
Distributionally Robust Capacity
Configuration for Energy Storage in
Microgrid Considering Renewable
Utilization
Xin Ding1, Hongyan Ma1*, Zheng Yan2, Jie Xing1 and Jiatong Sun1

1College of Information Science and Technology, Donghua University, Shanghai, China, 2Key Laboratory of Control of Power
Transmission and Conversion, Ministry of Education (Shanghai Jiao Tong University) Minhang District, Shanghai, China

The energy storage plays an important role in the operation safety of the microgrid
system. Appropriate capacity configuration of energy storage can improve the
economy, safety, and renewable energy utilization of the microgrid. This study
considers the uncertainty of renewable energy, and builds an energy storage
capacity configuration (ESCC) in microgrid by using the distributionally robust
optimization (DRO). This model co-optimizes energy storage planning, day-ahead
scheduling, and renewable energy utilization of the microgrid, which derives the
energy storage configuration strategy, balancing renewable energy utilization and
operation economics of microgrid. The proposed model is a two-stage model with
distributionally robust chance constrains. By applying decision rules, variable
substitution, and duality techniques, this model is approximately transformed into a
mixed integer programming problemwith a second-order cone constraint, which can be
directly solved. Experiments on the IEEE 33-bus system are carried out to verify the
effectiveness and advantages of the proposed model.
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1 INTRODUCTION

In recent years, renewable energy (e.g., wind and solar power) power generation has developed
rapidly (Zhou et al., 2020; Li Y. et al., 2020; Chen et al., 2021), and its proportion in energy
consumption continues to increase. Renewable energy power generation has the advantages of
clean, pollution-free, and low power generation cost. However, the random and fluctuating
characteristics of renewable generation (Miao, 2016) will affect the dispatching accuracy of the
power system when it is connected to the grid and may also cause operation safety and power
quality problems (Zhu et al., 2020). The proposal of microgrid technology can not only effectively
solve these problems but also integrate the advantages of distributed energy. With the development
of microgrid technology, the economics of system safety operation and renewable utilization issues
and challenges have always been faced by the microgrid. The vigorous development of energy
storage technology has further matured the microgrid technology. In the microgrid system, the
energy storage system (ESS) can not only improve the flexibility of the power system and maintain
the stability of the microgrid operation but also participate in peak shaving and effectively reduce
the phenomenon of wind abandonment.
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For the microgrid system, the capacity configuration of the
ESS has a great impact on the overall economy and operational
safety (Li et al., 2012; Guo et al., 2021), and some achievements on
energy storage capacity configuration (ESCC) in microgrid have
been made in academic. Brekken et al. (2011) added large-scale
energy storage to the output of wind farms to improve the
predictability of wind power generation, thereby improving the
predictability of wind farm output, but did not consider the cost
of energy storage, which may lead to excessive scale. The grid-
connected PV system was studied by Ru et al. (2013), and the
optimal size for battery storage was determined. In Brekken et al.
(2011) and Ru et al. (2013), only the ESS to promote the
integration of renewable energy is considered, and the
operation of other resources in the grid is not considered.
Nguyen et al. (2015) established the optimal size of the ESS by
considering different loads and sunshine duration. Masaud and
El-Saadany (2020) established the optimal size and service life of
energy storage capacity, but did not consider the uncertainty of
renewable energy. Hu et al. (2015) proposed a capacity
configuration optimization model of island microgrid
considering demand response and uses the particle swarm
algorithm to minimize system life cycle cost. Zhu et al. (2019)
comprehensively considered the electricity cost, photovoltaic
power generation, and energy storage cost, and established an
optimization model for photovoltaic power generation and
ESCC. Li and Xu (2017) and Wang et al. (2017) configured
the capacity of the ESS in the grid-connected microgrid system
and considered the time-of-use electricity price, and made the
overall benefit higher through the “low storage and multiple
discharge” of the energy storage equipment. Wang et al. (2018)
proposed a statistical method for the optimal configuration of the
capacity of the hybrid energy storage system. Monte Carlo
simulation was performed on the statistical model to
determine the appropriate energy storage capacity to improve
the economy of the system. He et al. (2022) established a two-
layer optimization model of the hybrid ESS and realized the
optimization of the hybrid energy storage capacity through
parameter transmission.

The microgrid ESCC models established previously are all
based on deterministic analysis, ignoring the uncertain factors of
wind and solar outputs, so the ESCC results do not consider the
system’s ability to withstand renewable energy fluctuations,
which is not conducive to the safe operation of the system.
There are mainly two methods to deal with the uncertainty in
the power system, namely, stochastic programming and robust
optimization. Stochastic programming uses random variables to
describe uncertain information and optimizes the scheduling
scheme with the smallest expected cost. Shen et al. (2021)
proved that thermal inertia in multi-energy systems can
reduce the investment cost of hybrid energy storage systems.
Jooshaki et al. (2020) proposed a stochastic model for expansion
planning of multi-level distribution systems to improve network
flexibility through optimal installation of energy storage systems.
Alharbi and Bhattacharya (2018) proposed a stochastic
optimization model, considering the uncertainty of solar
radiation and wind speed and determined the sizing of the
battery energy storage system, with a decomposition-based

