& frontiers | Frontiers in

BRIEF RESEARCH REPORT
published: 23 May 2022
doi: 10.3389/fenrg.2022.925947

OPEN ACCESS

Edited by:

Bo Yang,

Kunming University of Science and
Technology, China

Reviewed by:

Yixuan Chen,

The University of Hong Kong, Hong
Kong SAR, China

Yang Cui,

Northeast Electric Power University,
China

*Correspondence:
Tao Yu
taoyu1@scut.edu.cn

Specialty section:

This article was submitted to
Smart Grids,

a section of the journal
Frontiers in Energy Research

Received: 22 April 2022
Accepted: 04 May 2022
Published: 23 May 2022

Citation:

Yang N, Yu T, Luo Q and Wang K
(2022) Fast and Accurate Health
Assessment of Lithium-lon Batteries
Based on Typical Voltage Segments.
Front. Energy Res. 10:925947.

doi: 10.3389/fenrg.2022.925947

Check for
updates

Fast and Accurate Health Assessment
of Lithium-lon Batteries Based on
Typical Voltage Segments

Ning Yang "2, Tao Yu'?* Qingquan Luo"? and Keying Wang'?

School of Electric Power Engineering South China University of Technology, Guangzhou, China, 2Guangdong Provincial Key
Laboratory of Intelligent Measurement and Advanced Metering of Power Grid, Guangzhou, China

Lithium-ion batteries are widely employed in industries and daily life. Research on the state
of health (SOH) of batteries is essential for grasping the performance of batteries, better
guiding battery health management, and avoiding safety mishaps caused by battery aging.
Nowadays, most research adopts a data-driven artificial intelligence approach to assess
SOH. However, the majority of approaches are based on entire voltage, current, or
temperature curves. In reality, voltage, current, and temperature are frequently presented
in segments, leading to the limited flexibility and slow analysis speed of the traditional
techniques. This study solves the problem by dividing the whole voltage curve into many
typical kinds of segments with equal timescales based on different typical voltage
beginning points. On this foundation, the temporal convolution network (TCN) is used
to create a sub-model of SOH estimation for several typical kinds of segments. In addition,
the sub-models are fused using the bootstrap aggregating (Bagging) approach to boost
accuracy. Finally, this research uses a publicly available dataset from Oxford to
demonstrate the effectiveness of the suggested strategy.

Keywords: lithium-ion batteries, state of health, temporal convolutional networks, bootstrap aggregating,
segments, model fusion

INTRODUCTION

Lithium-ion batteries are widely used in aerospace, electronic products, electric vehicles, and power
systems because they are environmentally friendly, efficient, and long-lived (Bijoy et al., 2019; Zhang
et al., 2019). However, the frequent fire accidents have sounded an alarm to people, making people
gradually realize the seriousness of the aging problem of lithium-ion batteries and the importance of
health management. The battery management system (BMS) (Wang et al., 2022) is an important part
of the battery system. For safety and reliability, its most important parameter is the state of health
(SOH). SOH reflects the current performance of the battery on a long timescale, which can be used to
guide the replacement of lithium-ion batteries and avoid safety accidents caused by battery
performance aging to a certain extent.

The definition of a lithium-ion battery health state is usually based on impedance and
capacity (Li et al, 2020). The former can be obtained by electrochemical impedance
spectroscopy or the equivalent circuit model; the latter is determined by the current
integration method. In contrast, the latter is widely used because it is easier to obtain. The
definition form of SOH is given below (Lipu et al., 2018):
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FIGURE 1 | Typical fragment extraction.
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where C; represents maximum charge/discharge capacity, Cy
means rated capacity.

However, the integral operation of the current is
accompanied by the accumulation of errors. Therefore, in
practice, other methods are often used to evaluate the SOH of
the battery. There are three common evaluation methods:
empirical model, mechanism model, and data-driven. The
method based on the empirical model refers to the equivalent
circuit model (Chen et al., 2021a) built by components such as
resistance and capacitance to simulate the dynamic behavior
of the battery, and realize the evaluation of SOH by identifying
the component parameters in the equivalent circuit (Chen
et al., 2020; Chen et al., 2021b). However, this method has the
disadvantages of low accuracy and unclear physical meaning
(Zhao et al.,, 2019). For the method based on the mechanism
model, a series of partial differential equations (Xiong et al.,
2018) are used to describe the aging of the battery. Although
this method is more accurate, it has problems that are difficult
to solve and computationally intensive (Abada et al., 2016).
The data-driven method has become the first choice for SOH
evaluation because it is no need for modeling.

