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Wind energy is one of nature’s most valuable green energy assets, as well as one of

the most reliable renewable energy supplies. Wind turbine blades convert wind

energy into electric energy. Wind turbine blades range in size from 25 to 120m,

depending on the demands and efficiency necessary. Owing to ambient influences
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and wide structures, the blades are subject to various friction forces that might

harm the blades. As a result, the generation of power and the shutdown of turbines

are both affected. Downtimes are reduced when blades are detected on a regular

basis, according to structural healthmanagement.On the50-W, 12-Vwind turbine,

this research investigates the use of vibration signals to anticipate deterioration. The

machine learning (ML) method establishes a nonlinear relationship between

selected important damage features and the related uniqueness measures. The

learning algorithmwas trained and tested based on the excellent state of the edge.

To forecast blade faults, classifier models, such as naive Bayes (NB), multilayer

perceptron (MLP), linear support vector machine (linear_SVM), one-deep

convolutional neural network (1DCNN), bagging, random forest (RF), XGBoosts,

and decision tree J48 (DT) were used, and the results were compared according to

their parameters to propose a better fault diagnostics model.

KEYWORDS

wind energy production, fault diagnosis, energy prediction, machine learning, wind
turbine

1 Introduction

In past decades, owing to the extreme overconsumption of

fossil energies, climate change and global warming have

emerged as a problem for all people. This encourages the

research and development of renewable energies. As stated by

the Energy Information Administration (EIA), renewable

energy is a natural reservoir with a limited supply of

energy (Baratsas et al., 2021). This energy comprises wind,

bioenergy, solar, nuclear sources, geothermal, and water.

Renewable energy advantages include no emissions of

greenhouse gases, a reduction in air pollution, energy

market diversity, and acceleration of economic growth in

comparison with traditional energy sources. In recent

times, wind power consumption ranked first among all

alternative energies on the basis of the global energy

consumption by energy source (Ren et al., 2021). Figure 1

shows the overall wind power generation around the world. A

FIGURE 1
Overall wind power generation (https://ourworldindata.org/renewable-energy).
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considerable number of wind turbines (WTs) have been

developed and deployed with the accelerated growth of

wind power innovation. The aerodynamic force from the

rotor blades is the vital component for transforming wind

energy into electrical energy (Gao et al., 2021). Figure 2 shows

the countries using wind power as a primary energy source,

and Figure 3 shows the installed wind energy capacity in

important countries, such as the United States, Germany,

India, Spain, the United Kingdom, Italy, Australia, Japan,

and the Middle East.

FIGURE 2
Countries using wind power as primary energy source (https://ourworldindata.org/renewable-energy).

FIGURE 3
Installed wind energy capacity (https://ourworldindata.org/renewable-energy).
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As per the reports, 25%–30% of the overall wind power

generation expenses were covered by operating and maintenance

costs (Astolfi, 2021). However, its stability impacts device

efficiency and power production overall, which leads to

increased expenses and decreased turnover, which leads to a

reduction in their life cycle. Overlooked wind blade failures will

wreck the whole WTs and even affect the adjacent constructions

and injure human beings in the vicinity. Quick failure

recognition and prompt diagnosis enhance the productivity of

energy production and lower WT running costs (Joustra et al.,

2021). Therefore, efficient inspection of WTs is necessary in

order to improve energy usage and avoid associated

consequences. Figure 4 shows the major failures in the WT

system prone to the loss of wind energy production.

For the last several decades, the active field of research has

been on a comprehensive study that has been undertaken in the

data mining vibration-based failure diagnostics approach to track

WTs structural health (Shankar Verma et al., 2021). At the

minimum possible level of inspection, including damage

monitoring, scientists often use artificial intelligence to

recognize in the data observation collection conflicting

anomalies that can be correlated to the presence of damage in

the system. The nature of environmental and operational

variability affecting the precise estimation of damage is one of

the main problems in damage detection (Mishnaevsky et al.,

2021). Several experiments have shown that external causes can

mask the effects of failure in a structure and ultimately reduce its

detection performance. In general, structures, such as WTs, are

subject to extreme pressure by external influences, especially

when positioned offshore (Astolfi et al., 2021). At present, wind

turbine blades (WTBs) primarily depend on sensors to

experiment on predictive maintenance and failure prognostics.