method in isolated microgrid. The stochastic programming
method is based on accurate probability distributions, which
however in practice are usually difficult to accurately obtain.
The robust optimization method characterizes the uncertainty of
the variable with the variable range and does not require an
accurate probability distribution function, which has advantages
for the optimization decision of continuous uncertain variables.
Yi et al. (2018) proposed a new method of utilizing multi-type
demand response resources to smooth fluctuations in renewable
energy on different timescales and establishes a multi-objective
robust scheduling model considering renewable energy and
demand response uncertainty. Li P. et al. (2020) proposed a
robust configuration method for integrated energy system energy
storage, considering renewable energy and electric/heating/
cooling load uncertainties. Fang et al. (2021) considered the
uncertainty of renewable energy output, established a two-
layer game model, and obtained the optimal capacity of
energy storage. The distributionally robust optimization
(DRO) method combines the advantages of stochastic
programming and robust optimization (Liu et al., 2016), and
considers the uncertainty of the probability distribution function
of random variables, which can reasonably model the uncertainty.
The DRO method can reduce the conservatism of the traditional
robust optimization method and improve the robustness of the
stochastic programming method. It has been widely used in
power system optimization problems with uncertain
parameters. Zhou et al. (2019) established a distributionally
robust chance constrained (DRCC) model for the integrated
heat and electricity system and transformed the DRCC model
into a second-order cone programming model using the
conditional value at the risk approximation method and
duality theorem; Zhou et al. (2021) proposed a DRO model
and used a modified column and constraint generation
algorithm to solve. Yang et al. (2020) presented a two-stage
DRO economic dispatch model, considering the renewable
energy resource generation uncertainty, and proposed a
stochastic dual dynamic programming algorithm to solve the
robust counterpart problem. However, studies on DRO-based
energy storage capacity allocation are still relatively few. Xie et al.
(2022) co-optimized the sizes of renewable generation and energy
storage based on the DRO method in stand-alone microgrids,
considering shortfall risk of load shedding, which minimizes the
investment cost and the load shedding risk. Different with it, our
work focuses on the balance between energy storage investment
and renewable energy utilization capability. In the microgrid,
although energy storage can increase the capability of renewable
admission, the cost of energy storage is still relatively expensive. If
we require full utilization, the investment cost will be very high.
Therefore, a trade-off between energy storage investment cost
and renewable energy utilization is required. For this purpose,
this work studies the energy storage configuration issue by
applying a moment-based DRO method to evaluate renewable
energy utilization probability and make a trade-off.

In this article, we propose a microgrid system ESCC model,
considering renewable utilization based on the DROmethod. The
main contributions are: 1) propose a DRO-basedmicrogrid ESCC
model, which can balance the ability of withstanding renewable
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energy fluctuations and investment and operation economics of
the microgrid, and establish adjustable distributionally robust
joint chance constraints to measure the renewable utilization
capability; 2) establish the appropriate affine decision rules for
ESS operation equations, present the transformation of
constraints containing distributionally robust probability of
random variables with adjustable boundaries, and
approximately transform the proposed model to a mixed
integer programming problem with second-order cone
constraints through variable substitution and duality
techniques. The model can be directly solved by commercial
optimization software such as Gurobi; and 3) the numeral
experiments are carried out based on the IEEE 33-bus system
to verify the validity and advantage of the proposed model, and
the impact of ESCC on the renewable energy utilization is
analyzed.

The rest of this article is organized as follows: Section 2
establishes the mathematical formulation, Section 3 presents
the solution methodology, Section 4 performs the case study,
and finally, Section 5 concludes this article.

2 MATHEMATICAL MODEL

Microgrid can fully promote the large-scale access of distributed
power and renewable energy and achieve highly reliable supply of
various energy forms to loads, which is an effective way to realize
an active distribution network. Figure 1 is a schematic diagram of
the structure of the microgrid, which is composed of thermal
units, renewable distributed power sources, loads, and energy
storage systems. In the microgrid, photovoltaics (PV), wind
turbines (WT), and thermal units (TU) are the main sources
to supply power to the load. The energy of the energy storage
system (ESS) flows in both directions, which plays an important
role in regulation. The microgrid and power grid are connected
by the point of common coupling (PCC). The interactive power
between the microgrid and power grid, the charging and
discharging of ESS, and the output of WT, PV, and TU are

controlled by the microgrid through information flow, which are
all transmitted through two-way channels. Based on such
microgrid structure, we build the ESCC model as follows.

2.1 Objective Function
This study considers the impact of three factors on the decision-
making of ESCC in the microgrid, namely, energy storage
investment cost, system dispatch cost, and the admission on
renewable energy fluctuations. The goal is to reduce the energy
storage investment cost and the system dispatch cost as much as
possible, while improves the admissible range of renewable
energy. Therefore, the objective function consists of three parts
as shown in (1)–(3). In this article, the capability of renewable
utilization is represented by the probability that the system can
withstand the actual fluctuation of renewable energy.

minCsto(Pmax
s , Smax

s ) + Cdisp(P̂gt, P̂
buy

qt , P̂
sell

qt ) − δa, (1)

Csto(Pmax
s , Smax

s ) � ∑
s∈[S]

(CpPmax
s + CsSmax

s )
Ts

+M, (2)

Cdisp(P̂gt, P̂
buy

qt , P̂
sell

qt ) � ∑
t∈[T]

∑
g∈[G]

Fg(P̂gt) + ∑
t∈[T]

∑
g∈[G]

(NLgxgt

+ SUgugt + SDgvgt) + ∑
t∈[T]∑

q∈[Q]
(CbuyP̂

buy

qt − CsellP̂
sell

qt ), (3)

where Csto represents the investment cost of ESS and Cdisp

represents the dispatch cost of the system. The investment
cost of ESS is related to Pmax

s and Smax
s of ESS. The dispatch

cost Cdisp includes the operating cost and start–stop cost of
thermal units, as well as the cost of power transaction between
the microgrid and power grid. Fg(.) is the fuel cost function of
thermal unit g, which is generally represented by a quadratic
function, and can also be approximated by a piecewise linear

FIGURE 1 | Structure of microgrid.
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function. xgt, ugt, and vgt are both binary variables, respectively,
that represent the on–off state (1 is on and 0 is off), starting state
(1 is start and 0 is no-start), and shutdown state (1 is stop and 0 is
no-stop) of thermal unit g during time period t. δ is a weight
coefficient related to renewable utilization, and its numeral
represents the additional economic cost of renewable utilization.