However, most studies use data-driven methods to estimate
SOH by complete curves. In reality, it is difficult to collect
complete data in practice (Zhong et al,, 2021), so the obtained
voltage, temperature, and current are mostly presented in the
form of fragments. At present, there are few studies on estimating
SOH by curve segments. Therefore, literature (Wang et al., 2021)
extracted the isobaric rise time as the health factor through
feature engineering to evaluate SOH. Literature (Fan et al,
2021) determined the optimal interval for estimating SOH by
traversing to select typical voltage segments and then determines
SOH by matching unknown segments with typical segments.
However, when the amount of data increases, the computational
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complexity will further increase. At the same time, it should be
noted that the SOH evaluation of the battery belongs to a few-shot
problem, so the manually extracted features or set sample
intervals are difficult to ensure good generalization
performance. Literature (Zhou et al, 2019) used dilated
Kalman filter and Gaussian process regression to predict the
full charge time and obtain SOH by segmented charging data but
did not study the discharge segment. Literature (Liu et al., 2021)
obtains fixed-length charging segment, fixed-length discharge
segment, and variable-length charging segment based on
alignment operation, and uses an encoder to study SOH.
However, the selected segment has a long timescale.

There is almost no constant current charge/discharge
condition in the real world, but it can be approximated as
a constant current condition in a short time. Therefore, it is of
practical significance to split the charge/discharge curves
obtained under laboratory conditions into small fragments.
According to the starting point of voltage, this paper divides
the charge/discharge voltage curve under the constant current
condition in the laboratory into several kinds of typical
segments with the same time scale to simulate the
scenarios in practical engineering. The mathematical
essence of SOH prediction for segments is time series
regression, where TCN performs better than recurrent
neural networks (Zhang, 2018). As a result, TCN is used to
establish a SOH prediction sub-model with rapid prediction
capabilities on various types of segments. To improve the
prediction accuracy, Bagging is used for model fusion. The
outstanding contributions of this paper are:

1) With the proposed method, lithium-ion batteries can be
evaluated for their SOH by using segments, which can be
used for rapid evaluation of batteries;

2) The experimental results show that the prediction results of
some types of fragments meet the requirements of the actual
BMS (i.e. the error is no more than 5%), indicating that the
proposed method has good flexibility;
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FIGURE 2 | TCN architecture.
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FIGURE 3 | The overall framework of the SOH evaluation model.

3) Proper integration of models can improve the accuracy of
prediction. In view of this, this paper puts forward some
suggestions.

SOH EVALUATION MODEL

Acquisition of Curve Segments

In the laboratory, reference charge tests or reference discharge
tests are mostly used to determine the SOH, and both of them
include the stage of constant current. Since the temperature
on the surface of batteries is easily disturbed by the external
environment, the voltage is relatively stable. Therefore, the
voltage is used to evaluate the SOH in the stage of constant
current. As shown in Figure 1, each complete curve is divided
into several segments with the same timescale, the timescale of
this paper is chosen as 100 s, and the voltage corresponding
to the beginning of the segment is an integral multiple
of 0.1V.

Temporal Convolutional Network

TCN is mainly composed of dilated causal convolution and
residual connection, as shown in Figure 2. Among them, the
former is defined as dilated causal convolution given below:

F(s)= Yo ) Xeas
d="V

2)
3)

where f: {0,...,k — 1} is the convolutional kernel, which has a
size of k, x € R" stands for the input sequence, s means the index

of the certain element of x, d and b represents the dilated factor
and base dilated factor respectively.
While for the latter,

o = Activation(x + F (x))

(4)

where x is the input of each layer of the network, equivalent to the
arrow below the green circle in the figure, which consists of identity
mapping and residual connection F (x) Among them, the former
adopts several convolutions of 1 multiplied by 1, so that the shape of
the input and output is consistent, while the latter includes repeated
dilated convolution, weight normalization, activation function, and
dropout, which can expand the receptive field, accelerate training of
model, introduce nonlinearity, prevent the gradient from
disappearing and overfitting, respectively. With the help of
residual connection, the problems of gradient disappearance and
explosion can be effectively alleviated, and the degradation of the
model can be avoided. Finally, the results of identity mapping and
residual connection are superimposed and need to be further
activated to obtain the ultimate output o.