In blade monitoring and fault detection testing, better results

were obtained using accelerometers, acoustic detectors,

ultrasound, and strain sensors Habibi et al. (2021).

Lin et al. (2021) has developed an radio-frequency

identification (RFID)-based fiber Bragg grating (FBG)

sensor management system for WTBs. The control system

suggested applies RFID technology to FBG sensor blade

tracking. The FBG WTB sensor is manufactured, designed,

mounted, and maintained using an efficient digital control

method. The analysis of an artificial neural network technique

for damage recognition and demonstration on a working

turbine blade was conducted by Movsessian et al. (2021).

The artificial neural network (ANN) technique identifies

the nonlinear relations between the chosen environmental

and operational variability (EOV)-influenced damage

sensitive features (DSFs) and their respective Mahalanobis

distance (MD)-calculated novelty indices. The model of ANN

regression is learned and tested according to a reference state.

The learned model is used to simulate new findings in the

subsequent MD. A modern novelty index for harm detection

is used to estimate an error between the calculated and

expected MDs. Soulier et al. (2021) performed research on

the ability of the e-TellTale sensor strip to detect flow

characteristics on the WTB with flow stall and hooking-up

dynamics in a limited Reynolds number. This study

demonstrates that the flow stable connection dynamics can

be detected in WTBs. This sensor consists of a strip at the base

of the gauge sensor. TR-PIV measures were used to acquire the

velocity field over an oscillating 2D blade segment using an

e-TellTale sensor. For detecting strip movement, images of the

PIV were postprocessed according to flow movements.

Zhao et al. (2021) carried out studies on remote systemic

health surveillance on the use of the Doppler short-distance

WT. The simulation results show that the solution proposed

can efficiently remove the parameters and detect complex

horizontal-axis wind turbine (HAWT) defects. Moreover,

actual onshore WTs are also used to test the approach

suggested. Both findings show the possibility of using the

radar sensor for the systemic health surveillance of

horizontal-axis wind turbines (HAWTs) without

interference. Yang et al. (2021) conducted a study on the

image perception of damage to WTs using a deep learning

model of transferring learning and a group learning

classification. Unmanned aerial vehicle (UAV) photos of the

WTB are used for testing the model’s performances. The model

presented was better than the support vector machine (SVM),

the fundamental deep learning model, and the deep learning

model together with the ensemble learning methodology.

Nielsen et al. (2021) conducted a case study with structural

FIGURE 4
Major failures in wind turbine system (https://www.
engineeringworldchannel.com/why-do-wind-turbines-fail/).
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health monitoring (SHM) on the risk-based management of

WTBs. The study demonstrates how the optimization of

maintenance costs can be carried out using a risk-based

approach taken in a Bayesian decision analysis context in

which probabilistic models for blades and slurs and SHM

systems were created. The research presents a parameter

study showing how the potential advantage of SHM

depends greatly on the efficiency of SHM and the use of

SHM findings for inspection and maintenance decisions.

The related works on wind turbine fault diagnosis using

supervised classification algorithms are included in Table 1.

This study makes an attempt to find five different blade fault

conditions for increasing the wind energy production by

applying an machine learning (ML) approach through

statistical features. The contributions of the present study

are as follows:

• This study considers five faults (blade crack, erosion, hub-

blade loose connection, pitch angle twist, and blade bend)

for WTB fault diagnosis.

• Mel-spectrogram, mel-frequency cepstral coefficients

(MFCCs), chorma, and Tonnetz were used as feature

processing techniques.

• This problem is modeled as a multiclass classification

problem to identify the best approach to maximize wind

energy production and attempts to classify the blade

condition using naive Bayes (NB), multilayer perceptron

(MLP), linear SVM (linear_SVM), one-deep convolutional

neural network (1DCNN), bagging, random forest (RF),

XGBoosts, and decision tree J48 (DT).

The rest of the article is outlined as follows. Section 2 presents

the discriminating blade fault conditions usingML techniques. In

Section 3, experimental results and discussion are presented,

followed by conclusion and future work in Section 4.