2.2 Constraints of Energy Storage System
Configuration
The energy and power of the configured energy storage devices should
be positive values, and the constraints of the site- and grid-connected
power should be considered. The constraints are as follows.

0≤Pmax
s ≤PM, (4)

0≤ Smax
s ≤ SM, (5)

where PM and SM represent the maximum power capacity and
maximum energy capacity of the ESS allowed by the conditions of
site- and grid-connected power, respectively.

2.3 Constraints During Pre-Dispatch
2.3.1 System Operating Constraints
In the microgrid, the power demand should be balanced by the
output of the thermal power units, the power of renewable energy
(including wind and solar power), the power of charging and
discharging of ESS, and the power purchased from and sold to the
grid. The power flow on lines should not exceed the limits.
Therefore, for any time period t, the balancing and line power
flow constraints of the microgrid are as follows:

∑
g∈[G]

P̂gt + ∑
k∈[K]

R̂kt − ∑
s∈[S]

P̂
cha

st + ∑
s∈[S]

P̂
dis

st − ∑
q∈[Q]

P̂
sell

qt + ∑
q∈[Q]

P̂
buy

qt

� ∑
n∈[N]

dnt,∀t ∈ [T],

(6)

−Fl ≤ ∑
n∈[N]

SFnl
⎛⎝ ∑

g∈gn

P̂gt + ∑
k∈kn

R̂kt − ∑
s∈sn

P̂
cha

st + ∑
s∈sn

P̂
dis

st − ∑
q∈qn

P̂
sell

qt

+ ∑
q∈qn

P̂
buy

qt − dnt
⎞⎠≤Fl, ∀t ∈ [T],∀l ∈ [L],

(7)
where (6) represents the balancing constraint and (7) represents
the line capacity restrictions based on the dc approximation of the
power flow equations.

2.3.2 Constraints of Thermal Units
The on–off state, start-up state, and shutdown state of thermal
units are all 0–1 binary variables, and these three variables should
satisfy the following constraints:

∀t ∈ [T],∀g ∈ [G]
−xgt−1 + xgt − xgi ≤ 0, 1≤ i − (t − 1)≤UTg, (8)
xgt−1 − xgt + xgi ≤ 1, 1≤ i − (t − 1)≤DTg, (9)

−xgt−1 + xgt − ugt ≤ 0, (10)

xgt−1 − xgt − vgt ≤ 0, (11)
xgt, ugt, vgt ∈ {0, 1}, (12)

where (8)–(9) represent the minimum start-up time constraint
and the minimum shutdown time constraint of thermal units;
constraints (10)–(11) represent the logical relationship between
the three variables.

The constraints of upper and lower limit and the ramp-rate of
thermal units are as follows:

Pmin
g xgt ≤ P̂gt ≤Pmax

g xgt,∀t ∈ [T], g ∈ [G] (13)

−⎛⎝ ~W
dn

g vgt +Wdn
g xgt

⎞⎠Δd ≤ P̂gt − P̂gt−1 ≤( ~W
up

g ugt

+Wup
g xgt−1)Δd,∀t ∈ [T], g ∈ [G]. (14)

2.3.3 Operating Constraints of Energy Storage System
The ESS can be charged or discharged during operation, and
constraints are as follows:

∀t ∈ [T],∀s ∈ [S]
0≤ P̂

dis

st , P̂
cha

st ≤Pmax
s , (15)

0≤ Sst ≤ Smax
t , (16)

Ŝs(t+1) � (1 − β)Ŝst − P̂
dis

st

ηd
.Δds + ηc.P̂

cha

st .Δds, (17)

S0 � ŜT, (18)
where (15)–(16) represent the capacity limits of ESS; (17)
represents the relationship between the amount of energy and
power of ESS; (18) represents that the ESS has the same amount
of energy at the beginning and end of the dispatch cycle, which
ensures the sustainable operation of the ESS, which is beneficial to
cyclic dispatching and prolong the service life of ESS.

2.3.4 Constraints of Interactive Power With Grid
The microgrid can purchase energy from the power grid when the
system output is insufficient, or sell electricity to the power grid
when the system output is surplus. The power purchased or sold
should not exceed the transmission power of PCC as the following.

