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Aiming to solve the problem that photovoltaic power generation is always accompanied by
uncertainty and the short-term prediction accuracy of photovoltaic power (PV) is not high,
this paper proposes a method for short-term photovoltaic power forecasting (PPF) and
uncertainty analysis using the fuzzy-c-means (FCM), whale optimization algorithm (WOA),
bi-directional long short-term memory (BILSTM), and no-parametric kernel density
estimation (NPKDE). First, the principal component analysis (PCA) is used to reduce
the dimensionality of the daily feature vector, and then the FCM is used to divide the
weather into four categories: sunny, cloudy, rainy, and extreme weather. Second, the
WOA algorithm is used to train the hyperparameters of BILSTM, and finally, the optimized
hyperparameters were used to construct a WOA-BILSTM prediction model to train the
four types of weather samples after FCM clustering. The NPKDE method was used to
calculate the probability density distribution of PV prediction errors and confidence
intervals for PPF. The RMSEs of the FCM-WOA-BILSTM model are 2.46%, 4.89%,
and 1.14% for sunny, cloudy, and rainy weather types, respectively. The simulation
results of the calculation example show that compared with the BP, LSTM, GRU,
PSO-BILSTM, and FCM-PSO-BP models, the proposed FCM-WOA-BILSTM model
has higher prediction accuracy under various weather types, which verifies the
effectiveness of the method. Moreover, the NPKDE method can accurately describe
the probability density distribution of forecast errors.

Keywords: fuzzy c-means clustering, whale optimization algorithm, BiLSTM, photovoltaic power forecasting,
uncertainty analysis

1 INTRODUCTION

In recent years, the demand for energy has been growing under the rapid economic development.
Solar energy is the main clean energy source, and with gradual maturity of photovoltaic power
generation technology and the increasing need to improve the global energy structure (Fei et al.,
2016; Jin et al., 2021), photovoltaic power generation has been able to develop rapidly. However,
photovoltaic power has strong randomness and volatility, and it is easy to cause a volatile impact on
the power grid when photovoltaic power is connected to the grid, affecting the stable and safe
operation of the power system (Guang et al., 2021), which brings certain difficulties to the dispatch of
the power system, so the accuracy of photovoltaic power generation power prediction is of great
research significance.
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When the inner resolution of photovoltaic power generation is
15 min, it can be divided into ultra-short-term prediction
(15 min–4 h), short-term prediction (4 h–3 days), and medium
and long-term prediction (in months and years). The short-term
photovoltaic probability is the research object of this paper. The
existing PPF is mainly divided into direct method and indirect
method (Changwei et al., 2019), of which the indirect method is
mainly combined with the physical power generation principle of
photovoltaic power plants (Ma et al., 2014; Almonacid et al.,
2014). By establishing a physical model to predict the solar
irradiance received by the ground or the solar irradiance
received on the surface of the photovoltaic panels, and then
predict the photovoltaic power generation power according to the
various parameters of the photovoltaic power station and the
solar irradiation intensity (Jiang et al., 2021). However, due to the
complexity of physical modeling, the numerical weather
forecasting update frequency is low, so the prediction effect of
physical methods in ultra-short-term forecasting is often not
ideal, and it is only suitable for medium-term, long-term, and
short-term forecasting. The direct method relies on historical
data to directly predict the photovoltaic power generation power,
the modeling is relatively simple, and the forecast cost is relatively
low, so it is widely used in the short-term prediction of
photovoltaic power. For a long time, domestic and foreign
scholars have done a lot of research on the short-term
prediction of optical volt power in the direct method to solve
the problems of photovoltaic grid connection to maintain the
stability of the power system. Researchers have successively
proposed support vector machine (SVM) (Mayer and Gróf,
2021), Markov chain (Hu and Zhang, 2018), limit learning
machine (Wang, 2018), artificial neural network (ANN)
(López Gómez et al., 2020), time series prediction and other
methods (Zhu et al., 2019; Singh et al., 2021). Traditional ANN
achieves power prediction by establishing a mapping between
input data and output data, and the lack of consideration of time
correlation in the data series makes it impossible for neural
network models to capture the relationship between data and
time, which limits its application in time series forecasting
methods. Afterward, with the development of artificial
intelligence (AI), the deep learning algorithm model
represented by a recurrent neural network (RNN) (Li et al.,
2019) has been widely used in the field of short-term PV
power prediction. RNN is mainly used to process time-series
data, but it is prone to long-term dependence. Long short-term
memory (LSTM) introduces a gate structure on the basis of RNN
structure, realizes the selective storage function of historical
information, and solves the long-term dependency problem of
RNN. LSTM is widely used in the fields of stock price forecasting,
biomedicine, and power forecasting. Wu et al. (2022) have
developed a cancer risk prediction tool for cancer through
LSTM models, which works best with irregular data by
comparing them with other ML models. These risk prediction
tools are useful to direct subjects to further screening sooner,
resulting in earlier detection of occult tumors. The water demand
point forecasting will encounter uninformative and unreliable
problems when the uncertainty level of data increases. A hybrid
model (KDE-PSO-LSTM), which combines long-short-term

