to 12 and 6, respectively. The
operating conditions of different EGIES are different and,
therefore, the appropriate p~f interval value should be selected
based on the historical data in applications. The measurement
data include a total of 2000 groups of EGIES measurements
within 90 min, where there are 500 groups each for normal,
recovery, critical and emergency states, and the ratio between
training and validation sets is 7:3. The training set is used to
update the weight parameters of the CNN, and the validation set
is used to optimize the model hyperparameters.

In order to realize the proposed situation awareness method,
firstly, the measurement data is used for state estimation to obtain
the state vectors and the deviation vectors; based on the

TABLE 1 | | Input, operation and output of CNN.

Input Operation Output

32 × 32 Input 32 × 32 × 3
32 × 32 × 3 C1 (k = 5, f = 32) 28 × 28 × 32
28 × 28 × 32 A1 (ReLU) 28 × 28 × 32
28 × 28 × 32 P1 (max-pooling, s = 2) 14 × 14 × 32
14 × 14 × 32 C2 (k = 5,f = 128) 10 × 10 × 128
10 × 10 × 128 A2 (ReLU) 10 × 10 × 128
10 × 10 × 128 P2 (max-pooling, s = 2) 5 × 5 × 128
5 × 5 × 128 F1 3,200

3,200 D1 500
500 Output (softmax) 4

FIGURE 3 | Topology of the EGIES
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comprehension of the deviation vectors, the RP sample set and
the label sample set are obtained; finally, a CNN model is
established, and the RP sample set is used as the input, and
the label sample set is used as the output, then the situation
projection model is obtained by training.

The simulated hardware platform is based on a personal
computer, using an Intel (R) Core (TM) i7-9700K CPU @
3.00 GHz processor with a memory of 16.0 GB. The CNN
model is built using the Keras module in the Tensorflow
framework.

5.1 Optimization of Hyperparameters
During the training process of the CNN model, it is necessary to
optimize the hyperparameters to improve its performance
in situation projection. The five hyperparameters: number of
neurons in the convolution layer C1, number of neurons in the
convolution layer C2, batch size, epoch and learning rate are
optimized based on the accuracy results.

The number of neurons in the convolution layer determines
the learning depth of the model and the ability to extract features
from images. Batch size represents the number of samples
selected for each training, which affects the optimization
degree and speed of the model. Epoch is the number of times
the sample set is trained, which affects the training time and
fitting degree of the model. The learning rate is one of the most
important hyperparameters, which controls the gradient
convergence during training. An excessively large learning rate
will hinder the convergence of the gradient, while an excessively
small learning rate will slow down the convergence. Considering
the time and calculation costs, the hyperparameters combination
is optimized based on random search. Figure 4 shows the
optimization of hyperparameters.

A total of 48 combinations are used for the hyperparameter
configurations. In order to compare the pros and cons of
configurations, the accuracy rate and normalized accuracy rate
of all configurations are color-coded and shown in Figure 4. It
can be observed that when the learning rate is set to 0.001, the

accuracy rates of the corresponding configurations are higher
than 90%, which are better than those of the configurations where
the learning rate is set to 0.01. The accuracy rates of the
configurations when the epoch is set to 64 are also higher
than those with 16 or 32 epochs. Therefore, the model has
better predictive performance when the learning rate is set to
0.001 and the epoch is set to 64. An exhaustive comparison of 48
configurations gives the optimal hyperparameter configuration as
[32, 128, 64, 64, 0.001]. In this configuration, the accuracy rate is
97.90%, and the cross-entropy loss is 0.0536. Figure 5 shows the
loss function and accuracy values over different epochs. It can be
seen that when the epoch reaches more than 50, the model can be
considered convergent, the loss function is close to 0.05, and the
accuracy rate remains around 95%.

5.2 Analysis of Projection Results
In order to further analyze the performance of the proposed
method, 400 groups of independent test set data are applied to
the well-trained CNN model in order to achieve unbiased

FIGURE 4 | Optimization of hyperparameters.

FIGURE 5 | Training accuracy and loss.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 9212966

Lin et al. Data-Driven Situation Awareness

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


situation awareness. A total of 100 groups each are used for
normal, recovery, critical and emergency states. Furthermore,
the long-short term memory (LSTM) in deep learning and the
support vector machine (SVM) in machine learning are
adapted for comparison and verification. Before comparing,
the parameters of LSTM and SVM are optimized. The inputs in
LSTM and SVM are one-dimensional deviation vectors
without RP transformation. The outputs in LSTM and SVM
are the projection results of the future states.

The confusion matrix is used to visualize the results of
classification projection on the test set (Chicco et al., 2021). The
matrix divides the results into four categories: True Positive (TP),
True Negative (TN), False Positive (FP) and False Negative (FN). In
addition, four performance indicators of Accuracy Rate (AR),
Precision Rate (PR), Recall Rate (RR) and Specificity Rate (SR)
can be obtained based on the statistical results of the confusion
matrices, which are calculated according to the following expressions:

AR � TP + TN
TP + TN + FP + FN

(8)

PR � TP
TP + FP

(9)

RR � TP
TP + FN

(10)

SR � TN
TN + FP

(11)

where TP represents the result that the sample belongs to a
positive class and the model also recognizes it as belonging to the
positive class, and TN represents the result that the sample
belongs to a negative class and the model also recognizes it as
belonging to the negative class. The FP represents the result that
the sample belongs to a negative class but the model recognizes it
as belonging to a positive class, and FN represents the result that
the sample belongs to a positive class but the model recognizes it
as belonging to a negative class. The projected classification
results obtained by applying the three methods of CNN,
LSTM and SVM on the test set are shown in Figures 6–8,
respectively.