0≤ P̂
buy

qt , P̂
sell

qt ≤ Pmax
line ,∀t ∈ [T]. (19)

2.4 Constraints Related to Renewable
Energy Utilization
Considering the uncertainty of renewable generation in real-time
operation, the system may not maintain power balance due to
lack of sufficient regulation capability, resulting in the risk of
curtailment of renewable energy or load shedding. This article
evaluates the capability of renewable admission of microgrid by
the distributionally robust probability that the system can
withstand the fluctuation of renewable energy. Let ξkt
represent the actual output deviation of renewable resource k
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from its forecasting value during time period t. Let [ξLkt, ξUkt]
represent the admissible fluctuation range of ξkt. That is to say, if
ξt exceeds the range [ξLt , ξUt ], the system under a certain operating
condition will face risks of load shedding or renewable
curtailment. Based on the DRO method, the following
constraints can be established.

inf
P∈D

P(ξt ∈ [ξLt , ξUt ])≥ a,∀t ∈ [T], (20)
a0 ≤ a≤ 1, (21)

where a is renewable utilization probability, decision
variable, not greater than 1 and a0 represents a lower
bound of a. In this article, we assume that a0 ≥ 2/3, this
assumption is not very restrictive because power system
operators often desire high utilization of renewable energy
in the actual operation of the power system. In addition, we
consider an ambiguity set D consisting of probability
distributions P that (i) match the empirical mean μkt and
empirical variance σkt of each ξkt and (ii) ξkt is unimodal
about μkt, that is,

D: � {P: EP[ξkt] � μkt,Var[ξkt] � σ2kt,
ξkt is unimodal about μkt, ∀t ∈ [T], k ∈ [K]}, (22)

where μkt indicates that the probability density function of ξkt, if
exists, is non-decreasing from 0 to μkt and is non-increasing
afterward.

Furthermore, when renewable generation deviation ξt is
within the range [ξLt , ξUt ], the system must have the
corresponding dispatch scheme which satisfies all operating
and safety constraints. Thus, constraints for [ξLt , ξUt ] are as
follows:

∀ξt ∈ [ξLt , ξUt ],∀t ∈ [T],∀s ∈ [S],∀g ∈ [G],∀k ∈ [K],∀l ∈ [L],∀q ∈ [Q]

∑
g∈[G]

Pgt(ξkt) + ∑
k∈[K]

(R̂kt + ξkt) − ∑
s∈[S]

Pcha
st (ξkt) + ∑

s∈[S]
Pdis
st (ξkt)

− ∑
q∈[Q]

Psell
qt (ξkt) + ∑

q∈[Q]
Pbuy
qt (ξkt)

� ∑
n∈[N]

dnt,

(23)
Pmin
g xgt ≤Pgt(ξkt)≤Pmax

g xgt, (24)

−Fl ≤ ∑
n∈[N]

SFnl
⎛⎝ ∑

g∈gn

P̂gt + ∑
k∈kn

(R̂kt + ξkt) − ∑
s∈sn

P̂
cha

st + ∑
s∈sn

P̂
dis

st

− ∑
q∈qn

P̂
sell

qt + ∑
q∈qn

P̂
buy

qt − dnt
⎞⎠≤Fl,

(25)

−⎛⎝ ~W
dn

g vgt +Wdn
g xgt

⎞⎠Δt ≤Pgt(ξkt) − P̂gt ≤( ~W
up

g ugt

+Wup
g xgt−1)Δt, (26)

−⎛⎝ ~W
dn

g vgt +Wdn
g xgt

⎞⎠Δd ≤Pgt(ξkt) − Pg(t−1)(ξkt)≤( ~W
up

g ugt

+Wup
g xg(t−1))Δd,

(27)
0≤Pcha

st (ξkt), Pdis
st (ξkt)≤Pmax

s , (28)
0≤Pbuy

qt (ξkt), Psell
qt (ξkt)≤Pmax

line , (29)
0≤ Sst(ξkt)≤ Smax

s , (30)
Ss(t+1)(ξkt) � (1 − β)Sst(ξkt) − Pdis

st (ξkt)
ηd

.Δds + ηc.Pcha
st (ξkt).Δds,

(31)
Rmin
k ≤ R̂kt + ξLkt ≤ R̂kt ≤ R̂kt + ξUkt ≤R

max
k , (32)

where (23) and (25) represent the balancing constraint and line
capacity constraints during actual operation; (24) and (27) are the
capacity and ramp-rate constraint of thermal units during actual
operation, respectively; (26) is the ramp-rate constraint of
thermal units at response time window; (28)–(30) represent
the ESS capacity limits and the transmission capacity
constraint of the PCC during actual operation; (31) represents
the relationship between the amount of energy and the power of
the ESS during actual operation; (32) indicates that the upper and
lower bounds of renewable energy utilization need to include its
predicted generation, and it is limited by the maximum and
minimum output of renewable generation.

In a nutshell, the established microgrid ESCC model is shown
in constraints (1)–(32), which is a two-stage DRO model with
adjustable chance constraints. By solving such model, the system
operator can obtain the ESCC strategy and the corresponding
renewable energy utilization capability.

3 SOLUTION

The proposed microgrid ESCC model is a two-stage model with
distributionally robust chance constraints, and the boundaries of
random variables are adjustable, which cannot be solved directly.
In this section, the model is further transformed.

3.1 Affine Decision Rule
In the second stage of the aforementioned model, Pgt(ξkt),
Pdis
st (ξkt), Pcha

st (ξkt), Pbuy
qt (ξkt), Psell

qt (ξkt), and Sst(ξkt) are
recourse variables, which are decided by the random variable
ξt. In order to facilitate the solution of the problem, we first
assume the following affine decision rules:

∀g ∈ [G],∀t ∈ [T],∀s ∈ [S],∀q ∈ [Q]
Pgt(ξkt) � P̂gt + ∑

k∈K
(Bgktξkt + bgkt), (33)

Pbuy
qt (ξkt) � P̂

buy

qt + ∑
k∈K

(Bbuy
qkt ξkt + bbuyqkt ), (34)

Psell
qt (ξkt) � P̂

sell

qt + ∑
k∈K

(Bsell
qktξkt + bsellqkt), (35)
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Pdis
st (ξkt) � P̂

dis

st + ∑
k∈K

(Bdis
sktξkt + bdisskt), (36)

Pcha
st (ξkt) � P̂

cha

st + ∑
k∈K

(Bcha
skt ξkt + bchaskt ), (37)

where B and b are the coefficients of the decision rule to be
optimized, which represent the response of the re-dispatch
decisions Pgt(ξkt), Pdis

st (ξkt), Pcha
st (ξkt), Pbuy

qt (ξkt), and Psell
qt (ξkt)

to the forecast deviation ξt. It should be noted that the
assumption of affine decision rules will reduce the search
space of solution and obtain conservative approximation.