memory networks (LSTM) with kernel density estimation
(KDE) optimized by using the particle swarm optimization
(PSO) algorithm, is proposed by Du et al. (2022) to acquire
the water demand prediction interval (PI) to quantify the likely
uncertainties in the predictions. Experimental results show that
the proposed KDE-PSO-LSTM model generates better
comprehensive performance than other models. Therefore, it
can be demonstrated that the KDE-PSO-LSTM model can
provide reliable decision support to policy-makers for making
the optimal water supply management decision. Wang et al.
(2020) proposed a photovoltaic ultra-short-term power output
prediction method based on long short-term memory (LSTM).
This method can not only mine the spatial and temporal
correlation between the output and related input variables but
has also been greatly developed in the field of complex time series
prediction. This method has good prediction accuracy for the
prediction of large data time series, but the determination of
model parameters is troublesome. If it is directly applied to other
practical prediction problems, the effect may not be very ideal. A
single predictive model tends to have lower prediction accuracy,
with the rapid development of deep learning, the accuracy of
combined predictive models has been significantly improved
compared with single predictive models. In addition, LSTM
has too many internal parameters, and the model training
time is long, which is prone to overfitting. Liu and Liu (2021)
used genetic algorithms (GA) to optimize LSTM models to
improve wind power forecasting. By analyzing the model
prediction results of LSTM-CNN and GA-LSTM-CNN and
comparing them with the actual power, the results show that
the GA-LSTM-CNN prediction model has high accuracy.
Tuerxun et al. (2022) proposed to build an optimized LSTM
based on the modified condor search (MBES) algorithm to
construct an MBES-LSTM model for short-term power
prediction, thereby solving the problem that the choice of
LSTM hyperparameters may affect the prediction results. The
experimental results show that compared with the PSO-RBF,
PSO-SVM, LSTM, PSO-LSTM, and BES-LSTM prediction
models, the MBES-LSTM model can effectively improve the
accuracy of wind farm prediction. Liu et al. (2021) proposed
the dragonfly algorithm to optimize the short-term probability
prediction of LSTM neural network. The dragonfly algorithm is
used to optimize the super parameters of LSTM neural network,
and the LSTM neural network prediction model is established
according to the obtained optimal parameters. Finally, the DA-
LSTM prediction model constructed using the optimum
hyperparameters obtains the prediction results. The simulation
results of the study show that compared with the traditional
prediction model and the LSTMmodel, the DA-LSTMmodel can
effectively make short-term predictions of wind power and has
higher prediction accuracy. These authors mainly use some
traditional optimization algorithms to optimize the parameter
values of LSTM, thereby improving the prediction accuracy of
LSTM. Due to the large number of internal parameters of LSTM,
the long training time of the model, and the tendency to overfit,
the effect of traditional optimization algorithms is not very ideal.
With the development of science and technology, the whale
optimization algorithm (WOA) (Gharehchopogh and
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Gholizadeh, 2019) has been introduced, which has the advantages
of simple structure, fast convergence speed, and high convergence
accuracy, and has been widely used in parameter optimization.
Shang et al. (2020) proposed the use of least squares support
vector machine (SVM), limit learning machine (ELM), and
generalized regression neural network for power load
prediction. In addition, the model uses a heuristic algorithm,
the whale optimization algorithm (WOA), to optimize the weight
coefficients. The proposed model was applied to electricity price
forecasting and compared with the benchmark method.
Experimental results show that the model can not only obtain
accurate results for short-term power load prediction but also has
good accuracy for electricity price prediction in the same period.
However, we have rarely seen studies of optimizing other
algorithms with WOA, especially the study of optimizing
LSTM models with WOA. At the same time, the above
prediction method only considers the one-way data
information flow, ignores the impact of the transformation law
of the reverse data sequence on the short-term prediction, and
insufficient consideration is given to the time correlation and
periodicity of the data. When the input time series is long, the
sequence information is easily lost, and the prediction accuracy of
the model is not high. Xie et al. (2020) used wavelet
decomposition to extract the time domain information and
frequency domain information of the input time series. Then,
considering the bidirectional information flow, a bi-directional
long-short-term memory network (BILSTM) is used for
prediction, and an attention mechanism is introduced to give
different weights to the hidden states of BILSTM by mapping the
weighting and learning parameter matrix so as to selectively
obtain more effective information. Finally, the simulation
verification is carried out using the actual data. Simulation
results show that the proposed BILSTM model has good
predictive performance compared with the LSTM model.
These authors mainly use some optimization algorithms to
optimize the parameter values of neural network model
models, thereby improving the prediction accuracy of the
model. They did not consider the impact of weather clustering
on prediction accuracy nor analyze the uncertainty of
forecasting power.