When the future operation state of the EGIES is actually
normal, the historical deviations are usually within the
allowable deviation range. However, the time domain features
are more complex and diverse, and do not follow a single law. The
CNN can extract time series features through RP feature maps,
while LSTM, as a variant of recurrent neural network, also has the
ability to deal with the time series data. On the other hand, SVM,
as a traditional machine learning method, has difficulty in
comprehending and extracting the time series relationships.
Although the CNN and LSTM are more capable of time series
feature extraction than the SVM, the intricate features of
deviation cause the differences in feature extraction by the
three methods to have a minor effect on the projection results.
Therefore, Figures 6–8 show that among the 100 groups of actual
normal samples, the CNN, LSTM and SVM accurately project 98,
98 and 97 groups, respectively. Thus, the projection results are
almost the same with the three methods.

When the EGIES is actually in the future operation state of
recovery, the historical deviations show obvious decreasing
trends. In addition, the corresponding mapping is also
generated along the diagonal line on the RP. The significant
difference in the deviation in the time domain makes the SVM,
which cannot perceive the time series differences, have a good

FIGURE 6 | Projection results of CNN.

FIGURE 7 | Projection results of LSTM.

FIGURE 8 | Projection results of SVM.
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projection performance. Hence, the CNN, LSTM and SVM all
achieve accurate projection for the 100 samples that are actually
recovered.

When the future operation state of the EGIES is actually
critical or emergency, the historical deviations exhibit both
fluctuations and increase in values, and there are slight
differences in the fluctuation range and the increasing
gradient. The time series features of the historical deviations
in critical and emergency states are similar. Consequently, the
three methods make a certain degree of cross prediction, i.e., the
actual critical state is projected as emergency or the actual
emergency state is projected as critical. However, the CNN
accurately captures and maps the differences in amplitude and
gradient through RP, and the LSTM extracts the correlation of
deviations by the memory characteristic. Figures 6–8 show that
the CNN, LSTM and SVM make cross projections of 13, 25 and
31 groups, respectively. The number of cross projections of CNN
is significantly smaller than those of the LSTM and SVM, which
verifies the accuracy and effectiveness of the proposed method.

Based on the classification projection results shown in Figures
6–8, the AR, PR, RR and SR of the three methods can be
calculated using Eq. 8–11. Table 2 shows the results of these
four performance indicators.

Table 2 shows that all three methods have good projection
performance for the projection of normal state: the accuracy rates

are maintained above 99.00%, and the differences of the same
indicators between the three methods is maintained at about 1%.
In the projection of recovery state, the AR, PR and SR of CNN and
LSTM are higher than those of SVM. In the projection of critical
and emergency states, the average AR of CNN is 96.51%, which is
4.01 and 5.96% higher than 92.50% of LSTM and 90.55% of SVM,
respectively. The average AR of CNN for the projection of four
operating states is 98.07%, which is 2.07 and 3.04% higher than
those of LSTM and SVM, respectively. These results further verify
the performance improvement of the proposed method
compared with the LSTM and SVM in situation projection.

5.3 Analysis of Projection Results
There are differences in the number of historical samples
provided by different EGIES. Furthermore, the performance of
data-driven models depends on the size of the training data set.
The model performance will change when the size of the data set
changes. Therefore, the adaptability of the proposed method in
different data environments is tested by changing the proportion
of the training data set in the sample set. Figures 9, 10 compare
the AR for the validation and test sets of the three methods under
six different training set proportions of 30, 40, 50, 60, 70 and 80%.

As Figure 9 shows, the average AR of the validation set with
the CNN is 94.47% over the six different training set proportions,
which is 4.58 and 4.20% higher than 90.27% of LSTM and 89.89%

TABLE 2 | Comparison of performance indicators for classification projection.

State CNN LSTM SVM

AR% PR% RR% SR% AR% PR% RR% SR% AR% PR% RR% SR%

Normal 99.25 98.99 98.00 99.67 99.00 98.00 98.00 99.33 99.25 100.00 97.00 100.00
Recovery 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.75 99.01 100.00 99.67
Critical 96.75 93.94 93.00 98.00 93.75 92.13 82.00 97.67 92.00 88.64 78.00 96.67
Emergency 96.26 92.16 93.07 97.33 91.24 83.78 83.78 94.00 89.10 79.82 80.53 92.33

FIGURE 9 | Accuracy rate of validation set. FIGURE 10 | Accuracy rate of test set.
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of SVM, respectively. Figure 10 shows that the average AR of the
test set of CNN is 96.75%, which is 7.00 and 4.79% higher than
89.75% of LSTM and 91.96% of SVM, respectively. The proposed
method has better projection performance under various training
set proportions, which proves that it is more adaptable under
different scenarios.

6 CONCLUSION

In this paper, a data-driven situation awareness method for
EGIES operation risk warning considering time series features
was proposed. The method could be divided into three levels: 1)
situation perception based on state estimation, 2) situation
comprehension considering time series features, 3) situation
projection based on data-driven methodology. Simulation
results showed that the proposed method could effectively
extract the temporal features in the RP, hence its performance
and situation awareness adaptability were better than those of
LSTM and SVM. More importantly, the proposed method could
qualitatively and intuitively display the future operation state of
the EGIES, which would be helpful for the operators to

comprehend the EGIES conditions and provide them guidance
to make operation and maintenance decisions.
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