However, Sst(ξkt) is different from the aforementioned
variables. If we assume that St(ξkt) is only determined by the
deviation ξt at time t, the result will lead to a non-negligible error.
According to the equality (31), the expression of the ESS energy
can be translated into the following:

Ss(t+1) � S0 + ∑
τ�1,...t

(1 − β)t−τ( − Pdis
sτ

ηd
.Δds

+ ηc.Pcha
sτ .Δds),∀t ∈ [T],∀s ∈ [S], (38)

where we can see that ESS energy at t + 1 (Ss(t+1)) is decided by all
the discharge power and charge power before time t + 1, that is,
Pcha
sτ and Pdis

sτ (∀τ � 1, ...t) , and the relationship is linear.
According to the assumed affine decision rules of Pdis

st (ξkt) and
Pcha
st (ξkt), we can conclude that the actual Ss(t+1) under

uncertainty is affected by all fluctuation deviations at time
before t + 1. Therefore, we assume that Ss(t+1)(ξ) follows such
decision rule:

Ss(t+1)(ξ) � Ŝs(t+1) + (1 − β)t ∑
τ�1,...t

∑
k∈[K]

(BS
skτξkτ

+ bSskτ),∀t ∈ [T],∀s ∈ [S]. (39)
This rule conforms to the general law of ESS energy variation.

Moreover, it makes constraints (30)–(31) easier to transform
and solve.

3.2 Adjustable Robust Constraints
For adjustable robust constraints (23)–(32) equality constraints
and inequalities are handled differently, they are transformed
separately.

3.2.1 Equality
By applying decision rules (33)–(37), constraint (23) is
equivalent to:

∀ξkt ∈ [ξLkt, ξUkt],∀t ∈ [T]
∑
g∈[G]

∑
k∈[K]

(Bgktξkt + bgkt) − ∑
s∈[S]

∑
k∈[K]

(Bcha
skt ξkt + bchaskt ) + ∑

s∈[S]
∑
k∈[K]

(Bdis
sktξkt + bdisskt)−

∑
q∈[Q]

∑
k∈[K]

(Bsell
qktξkt + bsellqkt) + ∑

k∈[K]
ξkt + ∑

q∈[Q]
∑
k∈[K]

(Bbuy
qkt ξkt + bbuyqkt ) � 0.

(40)

Since the aforementioned formula holds ∀ξkt ∈ [ξLkt, ξUkt] , it is
further equivalent to the following linear equations without
random variables:

∑
g∈[G]

bgt − ∑
s∈[S]

bchast + ∑
s∈[S]

bdisst − ∑
q∈[Q]

bsellqt + ∑
q∈[Q]

bbuyqt � 0,∀t ∈ [T],

(41)∑
g∈[G]

Bgkt + Ikt − ∑
s∈[S]

Bcha
skt + ∑

s∈[S]
Bdis
skt − ∑

q∈[Q]
Bsell
qkt + ∑

q∈[Q]
Bbuy
qkt

� 0,∀t ∈ [T],∀k ∈ [K], (42)
where, Ikt represents a matrix of all ones.

For constraint (31), substitute recourse variables by (36)–(39)
and obtain:

Ŝs(t+1) − (1 − β)Ŝst + (1 − β)t ∑
k∈[K]

(BS
sktξkt + bSskt)

� −⎛⎝P̂
dis

st + ∑
k∈[K]

(Bdis
sktξkt + bdisskt)⎞⎠Δds

ηd
+ ηc.⎛⎝P̂

cha

st + ∑
k∈[K]

(Bcha
skt ξkt

+ bchaskt )⎞⎠.Δds,∀ξkt ∈ [ξLkt, ξUkt],∀k ∈ [K],∀t ∈ [T],∀s ∈ [S],

(43)
where, similarly, it can also be equivalent to the following linear equation:

∀k ∈ [K],∀t ∈ [T],∀s ∈ [S]
(1 − β)tBS

skt � −B
dis
skt

ηd
.Δds + ηc.Bcha

skt .Δds (44)

(1 − β)t ∑
k∈[K]

bSskt � −Δds

ηd
. ∑
k∈[K]

bdisskt + ηc. ∑
k∈[K]

bchaskt .Δds. (45)

3.2.2 Inequality
For convenience, rewrite constraints (24)–(29) as the following
abstract form:

T(x) +Wy(ξ)≤Vξ, ξ ∈ [ξL, ξU], (46)
where the matrix T,W , andV denote the parameter matrix in the
second-stage constraints; x denote the decision variables of this
model; y(ξ) denote the re-dispatch variables in the second stage,
and it can be substituted by decision rules (33)–(37) which are
represented by the following abstract equation: y(ξ) � Bξ + b.

First, (46) can be transformed into a standard robust
optimization form by variable substitution. Letting
E: � diag(ξU − ξL), we represent the hypercube [ξL, ξU] as
{ξL + Ev: v ∈ [0, e]}, where e denotes the vector of all ones.
Then, the random variable ξ bounded by [ξL, ξU] can be
replaced by the random variable v bounded by [0, e], as follows:

ξ � ξL + Ev, v ∈ [0, e]. (47)
By variable substitution, (46) can be transformed into:

T(x) +W(BEv + BξL + b)≤VξL + VEv, v ∈ [0, e]. (48)
There exist quadratic terms in the aforementioned formula.