Accurate analysis of PPF uncertainty is important for
supporting the dispatching of the power grid and reducing the
rotating reserve capacity of power generation equipment (Liu
et al., 2018). The uncertainty analysis of PPF is mainly quantified
by the confidence interval, which is usually described by the
parametric estimation method and the non-parametric
estimation method (Lv et al., 2021). The parameter estimation
method needs to assume in advance that the photovoltaic power
prediction error is a fixed empirical value or assume that the error
distribution is a specific distribution form (Liu et al., 2018), beta
(Von Loeper et al., 2020), gamma (Sun et al., 2020), Laplace
mixture distribution (Elmagbri and Mnatsakanov, 2018), and
Gaussian distribution (Hu et al., 2017). However, due to the
common influence of various physical processes, the output of
photovoltaic power generation is difficult to meet a specific
distribution, and sometimes the assumption of the shape of
the photovoltaic power distribution may be unreasonable, and
the parameter estimation method is difficult to apply. The
functional form and parameters of the non-parametric
estimation method are unknown, and there is no need to
make assumptions about its shape. Therefore, the non-
parametric estimation method can express the true
distribution of random variables better than the parameter
estimation method. It is one of the typical methods of model
estimation. Common nonparametric methods include quantile
regression (Takamatsu et al., 2022), Monte Carlo simulations
(Sugiyama, 2007), and sample entropy (Duan et al., 2021). The
uncertainty factor decomposition and superposition consider all
factors that may lead to forecasting uncertainty, including data
noise (Zhao et al., 2021), NWP error (Yan et al., 2015), and
dispersion of the actual power curve. Although these methods can
accurately calculate confidence intervals, they are time-
consuming and computationally expensive. Therefore, this
paper adopts a non-parametric method to calculate the
distribution of PPF prediction errors.

To sum up, in view of the shortcomings of current
photovoltaic power prediction methods. This paper proposes a
day-ahead PPF and uncertainty analysis method using FCM,
WOA, BILSTM, and NPKDE (FCM-WOA-BILSTM-NPKDE).
Firstly, this paper uses principal component analysis (PCA) to
reduce the dimension of similar daily eigenvectors. Then,
according to the FCM, it selects similar days according to the
weather type and determines the input of the photovoltaic power
prediction model. Secondly, it uses the whale optimization
algorithm to optimize the BILSTM and establishes the
photovoltaic power short-term prediction model of the FCM-
WOA-BILSTM considering the weather type and similar days.
Thirdly, it uses the NPKDE algorithm to calculate the probability
density distribution characteristics of the PPF error and then uses
the probability density distribution characteristics to calculate the
confidence interval and the coverage rate of the confidence
interval. Through the comparative analysis of examples, the
short-term prediction model of photovoltaic power proposed
in this paper has a better prediction effect than BP, LSTM, and
FCM-PSO-BP. The NPKDE method can describe the probability
density distribution of PPF errors more accurately than the
parametric method.

FIGURE 1 | The structure of LSTM-based neuron.
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The innovation of this article lies in the following:

1. FCM is used to cluster weather types into four categories:
sunny, cloudy, rainy, and extreme weather types.

2. The WOA was used to optimize the initial learning rate and
the maximum number of iterations of the BILSTM model.

3. The NPKDE method was used to accurately calculate the
probability density distribution of forecasting error.

4. A comparison of the forecasting accuracy of the BILSTM,
LSTM, GRU, PSO-BILSTM, FCM-BILSTM, BP, PSO-BP, and
FCM-PSO-BP models was calculated.