Bagging

Bagging is an integrated learning method (Wang et al.,, 2015),
which reduces the generalization error and further improves the
accuracy and stability of prediction by fusing several sub-models.
The basic steps are as follows:

1) Extract the training set from the original sample set. Using
Bootstrap, # training samples are extracted from the original
data set each time. Therefore, after k rounds of extraction, a
total of k training sets are obtained.
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TABLE 1 | SOH prediction results of the charging and discharging processes of Cell7 and Cell8.

State Sub-model Cell7 Cell8
AEax/% MAE/% RMSE/% AEax/% MAE/% RMSE/%

Charge 2.8 2.632 1.298 1.548 2.067 0.889 1.028
2.9 2.933 1.813 1.943 2.249 1.293 1.362
3.0 2.672 1.529 1.660 2.213 1.106 1.193
3.1 2.526 1.468 1.564 2.031 1.092 1.155
3.2 2.5638 1.408 1.496 1.946 1.048 1.116
3.3 2.330 1.203 1.285 1.822 0.924 0.987
3.4 2.738 1.495 1.575 2.275 1.348 1.428
35 2.874 1.209 1.398 3.381 1.223 1.460
3.6 3.682 1.597 1.875 3.785 1.614 1.887
3.7 6.091 3.135 3.5655 4.838 2.324 2.685
3.8 1.590 0.418 0.532 1.178 0.318 0.415
3.9 7.686 3.614 4.271 6.189 2.497 2.970
4.0 5.724 1.388 1.802 4.920 1.390 1.775
41 4.271 1.355 1.590 3.568 1.265 1.528

Discharge 41 4.189 0.947 1.409 2.852 0.557 0.870
4.0 4.463 1.739 2.061 4.403 1.739 2.025
3.9 5.904 2114 2.426 6.890 1.899 2.429
3.8 1.686 0.744 0.864 1.131 0.363 0.449
3.7 3.493 1.397 1.659 3.858 1.044 1.355
3.6 4.072 1.033 1.318 3.630 1177 1.452
35 3.938 2127 2.359 3.033 1.476 1.665
3.4 9.133 3.212 4.329 6.625 2.454 3.086
3.3 6.251 1.952 2.707 3.675 1.341 1.692

Note: The data values with better performance in bold for easy comparison and analysis.

2) For each training set, a model is trained respectively, and a
total of k models are obtained.

3) Calculate the average of the predicted values of k models as the
final prediction result.

Overall Framework of the SOH Estimation
Model

As shown in Figure 3, the model framework is mainly divided
into two parts: establishing a SOH prediction sub-model based on
typical segments by TCN and establishing an ensemble model
using Bagging. The sub-models are trained by using the voltage
segments as input and the SOH as output, while the ensemble
models are trained by using the results of different sub-models as
input and the real SOH as output. For the convenience of
explanation, the segment is defined by the voltage
corresponding to the segment start time, such as segment 3.8.
The sub-model established on this type of segment is recorded as
sub-model 3.8.

OXFORD DATASET

The test data set is provided by Oxford University (Birkl,
2017). For eight small lithium-ion batteries Celll ~ Cell8 with
a capacity of 0.74Ah, the characteristic measurement is
carried out after every 100 driving cycle tests (André,
2004). The characteristic measurement includes cyclic
charge and discharge tests, i.e. constant current charge and
discharge (both charge and discharge currents are 1C, i.e.

0.74 A), charge cut-off voltage, and discharge cut-off voltage
is 4.2 and 2.7 V respectively. The voltage and temperature are
sampled in the test, and the sampling period is 1s.

As regards the usage of data, Cell1~Cell4, Cell5~Cell6, and
Cell7~Cell8 are used for training set, verification set, and testing
set respectively. Different sub-models are obtained according to
different typical segments.

For the ensemble model, for the Oxford data set, the
prediction results of different sub-models on Cell 7 are
selected as the input of the training set, the real SOH value
is used as the output, and the Bagging algorithm is used for
training to obtain the total model. On this basis, the SOH of
Cell8 is predicted.

EXAMPLE ANALYSIS

Hardware Environment and Experimental
Platform

The model is developed in Python language and simulated on a
server equipped with four GeForce RTX 2080 Ti graphics cards
using pytorchl.7.0 and scikit0.23.1 learning framework.