Letting h � BξL + b, H � BE,we recast (48) as:

T(x) +W(Hv + h)≤VξL + VEv, v ∈ [0, e]. (49)
which can also be equivalent to the following linear equation:
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sup
v∈[0,e]

(WH − VE)v ≤VξL − T(x) −Wh. (50)

Furthermore, using standard technique in robust
optimization, (50) is equivalent to:

Re≤VξL − T(x) −Wh, (51)
R≥WH − VE,R≥ 0 , (52)

where R denotes a dual variable.
Therefore, using the aforementioned method, Eqs (24)–(29)

can be transformed into linear inequalities that are easy to solve.
Take an example, (24) can be transformed to:

∀t ∈ [T],∀g ∈ [G],∀k ∈ [K]
∑
k∈[K]

λRgkt + hgt + P̂gt ≥Pmin
g xgt, (53)

∑
k∈[K]

γRgkt + hgt + P̂gt ≤Pmax
g xgt, (54)

λRgkt ≤Hgkt, λ
R
gkt ≤ 0, γRgkt ≥Hgkt, γ

R
gkt ≥ 0, (55)

where λRgkt and γRgkt are auxiliary variables. The transformations of
constraints (25)–(29) are detailed in Supplementary Appendix A.

For the inequality constraint (30), substitute St(ξkt) by (39)
and the subsequent transformation process is similar. However,
St(ξkt) is jointly affected by the fluctuation deviations of multiple
time intervals. As a result, the dimensions of the random variables
contained in constraint (30) are different at different time intervals.
Thus, it is necessary to transform at different times one by one, and the
equations can be further simplified bymaking a difference between the
formulas at adjacent times. The final transformation is as follows:

∀k ∈ [K],∀t � [2, 3, ..., T],∀s ∈ [S]
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ŝst − (1 − β)Ŝs(t−1) + (1 − β)(t−1)hSs(t−1) + ∑
k∈[K]

λSsk(t−1) ≥ − (1 − β)Smax
s

Ŝst − (1 − β)Ŝs(t−1) + (1 − β)(t−1)hSs(t−1) + ∑
k∈[K]

γSsk(t−1) ≤ S
max
s

λSsk(t−1) ≤ 0, λSsk(t−1) ≤ (1 − β)(t−1)HS
sk(t−1)

γSsk(t−1) ≥ 0, γSsk(t−1) ≥ (1 − β)(t−1)HS
sk(t−1)

,

(56)
where λSskt and γSskt are auxiliary variables.

3.3 Distributionally Robust Joint Chance
Constraints
For all t ∈ [T], the distributionally robust joint chance constraint
(20) can be equivalent to the following second-order conic
constraint for solving:

FIGURE 2 | Renewable energy forecast output and load curve.

TABLE 1 | Energy storage device parameters.

Parameter Power cost ($/MW) Energy cost ($/MWh) Maximum charge/discharge power
(MW)

Maximum energy (MWh)

Value 165,000 235,000 150/150 200
Parameter Daily maintenance cost ($) Charge/discharge efficiency (%) Self-discharge rate (%) Battery life (d)
Value 3 90/90 1 365

FIGURE 3 | Day-ahead transaction price between microgrid and power grid.
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������������
⎡⎢⎢⎢⎢⎢⎢⎢⎣

�
8
3

√
rkt − zkt

⎤⎥⎥⎥⎥⎥⎥⎥⎦
������������
2

≤ rkt + zkt,∀t ∈ [T],∀k ∈ [K], (57)
�������[ skt − 1

2zkt
]�������

2
≤ skt + 1,∀t ∈ [T],∀k ∈ [K], (58)

σktrkt ≤ μkt − ξLkt,∀t ∈ [T],∀k ∈ [K], (59)
σktrkt ≤ ξ

U
kt − μkt,∀t ∈ [T],∀k ∈ [K], (60)

∑
k∈[K]

skt ≤ 1 − a,∀t ∈ [T], (61)

skt, rkt, zkt ≥ 0,∀t ∈ [T],∀k ∈ [K], (62)
where skt, rkt, zkt represent auxiliary variables [see, e.g., Ma et al.
(2020)].

To summarize, the final model easily to be solved is as follows:

{ obj. (1)
s.t. (2) − (19), (21), (32), (41) − (42), (44) − (45), (47), (53) − (62), (a1) − (a26) .

(63)

4 CASE STUDY

In this study, we conducted simulation analysis based on the IEEE
33-bus system to verify the effectiveness of the established model.
The platform used for the test is Matlab 2018b, the model is solved
based on Gurobi, and the processor of the test computer is Intel
Core i5-7200U CPU, running at 2.50 GHz with 12 GB of RAM.

4.1 Data Settings
A microgrid system is constructed based on the IEEE 33-bus
system for simulation, and 2WT and 1 PV are added to nodes 5,

28, and 14 of the system, respectively. According to Xiao et al.
(2015), we set ESS at node 17. The typical daily forecast load curve
of the microgrid and the forecast output of renewable energy
(wind plus solar power) are shown in Figure 2. ESS parameters
are set as Table 1; the transaction price between microgrid and
power grid is shown in Figure 3. The upper limit of the PCC
power between the microgrid and the power grid is set to 60 MW,
and PCC is set at node 1. We consider T = 24 h and set
Δd � 60min, Δt � 5min.