2 Discriminating blade fault
conditions using machine learning
techniques

Early detection of wind blade defects assists in increasing the

performance of the productivity of energy production and

reducing the WT running costs. As a result, constructing an

effective model is an imperious need to diagnose the failures

properly. The input data for ML models are the vibration signals

that carry useful knowledge and provide an indication about the

failure type. This framework consists of three phases: data

acquisition, feature engineering and extraction, and

classification learning techniques and evaluation. In general,

the data acquisition phase generates vibration signals from the

wind turbine and stores the results in a database. The feature

engineering and extraction phase extracts the most relevant

information from the generated signals as inputs for ML

models. The classification learning techniques and evaluation

phase exploits the input data with wind turbine failure as a class

label for each record to build a classifier.

The experiment was carried out on a 50-W, 12-V variable

small-scale micro wind turbine (MX-POWER, model: FP-50W-

12V). The technical parameters of a wind turbine are given in

Table 2. The wind turbine was mounted on a fixed steel stand in

front of the open circuit wind tunnel outlet. The wind tunnel

speed was varied from 5 to 15 m/s and acts as a wind source to

start the wind turbine. Table 3 shows the technical parameters of

the wind tunnel to create the wind supply. The wind speed varies

continuously in order to simulate the environmental wind

condition. The experimental setup is shown in Figure 5.

Piezoelectric-type accelerometer was used as a transducer for

acquiring vibration signals. It has high-frequency sensitivity for

detecting faults. Hence, accelerometers are widely used in

condition monitoring. In this case, a uniaxial accelerometer of

500-g range, 100-mV/g sensitivity, and resonant frequency of

approximately 40 Hz was used. The piezoelectric accelerometer

(DYTRAN 3055B1) was mounted on the nacelle near the wind

turbine hub to record the vibration signals using an adhesive

mounting technique. It was connected to the data acquisition

(DAQ) system through a cable.

2.1 Data acquisition

On the nacelle above the turbine hub, the piezoelectric

accelerometer (DYTRAN 3055B1) was affixed using an

adhesive mounting approach to acquire a dynamic

response. It was linked to the DAQ system via a cord

(Ponci et al., 2021). It is the method of sampling signals

that quantify physical conditions in the real world and

converting the corresponding measurements into digital

numerical data that a machine can exploit. The sensor

transforms physical properties into electric impulses, signal

TABLE 2 Technical parameters of the wind turbine.

Model FP-50W-12V

Rated power 50 W

Rated voltage 12 V

Maximum current 4 A

Rated eotating rate 850 rpm

Start-up wind speed 2.5 m/s

Cut-in wind speed 3.5 m/s

Cut-out wind speed 15 m/s

Security wind speed 40 m/s

Rated wind speed 12.5 m/s

Engine Three-phase permanent magnet generator

Rotor siameter 1,050 mm

Blade material Carbon fiber-reinforced plastics
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processing tools convert analog voltage to digital values, and

converters convert analog-to-digital signals to numerical

values (Wodecki et al., 2021).

The DAQ system used in this analysis was the NI4432, a

USB-type device. Five analog input channels, 102.4 k frames per

second, and a 24-bit resolution comprised the DAQ system. The

accelerometer is connected to an analog-to-digital converter

(ADC) and a charging amplifier unit incorporated within the

device. The frequency of vibration had been received from the

ADC. These vibration signals were used to derive functions by

extracting features (Bai et al., 2021). The accelerometer is

connected to one end of the cable and to the other end to the

DAQ system analog input and output (AIO) terminal. The

transducer signal and the device were connected using NI-

LabVIEW (PC).

This research specified the length of the sample to ensure

the accuracy of the results, which also included the major

principles. If the sample size is large enough, statistical

measurements are more important. In contrast, the number

of samples increases the time for measurement. A sample

length of 10,000 was chosen to achieve consistency (Entezami

et al., 2020). As per the Nyquist sampling theorem, the

frequency response must be at least twice the maximum in

the signal. It was determined that this sampling frequency

theorem was able to provide a mean of 12 kHz and a minimal

amount of 100 samples for each WTB state (Joshuva and

Sugumaran, 2020). The following faults were simulated one at

a time on a blade while other blades remain in good condition

along with other components and the corresponding vibration

signals are acquired. Figures 6A–F show the different blade

fault conditions that are simulated on the blade.