2 MATERIALS AND METHODS

2.1 PCA Principal Component Analysis
There is a correlation between the various indicators in the daily
feature vector, and the main component analysis is used to reduce
the input parameters. In the case where the information is not
lost, with fewer parameters instead of the original multiple
parameters, the calculation and convergence speed improves.
As a classic data dimensionality reduction method, the main
purpose of PCA (Ge et al., 2020) is “dimensionality reduction,”
and its idea is to convert multiple indicator features into a small
number of comprehensive indicators. Each principal component
can reflect most of the information of the original variable,
discarding redundant information. The PCA method steps are
as follows:

1) Suppose that the raw data has m more features and has n
samples, construct a matrix of m × Xm×n n

Xm×n � ⎡⎢⎢⎢⎢⎢⎣ x11 ... x1n

... ... ...
xm1 ... xmn

⎤⎥⎥⎥⎥⎥⎦ (1)

Normalize Eq. 1 by subtracting the average value of each line
of Xm×n, that is:

Xp � X − �X

δ
(2)

where, �X is the sample mean, δ is the sample variance.

2) Solve for the Xp eigenvalues and eigenvectors of the
covariance matrix. The eigenvalue is [λ1, λ2 ... λn], which
corresponds to a feature vector of [α1, α2 ... αn]。

3) The number of principal components K is given, the
eigenvectors are arranged in rows from top to bottom
according to the corresponding eigenvalues into matrix
Wn×k, and the data reduced to K dimension is obtained.

2.2 Similar Daily Clusters Based on FCM
Conventional clustering methods such as the K-means clustering
algorithm, due to its strong universality and simple principle, are
widely used in the field of clustering, but they only classify
samples simply, and classifying samples is not accurate. The
effect is not good when the sample is not engaged, so in order
to improve the accuracy of the prediction model proposed in this
paper, the FCM (Bian et al., 2020) value based on the membership
degree is used. The clustering method selects similar days, and the
specific selection steps are as follows:

First extract the daily feature vector Xi = [Imi, Ili Ii、 Tmi、

Tli、 Ti、Wmi、Wli Wi], where Imi, Ili and Ii is the maximum,
minimum and average irradiation intensity W/ m2; the Tmi, Tli,
and Ti is the highest, lowest, and average temperature, °C; the
Wmi, Wli and Wi is the maximum, minimum and average wind
speed, m/s. Due to the different daily characteristic vectors and
the data dimensions being too high, they are normalized and
then subject component analysis and dimensionality reduction
are carried out. The low-dimensional data will be obtained for

FIGURE 2 | BILSTM model structure.
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FCM clustering analysis, and the specific steps of FCM are as
follows:

1) Determine the value of the classification number m, the
number of iterations, initialize a membership degree U,

∑n

i�1uij � 1,∀j � 1, ...n (3)

2) Calculate cluster centers ci,

ci �
∑n

j�1u
m
ijd

2
ij∑n

j�1u
m
ij

(4)

3) Membership calculation. uij � 1∑c

k�1 (
dij
dkj

) 2
m−1
, where ci is the

clustering center of the fuzzy group and dij � ||ci − xj|| is
the Euclidean distance between the ith data point and the jth
sample.

4) Calculate the objective function Jm.

J(U, c1, ...cc) � ∑c

i�1Ji � ∑c

i�1∑n

j
um
ijd

2
ij (5)

5) Repeat steps 2–4 until it Jm is less than a certain defined
threshold.

After clustering, 4 cluster centers are obtained, and Euclidean
distance is used to dij describe the similarity between day i and
day j, and the similarity formula is,

dij �














∑n

k�1(xik − xjk)2√
(6)

where the number of eigenvectors is n, and the ordinal number of
eigenvectors is k (k = 1, 2, 3, 4, 5, 6), according to the Euclidean
distance formula to obtain the similarity between the day to be
predicted and each cluster center, select the cluster where the
cluster center with the highest similarity is located as the training
set to train the model. According to the FCM clustering results,
the training set samples were divided into four categories
according to weather type: sunny, cloudy, rainy, and extreme

FIGURE 3 | Optimization process of the WOA-BILSTM model.

FIGURE 4 | FCM-WOA-BILSTM model prediction flow chart.
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weather, and the four types of data were selected to train the
model, which further improved the accuracy of the
prediction model.

3 POWER PREDICTION MODEL

3.1 Analysis of the WOA Algorithm
WOA was proposed by Seyedali Mirjalili in 2016. It has a simple
principle and few parameter settings. It has strong global search
ability in dealing with continuous time series function
optimization.