Experimental Results and Performance
Indicators
The prediction results are quantitatively evaluated by max

absolute error (AEmax), mean absolute error (MAE), and root
mean square error (RMSE) (Lin et al., 2022):
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®)
(6)

@)

Sub-model Prediction Results

The typical voltage segment of the same type in each charge/
discharge process was taken as the input of TCN, and the SOH
corresponding to the voltage segment was taken as the output, to
establish the SOH evaluation sub-model for the typical voltage
segment. As for model parameter configuration, the details are as
follows: the learning rate is 1E-3, the size of the convolution
kernel is 3, the number of network layers is 8, the batch size is 32,
and the optimizer is Adam. Refer to Table 1 for SOH prediction

Accurate SOH Assessment on Segments

results of the charging and discharging processes of Cell7 and
Cell8.

It can be seen from the table that for the charging process,
except that the prediction effects of sub-model 3.7, sub-model 3.9,
and sub-model 4.0 can not meet the requirements of BMS, the
sub-models based on other typical segments can be used in BMS.
For the discharge process, the effect of sub-model 3.9, sub-model
3.4, and sub-model 3.3 is poor. Short-time scale segmentation can
be employed for SOH assessment, according to preliminary
findings based on analysis and comparison. On the other
hand, segments may be flexibly selected in real-world scenarios.

The Prediction Results of the Ensemble
Model

We use many methods to fuse models, such as random forest
regression (RFR), gradient boosting regressor (GBR), support
vector regression (SVR), K-nearest neighbor (KNN), decision

TABLE 2 | Prediction effect of the ensemble model by different algorithms.

Algorithm Interval Charge Discharge
AE nax/% MAE/%’% RMSE/% AE nax/% MAE/% RMSE/%
RFR AEpax <2 1.395 0.321 0.415 1.472 0.517 0.634
AEmax <3 1.440 0.342 0.483 — — —
AEpax <4 1.423 0.321 0.466 1.223 0.414 0.515
AEmax <5 1.360 0.300 0.435 1.369 0.381 0.515
GBR AEpax <2 1.686 0.349 0.456 2.069 0.529 0.671
AEmax <3 1.457 0.404 0.540 — — —
AEpax <4 1.468 0.335 0.486 1.468 0.442 0.562
AEmax <5 1.492 0.312 0.459 1.401 0.371 0.492
SVR AEmax <2 1.927 0.887 1.061 2.527 1.204 1.414
AEmax <3 2.137 0.538 0.746 — — —
AEax <4 2.043 0.594 0.776 2.620 0.741 0.907
AEmax <5 2.024 0.626 0.808 2.132 0.814 0.956
KNN AEax <2 1.381 0.358 0.433 1.470 0.541 0.661
AEmax <3 1.515 0.329 0.484 — — —
AEpax <4 1.515 0.309 0.457 1.473 0.447 0.580
AEmax <5 1.381 0.261 0.402 1.440 0.437 0.538
DT AEmax <2 1.686 0.349 0.456 2.069 0.529 0.671
AEmax <3 1.356 0.400 0.497 — — —
AEpax <4 1.630 0.477 0.624 2.418 0.570 0.727
AEmax <5 1.686 0.409 0.544 1.660 0.557 0.681
ET AEmax <2 1.686 0.353 0.453 2.069 0.627 0.781
AEmax <3 1.686 0.508 0.706 — — —
AEmax <4 1.356 0.422 0.547 1.866 0.631 0.786
AEmax <5 1.214 0.440 0.551 2.959 0.591 0.792
AdaBoost AEmax <2 1.554 0.334 0.439 1.582 0.527 0.654
AEpmax <3 1.474 0.314 0.451 — - —
AEpax <4 1.541 0.304 0.442 1.170 0.431 0.542
AEmax <5 1.474 0.290 0.426 1.685 0.417 0.610
Bagging AEmax <2 1.401 0.320 0.414 1.477 0.516 0.633
AEmax <3 1.434 0.341 0.482 — - —
AEmax <4 1.430 0.322 0.468 1.206 0.414 0.515
AEmax <5 1.352 0.302 0.434 1.369 0.382 0.515

Note: The data values with better performance in bold for easy comparison and analysis.

Frontiers in Energy Research | www.frontiersin.org

May 2022 | Volume 10 | Article 925947


https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

Yang et al.

TABLE 3 | Prediction effect of the ensemble model (Bagging).