1) Good condition blade (good): The blade is classified to be in

good original state, which is having no damage or artificial

defects on the blade’s surface.

2) Blade bend fault (bend): This problem happens in real time

owing to the aerodynamic force, which causes the WTB to

bend flapwise. An increase in blade deflection results in

bending stresses and strong vibrations, as well as a

reduction in between the shaft and blade clearance. The

blade bend on the flapwise defect was emulated by bending

the blade at a 10° angle from its initial position.

3) Blade crack fault (crack): In real time, foreign objects,

such as bird strikes, manufacturing faults, and damage

during transit and erection, cause the blade to crack. This

failure creates wrong guiding alignment, blade stiffness,

and stress. To simulate the fault of a blade with a width of

3 mm and a length of 15 mm, a hacksaw blade was used.

4) Blade erosion fault (erosion): WTBs are vulnerable to a

variety of precipitation types as well as a range of caustic

airborne particles, which can erode their surfaces over time,

especially at the foremost edge. These flying particles have the

potential to harm blades, reducing aerodynamic performance

and energy capture. In addition, in specific circumstances on

the leading edges of the WTBs, bug detritus and other

airborne particles may build up. Blade degradation and

cutting-edge contamination can significantly limit blade

productivity, notably in the field of maximum operating

edges, and it is key to an optimum blade output and

power collection. This problem was reproduced by

degrading the coating surface with an emery sheet of

320 CW to produce an erosion impact for the blade.

TABLE 3 Technical parameters of the wind tunnel

Type of tunnel Low-speed, open circuit
suction type

Test section size 300 mm × 300 mm

Contraction ratio 9:1

Drive Axial flow fan driven by AC Motor (7.5 Hp) with AC Drive for Speed Controlling

Power requirement 3Φ AC, 440 V, 32 Amps electrical supply

Effuser, diffuser Fiber-reinforced plastic (FRP)

Blower frames and supporting frame Mild steel

FIGURE 5
Experimental setup.
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5) Hub-blade loose contact (loose): A bolt that binds the hub and

blade to a turbine falls loose leading to a short-age ofmaintenance

and extended runtime, causing extreme vibration and upheaval

in the structure of the rotors and destruction of the complete

turbine. The bolt attaching the hub and the blade was loosened to

simulate this condition.

6) Blade pitch angle twist (pitch angle twist): To produce power

from wind energy, the turbine shaft is linked to the wind

FIGURE 6
(A) Good condition blade. (B) Blade bend fault condition. (C) Blade crack fault condition. (D) Blade erosion fault condition. (E) Hub-blade loose
fault condition. (F) Blade pitch fault condition.

FIGURE 7
(A) Vibration plot for good condition blade. (B) Vibration plot for blade bend fault. (C) Vibration plot for blade crack fault. (D) Vibration plot for
blade erosion fault. (E) Vibration plot for hub-blade loose fault. (F) Vibration plot for blade pitch fault.
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turbine pitch. However, the pitch of the blade is wrenched

more owung to wind turbulence, resulting in critical vibration

and the intention to halt the wind turbine system. To recreate

this pitch issue, the blade pitch is twisted 12° from its original

angle to replicate this scenario.

Figures 7A–F show the time-domain graph of the vibration

signals of various blade conditions of the WTB. These sample

signal plots (Figures 7A–F) show the vibration acquired from good

condition blade, blade bend, blade crack, pitch angle twist, hub-

blade loose connection, and blade erosion. This gives some basic

idea about how the magnitude of the acquired vibration signal

varies over time with respect to the faults that were simulated.

2.2 Feature engineering and extraction

The wind blade signals comprise a set of features that are

useful as input for classification tasks. Therefore, it is crucial

to extract such features and filter them to obtain the relevant

ones. The training set has these features as input where the

wind blade failure is considered as output (label). There are

different approaches for extracting characteristics for distinct

applications that require high performance (Alkhawaldeh,

2019; Alkhawaldeh et al., 2019). Figure 8 shows a

framework that involves building the ML models. These

features are discussed as follows:

• Mel-spectrogram: It is a set of mel-scaled power

spectrogram coefficients. Each spectrogram coefficient

represents the signal in acoustic time–frequency form.