We assume that the actual output error of renewable energy
follows a Gaussian distribution with a mean value of 0, where
the wind power output variance gradually increases over time
(increase from 10% step by step 0.1%), and the photovoltaic
power output variance is 10% of the predicted output.
According to the assumed probability distribution, a large
amount of historical data is generated and divided into two
groups for sample training and out-of-sample testing
separately.

4.2 Energy Storage Capacity Configuration
Simulation Results
By setting δ � 350000, we solve the proposed ESCC model and
obtain the optimal allocation results that the maximum energy and
maximum power of ESS are 65.2MWh and 72.4MW separately,
and total investment cost is 74,700.8$. The corresponding day-ahead
dispatch results (output of thermal units, the power transaction
between microgrid and power grid, the charging and discharging
results of the ESS) are shown in Figure 4, where the net load is equal
to load minus renewable energy predictive power generation.

Figure 4 shows that a large portion of the load in this
microgrid can be met by the renewable energy generation, and

FIGURE 4 | Day-ahead scheduling strategy.
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the remaining load (net load) is matched by thermal units, power
grids, or ESS, according to the principle of economy. For example,
during time period 18–21 h, the electricity price of power grid is
higher than the thermal power generation, so the output of the
thermal unit is higher, while the system preferentially purchases
electricity from the power grid when the electricity price is low.
The charging and discharging of ESS comprehensively considers
the net load demand and the electricity price. For example, during
time period 4–5 h, net load and electricity prices are low so that
ESS is charged, and ESS discharges when the net load and
electricity price are high. It is verified that the proposed model
can effectively derive the energy storage configuration scheme,
which adapts to the regulation needs of the microgrid.

4.3 Impact of Energy Storage Capacity
Configuration Strategy on Renewable
Utilization
Configuration of energy storage can improve the renewable
utilization capability of microgrid. In this section, we set
different weight coefficients δ and analyze their influences. By
gradually increasing δ and solving the corresponding model, we
can obtain different ESCC schemes and the corresponding
renewable admission capability. According to our actual tests,
the simulation step size of the weight coefficient δ is set as follows:
δ varies in the range [90,000, 1,200,000], the step size is 5,000 at

δ ∈ [90000, 100000] , and the step size increases as δ increases,
until δ ∈(700000, 1200000] the step size is 100,000.

By increasing δ sequentially and solving the corresponding
models, we obtain 28 groups of simulation results, including
ESCC schemes, investment costs, renewable admissible ranges,
and renewable utilization probabilities. Based on this, Figure 5
show the variation of renewable utilization capability with ESCC
schemes. In Figure 5D, the upper and lower bands of renewable
utilization and the renewable output all are the average values
within a day. From Figure 5, we can easily see that with the
increase of energy storage investment cost and its capacity, the
admissible range of renewable energy gradually widens, and
renewable utilization probability also increases. This means that
increasing the investment cost of ESS can improve the flexibility
of the system, thereby increase the capability of renewable
admission.

In addition, Figures 5A~C also show that the increase rate
of renewable utilization probability gradually decreases with
the increase of energy storage investment cost. From the
simulation results, the investment cost of ESS and renewable
utilization probability increase very little when δ > 800000,
which indicates that as the investment cost increases, the
benefits of renewable energy utilization gradually decrease,
and there is a limit. System operators can adjust δ,
according to the required renewable utilization probability
and the cost they are willing to pay.

FIGURE 5 | Relationship between ESCC strategy and renewable utilization. (A) Relationship between maximum power of ESS and renewable utilization. (B)
Relationship between maximum energy of ESS and renewable utilization. (C) Relationship between Energy Storage investment and renewable utilization. (D)
Relationship between energy storage investment and admissible range.
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4.4 Comparison of Different Energy Storage
Capacity Configuration Methods
In order to analyze the advantages of the proposed
distributionally robust ESCC model considering renewable
utilization in this article, we compare the proposed ESCC
model with an ESCC model without considering the
renewable utilization. For convenience, the former method is
abbreviated as DRO scheme and the latter as CO scheme. In DRO
scheme, we set δ as 350,000 and 600,000, abbreviated as DRO1
and DRO2, respectively.

First, we solve these three ESCCmodels separately to obtain the
corresponding ESCC schemes and pre-dispatch schemes. Second,
according to 5,000 groups of randomly generated out-of-sample
scenarios for renewable energy forecast errors, we calculate the
actual operating results for each of the three schemes under all
5,000 random scenarios. We evaluate the results by the average
values of 5,000 times of tests, including renewable admissible range
and the actual economic cost which contains energy storage
investment cost, pre-dispatch cost, and re-dispatch cost
considering risk and penalty cost. In order to simulate the
actual scenario, we set the real-time power purchase price to
1.5 times the day-ahead price, and the real-time power sale
price is 0.6 times the day-ahead price. The penalty cost mainly
includes the cost of load shedding and the cost of renewable
curtailment. The price of load shedding is set at 2,000 $/MW,
and the price of renewable curtailment is 100 $/MW.

Figure 6 and Table 2 show the comparison of the evaluation
results of different schemes. Figure 6 shows the difference of the
daily renewable admission ranges between different schemes. We
can clearly see that the admissible ranges of PV, WTs, and total
renewable energy under DRO scheme are all wider than those
under CO scheme in each time period, which shows that the
proposed method can better deal with the deviation of renewable
energy output through the introduction of distributionally robust
probability of renewable admission, and then improve the
renewable utilization capability in the microgrid. We also see
that the larger δ is, the wider the admissible range of renewable
energy is, that is, by using the proposed DRO-based method, the
microgrid operator can design different admissible ranges by
changing δ.