State Interval Sub-models min (AEmaxs)
Charge AEpax <2 3.8 1.178

2< AEpax <3 2.8-3.5 1.822

3< AEpax <4 3.6 3.785

4< AEpax <5 41 3.568
Discharge AEpax <2 3.8 1.131

3< AEmax <4 35,37 3.033

4< AEpax <5 3.6, 4.0-4.1 2.852

Note: The data values with better performance in bold for easy comparison and analysis.
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FIGURE 4 | Prediction effect of the ensemble model.

tree (DT), extra tree (ET), AdaBoost, and bagging. The basic
learners of Bagging and AdaBoost are both decision tree.
Different sub-models are selected to build the ensemble
model according to AE,,,x. For example, the AE,,,, of sub-
model 3.5, sub-model 3.7, and sub-model 3.8 on Cell7 in the
discharge process are less than 4, we integrate these sub-
models to predict the real SOH of Cell7 using the results of
these sub-models on Cell7 as input. Then, the SOH of Cell8 is
studied using the ensemble model that has been established.
The performance of different ensemble models can be found
in Table 2.

Sub-model 3.8 performs best in the charging process, and
its performance indicators on cell 8 are AE,,;, (1.178), MAE
(0.318), and RMSE (0.415). When fusing other sub-models
with sub-model 3.8, the performance of the ensemble model is
worse than sub-model 3.8, indicating that the prediction
performance of sub-model 3.8 is disturbed by other sub-
models. As a result, the benefits of model fusion are not
reflected. The discharge procedure follows the same
pattern. Simultaneously, comparing the performance of
various methods, RFR and bagging have the best

Accurate SOH Assessment on Segments

min (MAEs) min (RMSEs) AEmax MAE RMSE
0.318 0.415 1.401 0.320 0.414
0.889 0.987 1.800 0.412 0.572
1.614 1.887 3.697 0.781 1.139
1.265 1.528 3.381 0.771 1.096
0.363 0.449 1.477 0.516 0.633
1.044 1.355 2.264 0.723 0.909
0.557 0.870 2.219 0.595 0.800

performance. Bagging is used for follow-up experiments
because it is simpler.

It can be found from Table 2 that when a better sub-model is
fused with the sub-models with worse performance, the ensemble
model’s performance is diminished. As a result, it is proposed that
the sub-models should be fused according to the interval split by
the AE,., value, ie., the sub-models with similar performance
should be fused, as indicated in Table 3.

As shown in Table 3, AE,,,, in the second column refers to the
performance of the sub-model on Cell7, and the sub-models in
the third column are sub-models that meet the conditions in the
second column. The AE,,,,..., MAEs, and RMSEs in the fourth to
sixth columns are the set formed by AE,,,,,, MAE, and RMSE of
the sub-models in the third column on Cell8, while the indicators
in the seventh to ninth columns are the performance of the
ensemble model on Cell8.

When sub-models with similar performance are fused, except the
ensemble models constructed by sub-model 3.8 in the charging
process and sub-model 3.8 in the discharge process are poor,
ensemble models show better performance than sub-models. In
particular, the MAE and RMSE of these ensemble models
decreased significantly. Figure 4 shows the prediction of the
ensemble model constructed by sub-model 3.5 and sub-model 3.7
in the discharge process. It can be found in Figure 4 that the
prediction of the ensemble model is closer to the real value and
has less variance. In (Lin et al., 2022), the complete voltage curve is
used to calculate multiple features, and MLR, SVM, and GPR are
fused by random forest. Its results on cell 8 are MAE = 0.35%, and
RMSE = 0.51%, which is slightly better than ours, but we only use
segments of the voltage curve to predict.

CONCLUSION

The conclusions that can be drawn from the above experiments
are: 1) It is feasible to use short timescale segments for SOH
estimation, which enables fast estimation of SOH. At the same
time, it shows that the selection of segments can be flexible in
practice, that is, the segments with shorter time scales or at other
locations can be selected for the rapid prediction of SOH. 2) The
prediction performance of the ensemble model is closely related
to the prediction performance of each sub-model instead of the
number of sub-models. When a single sub-model with poor
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prediction performance participates in model fusion, it may
weaken the prediction performance of other sub-models with
better performance to a certain extent, and the prediction
performance of the ensemble model is even lower than that of
a single sub-model. Therefore, when improving the performance
of the ensemble model, we should not only consider choosing
different algorithms but also try to integrate the models with
similar performance, which will achieve better prediction
performance. In particular, sub-models with excellent
performance are not recommended to participate in the fusion
alone, which may lead to the risk of over-fitting.

Since the simulation of the practical application scenarios is
still based on the premise of constant current, it is necessary to
combine current with voltage for a more rapid and accurate
prediction of SOH in the future.
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