The power spectral density P(f, t) is split into a set of

mel-scale values at evenly spaced times ti and frequencies fj
(on a mel-frequency scale). The mel-frequency scale is

described as follows:

mel � 2595plog10(1 + hertz

700
) (1)

• MFCC: It is a filtered shape in a compact representation of

the spectrum called the envelope of the short-time power

spectrum. MFCCs are computed in consecutive steps as

follows:

➢ Splitting the signal into compact segments: To combat

alterations in samples in a small number of times, partition

the signal across a range of 20- to 40-ms frames, because it

is continuously changed at long-distance times.

➢ Periodogram of the segment power: A periodogram

assessment of the power spectrum is estimated for each

frame, which indicates the frame’s frequencies.

➢ The mel filter bank to the power spectra: The algorithm

then estimates the powers in different alternate frames that

emerged in a series of periodogram blocks of segments using

a filter bank. Owing to superfluous information in

periodogram spectral estimation, this filter is applied.

➢ Logarithm of all filter bank energies: It uses a

logarithmic scale that is also utilized for cepstral mean

diminution to scale large variations of energies as there are

no distinguishable sounds in high energies.

➢ Discrete cosine transform (DCT): It is used to

decorrelate the filter bank powers as the association in

filter bank powers causes overlapping. The DCT generates

diagonal covariance matrices as features. Then, it chooses

higher DCT coefficients (2–13 DCT coefficients) to

overcome the rapid variations in the filter bank powers

and drop the remaining ones.

• Chroma: It estimates a chromagram embedded in the

power spectrogram. Chroma features are robust samples

FIGURE 8
The structure of building wind blade fault datasets and
classifier models for evaluation.
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that extend the whole spectrum onto 12 blocks depicting

12 diverse semitones (or chroma) of the acoustic octave.

• Tonnetz: It estimates the tonal centroid characteristics (or

Tonnetz) using the approach described in Hu et al. (2012)

to detect alterations in the symmetrical components of

wave signals.

2.3 Supervised learning methods and
evaluation

Supervised classification algorithms endeavor to attain a

suboptimal classification model for identifying unknown sets

of given characteristics and hidden tags. Several classification

models radically expose an intense theory in representing

knowledge as a precise pattern. To satisfy the heterogeneity in

using varied structures, a set of supervised classification

algorithms of different groups are used. To be more specific,

the suggested classifiers in terms of the group are the following

(Witten et al., 2016):

• Bayes: Find a probabilistic model using the Bayes theorem

in a form of rules or graphs, such as the NB model. The

core of the NB classifier is to achieve conditional

independence between input features and ensure that

the evidence or the probability of features are the same

for the entire classes. These assumptions guarantee an

accurate probabilistic classifier model.

• Functions: Build a classifier as a function that maps the

inputs (features) to the outputs (labels). These functions

are in diverse representations, such as linear or nonlinear

forms. Thus, in this study, we use two forms of functions

that are nonlinear, such as MLP and linear SVM

(linear_SVM).

• Deep convolutional neural network (DCNN): DCNN

comprises feature extraction and recognition phases.

The feature extraction procedure derives relevant

characteristics of the input raw sequences by

convolution and pooling layers for adjusting the weights

W as feature maps among layers (Goodfellow et al., 2016;

Hinterstoisser et al., 2018). The convolution layers slide

some filters (or kernels) over the input image or the next

feature maps to generate low-dimensional features from

high-dimensional features, while the pooling layers reduces

the dimensional size of each feature map and retains the

most important information. During the recognition

phase, the final relevant features at the last layer of the

network are smoothed into a flattened sequence of

numbers to be supplied into a fully connected ANN

classification layer. In this study, we use 1DCNN to

extract features from a sequence of data and map the

sequence’s underlying features to certain classes.