Table 2 compares the differences of economic costs and
operational risks under different schemes. With comparison to
CO scheme, DRO1 scheme increases the energy storage investment

TABLE 2 | Comparison on out-of-sample result of different schemes.

Scheme CO DRO1 DRO2 RO

ESIC ($) 9,221.5 67,160.8 99,875.5 111097.3
AC ($) 343321.1 329060.2 351699.3 361025.0
MC($) 618963.5 613507.0 600054.3 595337.5
ALS (MW) 45.9 9.89 4.95 4.23
ARC (MW) 14.1 0.03 0 0

FIGURE 6 | Comparison of different schemes on renewable utilization ranges of (A) WT1, (B) WT2, (C) PV and (D) total renewable energy.
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cost (ESIC) by 57,939.3$, while its average actual cost (AC) and the
maximum actual cost (MC) in out-of-sample tests are all reduced.
In addition, DRO1 significantly reduces the average load shedding
(ALS) and average renewable curtailment (ARC), which effectively
improves the system operation safety and reduce the waste of
renewable energy and is overall better than CO scheme. In DRO2,
although ALS and ARC have been further reduced, investment in
energy storage has further been increased, so the operator can take
the scheme according to the expected comprehensive benefits.
Thus, through the comprehensive comparison of the three
schemes, appropriate energy storage investment can improve
the safety and economy of system operation, as well as the
capability of renewable utilization. In addition, Table 2 also
gives the operation results of the robust optimization (RO)
method. We can see that under RO scheme, ALS is low, but
ESIC and AC are very high, which shows the results under RO are
more conservative than DRO-based method. All these conclusions
further verify the effectiveness and advantages of the proposed
DRO-based ESCC model.

5 CONCLUSION

In this article, we propose a distributionally robust ESCC model
for microgrid by considering renewable energy utilization, and
apply affine decision rules to approximately transform the two-
stage model with distributionally robust adjustable chance
constraints into a mixed integer programming problem. The
proposed model can help the microgrid operator to make
decisions on ESCC while making a trade-off between energy
storage investment and renewable energy utilization. We apply
the proposed DRO-based ESCC model on the IEEE 33-bus
system and verify its effectiveness and advantages. From the

simulation results, we conclude that proper ESCC can improve
the safety of system operation and the capability of renewable
admission. The connecting point of the energy storage device in
this article is considered briefly but not treated as a decision
variable. In future work, we will further explore the optimal
connecting point. In addition, more security constraints,
including voltage stability, inertia, and frequency stability will
be considered in future work.
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NOMENCLATURE

Cbuy Csell Price of purchase and sale between microgrid and power grid,
respectively

Cp Cs Power cost and energy cost of the ESS, respectively

Ts M Service life and average daily maintenance cost of the ESS, respectively

β Self-discharge rate of the energy storage battery

ηc ηd Charging and discharging efficiency of the ESS, respectively

NLg SUg, SDg No-load cost, start-up cost, and shutdown cost of thermal unit
g, respectively.

UTg DTg Minimum start-up time and shutdown time of thermal unit g,
respectively.

Δd Δt Dispatch interval and response time window, respectively

Δds Charging and discharging interval of ESS

Pmax
s Smax

s Maximum power and energy of ESS, respectively

a0 Lower bound of a

SFnl Power transfer distribution factors of node n relative to line l

dnt Load of node n during time period t

R̂kt Forecasted output of renewable resource k during time period t

~W
dn
g Downward ramp-rate during shutting-down of thermal unit

~W
up
g Upward ramp-rate during starting-up of thermal unit g

Wdn
g Wup

g Downward and upward ramp-rate of thermal unit g while on,
respectively

Pmax
g Pmin

g Minimum and maximum generation capacity of thermal unit g,
respectively

Rmin
k Rmax

k Minimum and maximum generation capacity of renewable
resource k, respectively

Fl Transmission capacity limit of line l

Pmax
line Maximum transmission power of the PCC

S0 ŜT Beginning and end states in one dispatch cycle of ESS, respectively

ξkt Actual output deviation of renewable resource k from its forecasting value
during time period t

δ Weight coefficient between power dispatch and renewable utilization

P̂gt Pgt Scheduled and actual generation amount of thermal unit g during
time period t, respectively

P̂
cha
st Pcha

st Forecasted and actual charging power of energy storage device s
during time period t, respectively

P̂
dis
st Pdis

st Forecasted and actual discharging power of energy storage device s
during time period t, respectively

Ŝst Sst Forecasted and actual energy of energy storage device s during time
period t, respectively

P̂
sell
qt Psell

qt Scheduled and actual power amount of sale between microgrid and
power grid, respectively

P̂
buy
qt Pbuy

qt Scheduled and actual power amount of purchase between
microgrid and power grid, respectively

a Renewable utilization probability

ξLkt ξUkt Lower and upper limits of ξkt, respectively

rkt skt, zkt Auxiliary dual variables in the reformulation of the adjustable joint
chance constraint

B b Coefficients of the affine decision rule

xgt ugt, vgt binary variables

g k, s, n, l, q, t Index of thermal unit, renewable resource, ESS, node,
transmission line, PCC, and time period, respectively

[G] [K], [S], [N], [L], [Q], [T] Set of thermal units, renewable resources,
ESSs, nodes, transmission line, PCC, and time periods, respectively

gn kn, sn, qn Sets of thermal units, renewable resources, ESSs, and PCC at
node n, respectively
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