• Meta: The core concept in this family is to construct a

powerful classifier from an ensemble of weak classifiers

that are integrated in such a way that they can predict a

label using the majority of classes or the mean value of the

continuous classes. Two techniques are used in this family:

bagging and boosting. In bagging methods, the training

data are sampled using sampling with replacement into k

samples. The bagging technique builds a classifier from

each sample often using the J48 algorithm. In the testing

phase, the final results of the whole classifiers are

aggregated using voting or averaging score. The

boosting techniques build a classifier in a sequential

manner where the error generated from the previous

weak classifier is highlighted to be solved by the next

TABLE 4 The statistical information of the datasets.

Dataset/labels Good Bend Crack Erosion Loose Pitch angle twist Total

Dataset400 132 130 130 132 135 130 789

Dataset500 136 129 128 149 130 127 799

Dataset600 145 128 138 129 138 129 807

Dataset700 150 132 129 127 130 129 797

FIGURE 9
The accuracy values of machine learning techniques on four
datasets.
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FIGURE 10
Confusion matrix of 1DCNN, bagging, decision tree J48, linear support vector machine, multilayer perception, naïve Bayes, random forest, and
XGBoosts for (A) 400, (B) 500, (C) 600, and (D) 700 datasets.
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FIGURE 11
Precision and recall values for the 400, 500, 600, and 700 datasets.
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classifiers. The bagging, RF, and XGBoosts techniques are

used as well-known algorithms.

• Trees: In tree-based models, the idea of randomness (or

impurity) using entropy is the main core of such models.

The features of the training set are selected based on how

random data would be generated into sub-trees. Hence, the

best attribute is the one that generates a pure tree of class

leave nodes. In particular, each classifier is built in a form of

tree, with each node providing the most desirable feature at

that level and the arcs indicating the values of that feature.

Here the decision tree J48 (DT) model was employed. This

employs a stratified 10-fold cross-validation technique

during the evaluation phase. As shown in Figure 8, this

technique chooses 10% of the dataset for testing and 90% of

the dataset for training (the other ninefold) in a sequential

process. The classifier model was built, and its performance

was evaluated in each process. The average performance of

all folds is then represented. Using such a technique, one

can ensure that the entire dataset is involved in the training

and testing phases, thereby reducing the risk of overfitting.

This problem occurs when the model correctly classifies all

of the training data but fails to fit the test sets.

3 Result and discussion

This section presents the experimental settings,

parameters, and datasets as well as the classification results.

This research primary aims to assess whether the blades are in

decent or poor shape. The experimental settings involve the

simulation that generates the vibration signals on different

conditional environments. Section 3.1 explains the process of

generating the training and test sets. In Section 3.2, the

performance of ML models using evaluation metrics is

presented in detail.

3.1 Parameter settings and datasets

To evaluate our methodology, a set of experiments using four

variant dataset settings was conducted. Each dataset has different

rotation per minute (RPM) values of the wind turbine, as follows:

Dataset400 has 400 RPM, Dataset500 has 500 RPM,

Dataset600 has 600 RPM, and Dataset700 has 700 RPM. Each

dataset has a set of signals for each fault class, which are bend,

crack, erosion, good, loose, and pitch angle twist. On a blade,

these flaws were replicated one at a time, and the related vibration

signals were gathered. The datasets contain a set of vibration

signals along with a set of labels that refer to the wind blade faults.

Table 4 shows the statistical information about the four datasets.

As shown, each dataset contains a number of vibration signals for

each wind blade fault. The datasets are balanced with

approximately the same number of classes at each dataset.

The stratified 10-fold cross-validation technique divides the

dataset into training and test sets of 90% and 10%, respectively.

The training and test partitions of datasets are approximately

(710, 79), (719, 80), (726, 81), and (717, 80) for Dataset400,

Dataset500. Dataset600, and Dataset700, respectively. This

division also ensures that each dataset participates more than

once to avoid overfitting problems. The performance of the

models using the evaluation metrics that are used for

comparison was evaluated. The evaluation metrics that are

used in this work are accuracy, precision, and recall, as follows:

- Accuracy is the proportion of correctly classified wind blade

faults to the total number of classified wind blade faults.

Accuracy � TP + TN

TP + FP + FN + TN
(2)

- Precision is the fraction of correctly classified wind blade

faults to the to overall classified wind blade faults.

Precision � TP

TP + FP
(3)

- Recall (known also as sensitivity) refers to the percent of

retrieved correctly classified wind blade faults over all correctly

classified wind blade faults.

Recall � TP

TP + FN
(4)

TP denotes the fault blades that have been correctly classified as

faults. The unfaulty blades that are successfully categorized as

unfaulty are represented by TN. FP refers to blades that are

wrongly labeled as faults despite not being faulty. FN refers to

blades that are wrongly labeled as faults despite not being faulty.

3.2 Experimental evaluation results

Eight classifiers on the four datasets using the stratified 10-

fold cross-validation technique were evaluated. The accuracy

performance of the classifiers is depicted in Figure 9 where the

x-axes indicate the datasets, while y-axes represent the accuracy

values. As shown, the bagging, RF, and XGBoosts techniques show

high performance on each dataset with an average accuracy value

of approximately 95.4%, 88%, 93.42%, and 89.4% for Dataset400,

Dataset500, Dataset600, and Dataset700, respectively. As a result,

the tree-based algorithms gain superior performance among all

ML techniques. The structure of a tree-based model comprises a

set of features in internal nodes and class labels in leaf nodes.

In order to build a tree-based classifier, these techniques leverage

the idea of entropy to determine the high-entropy gain features that

guarantee low randomness when splitting the dataset. A consecutive

process in identifying the most entropy gain features results in a

coherent and effective tree-based classifier. This ensures that the

discrete or relevant features are more compatible with the tree-

based methods resulting in solid and effective models. Accuracy is

Frontiers in Energy Research frontiersin.org17

Arockia Dhanraj et al. 10.3389/fenrg.2022.925980

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.925980


an average value over all the classes that provides an incorrect

performance of the model and fails in providing which class has an

effect on the performance. In other words, it conceals the information

required to better analyze the performance of the classification model.

If you have an unbalanced amount of instances in each class or if your

dataset has more than two classes, classification accuracy alone can be

misleading. As a result, it is critical to describe to what extent is

forecasting the real classes to their expected values to demonstrate their

influence on model performance.

In contrast, a complete performance analysis might be

presented using a confusion matrix, which overcomes the

problem of depending just on classification accuracy. The

confusion matrix is a two-dimensional structure that describes

the results of classification problem prediction. The number of

correct and incorrect predictions is summarized with count

values and divided by class. As a result, the confusion matrix

depicts the various ways in which the classification model is

confused when making predictions. In the confusion matrix, the

predicted values are on the x-axes, while the actual (or target)

values are on the y-axes as shown in Figure 10.

The performance of the eight classifiers is evaluated using six

classes that represent how good the prediction of the wind blade

failures is based on the received signals as input features. The tree-

based models, which are the bagging, RF, and XBoosts models,

provide effective performance; thus, the focus is on their outcomes

for predicting wind blade failures. Focusing on the most effective

models, analyse the three tree-based classifier models using a

confusion matrix to further depicting their performance.

Figure 10 show the percentages of the error rate of the

predicted class values to their corresponding actual values, in

addition to the other classes’ values. In particular, the bagging

classifier has a highly effective performance on predicting the

classes where the average predicting error rate to the bend, crack,

erosion, good, loose, and pitch angle twist classes are

approximately 15.94%, 14.7%, 14%, 14.84%, 15.5%, and 14.1%,

respectively, in the four datasets. The prediction effectiveness using

the RF classifier is of an approximately average prediction error

rate on the same classes of 15.94%, 16.11%, 14.1%, 15.46%, 16.1%,

and 15.32% respectively. Using the XGBoosts classifier, the average

prediction error rate are 16.41%, 15%, 14.4%, 15.15%, 15.6%, and

15.6%, respectively. The prediction error rate of the classifiers is on

average approximately less than 17% over all classes of the four

datasets. The wind blade failures have a slightly high error rate,

indicating that the signals from such failures have an influence on

classification performance. The results show correlation

effectiveness between classes, with a signal from one class being

more similar to signals from other classes. Thus, the decision-

makers have to pay attention to monitoring and identifying the

failures that reveal a high error rate along with using automatic

predictive classifiers to avoid possible damage in the future.

The precision and recall metric values inML assessment provide

an accurate representation of how a classifier behaves in recognizing

the real classes to the predicted values. The estimate of such values is

dependent on a confusion matrix, which also illustrates the two

types of prediction error. The two error types are false positive and

false negative. The precision metric focuses on type I errors, which

are the actual classes that are not failure classes but have been

predicted as failure classes by the classifier, and the recall measure

focuses on type II errors, which are the actual classes with failure tags

that are categorized as nonfailure classes. Because forecasting wind

blade failures is a vital application, onemust emphasize the precision

metric findings to assure how well a classifier model performs in

minimizing the effect of false-positive predictions. Figure 11 displays

bar charts for the precision and recall values of the bagging, RF, and

XGBoosts classifiers on the four datasets across the six classes. In

particular, the bend, crack, and loose classes have sufficient average

precision values on the four datasets using the RF classifier of 0.99,

0.96, and 0.97, respectively. In contrast, the erosion, good, pitch

angle twist classes gain competent average precision values of 0.88,

0.97, and 0.9, respectively, using the XGBoosts classifier. The RF

classifier provides adequate recall values for crack, good, and loose of

0.97, 1, and 0.96, respectively, while the XGBoosts classifier assumes

significant values for bend, erosion, and pitchanglewist classes of

0.97, 0.9, and 0.88, respectively. The results show that the RF

classifier has an impact with high precision and recall values to

crack and loose classes, while the XGBoosts classifier attains effective

values for erosion and pitch angle twist classes. The bend and good

classes are affected by the RF and XGBoosts classifiers with alternate

precision and recall values. In addition, the results are varied using

different environmental settings, whereas the results in

Dataset400 obtain high precision and recall values over all

classes. Therefore, an environment with a wind blade turbine of

400 rotations per minute is more stable to gather the failure

prediction in different situations.

In summary, using four datasets in different situations for

evaluation, the RF and XGBoosts classifiers outperform the other

models, with overall average precision and recall values of (0.93,

0.94) and (0.93, 0.93), respectively. The F1 score is a weighted

average of precision and recall that accounts for both false positives

and false negatives. F1 is the represented as the concordant mean of

precision and recall (i.e.,) 2pRecallpPrecision
Recall+Precision. The F1 score of the RF and

XGBoosts classifiers is 0.935 and 0.93, respectively. This indicates

that tree-based classification models can be effectively used for

recognizing real-time blade fault problems on WTBs while

requiring minimal modification. This work also can economically

reduce system downtime, resulting in the highest possible output of

wind energy production harvest. This implies supporting the use of

these classifiers for anticipating wind blade failures and guiding

decision-makers in determining which classifier is appropriate based

on convenient conditions.

4 Conclusion and future work

Wind energy is one of the natural green and reliable energy

assets. However, theWTBs are vulnerable to various frictional forces
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because of environmental factors and wide structures that can affect

the blades. This leads to electricity development and the shutdown

of turbines. The downtime is shortened by the continuous diagnosis

of blades according to structural health management. Thus, early

detection of deficiencies in wind blades contributes to increased

productivity and efficiency and reduces operating costs in the WTs.

Therefore, building an effective model requires a proper diagnosis of

failures. In this study, we present the framework of signal gathering,

feature extraction, and classification techniques. Extensive

experiments to evaluate a set of classification models from

various families of ML techniques were conducted. These

experiments are assessed using four different environmental

datasets depending on the rotation of the wind turbine per

minute. The results showed that the RF and XGBoosts tree-

based models outperform the other models, with an accuracy

average value of approximately more than 93%. Furthermore,

they obtained average precision and recall values of (0.93, 0.94)

and (0.93, 0.93), respectively. Thus, this makes them effective in

detecting problems withWTBs on real-time blade faults. This study

aims to analyze more environmental conditions in future work and

study different ML techniques with appropriate hyperparameter

settings. In addition, the purpose of this study is to evaluate an

ensemble tree-based model that combines the best models into a

unified framework. This might boost the performance of detecting

the wind blade failures effectively.
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