The WOA has better accuracy and convergence speed than
previous algorithms in spring lifting, parameter, and super
parameter optimization. The WOA simulates the bubble net
predation behavior of whales, and the algorithm designs the
shrinking encirclement mechanism and the spiral update
position to simulate the whale population encirclement,
hunting, attacking prey, and other processes to achieve
optimized search. In WOA, the position of the prey
corresponds to the global optimal solution, and the population
of whale individuals is surrounded by the optimal individual. In
WOA, the position of prey corresponds to the global optimal
solution, and the population of whale individuals is surrounded
by the optimal individual. Initialize the search particles in the

swarm search space.When | a | < 1,WOA performs a local search,
and when | a | > 1,WOA performs the global search. InWOA, the
location of each whale is the feasible solution to be searched. The
specific hunting steps are as follows:

Prey search phase:Whales hunt for the purpose of hunting by
constantly updating their positions when searching for prey.

D � ∣∣∣C ·Xp(t) −X(t)∣∣∣ (7)
X(t + 1) � Xp(t) − A ·D (8)

where t is the current number of iterations, Xp the prey position,
X(t) the current position, and A and C are the coefficient vectors.

A � 2α · r1 − α (9)
C � 2 · r2 (10)

where r1 and r2 is a random vector between [0,1], is the
convergence factor, which α decreases linearly from 2 to 0 as
the number of iterations increases

α � 2 − 2t
tmax

(11)

where tmax is the maximum number of iterations.
The local search phase includes shrinking surrounds and spiral

updates.
Shrink enveloping phase: At this stage α, it gradually

decreases, so the range of A also decreases, and the search
particle can reach any position, updated by Eqs. 12 and 13.

FIGURE 5 | 14 June 2019 (sunny).

FIGURE 6 | 18 July 2019 (cloudy).

FIGURE 7 | 22 June 2019 (rainy).

TABLE 1 | Error index of three models.

Weather type Predictive model RMSE MAE R2

Sunny BILSTM 0.0627 0.0355 0.9372
FCM-BILSTM 0.0272 0.0203 0.9881
FCM-WOA-BILSTM 0.0248 0.0193 0.9903

Cloudy BILSTM 0.1102 0.0557 0.5477
FCM-BILSTM 0.0673 0.0494 0.8326
FCM-WOA-BILSTM 0.0489 0.035 0.9110

Rainy BILSTM 0.0582 0.041 0.6876
FCM-BILSTM 0.0197 0.0129 0.9626
FCM-WOA-BILSTM 0.0116 0.0085 0.9869
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D � ∣∣∣C ·Xp(t) −X(t)∣∣∣ (12)
X(t + 1) � Xp(t) − A ·D (13)

Xp(t) represents the optimal solution so far, X(t) representing
the current position vector.

Spiral hunting stage:

X(t + 1) � D′ · ebl cos(2πl) +Xp(t) (14)
D′ � |C ·Xp(t) −X(t)|, in the formula, the D′ distance

between the optimal solution and the prey is represented, b is
a constant that defines the shape of the logarithmic spiral, and I is
a random number between [-1,1].

Whales hunt by combining the above two methods when
hunting, and the probability p = 0.5 is introduced to determine
the hunting method of whales.

{X(t + 1) � Xp(t) − A ·D p≤ 0.5
D′ · ebl cos(2πl) +Xp(t) p≥ 0.5 (15)

Global search phase:

D � |C ·Xrand −X(t)| (16)
X(t + 1) � Xrand − A ·D (17)

This Xrand is a randomly selected individual whale position
vector in the current population.

3.2 BILSTM Network
LSTM neural networks overcome the problem of a long-term
dependence on RNNs and at the same time can overcome the
problem of “gradient explosion,” which has been widely used in
time series prediction problems, and its structure is shown in
Figure 1.

LSTM is designed from storage cells that store long-term
dependencies. The LSTM cell structure is shown in Figure 1,
in addition to the storage unit, the LSTM cell also contains an
input gate it, an output gate ot and a forget gate ft, the core
computing node (Cell), used to record the state information of the
cell at the current moment.

The unwanted information in the LSTM is identified and
discarded from the cell state through the sigmoid layer defined as
the forgetting gate layer. The gate will read ht−1 and xt output a

value between 0 and 1 for each cell state. 0 means “completely
discarded” and 1 means “completely retained.” Represents the
output of the previous cell, and ht−1 represents the input of the
current cell.

ft � σ(Wf · (ht−1, xt) + bf) (18)
The new information stored in the cell state is determined and

updated by a sigmoid layer called the input gate layer. Next, the
tanh layer creates a new candidate value vector that can be added
to the state.

it � σ(Wi · (ht−1, xt) + bi) (19)
gt � tan h(Wg · (ht−1, xt) + bg) (20)

Update the previous layer of cells ct−1 as ct, the cell state is
updated as follows,

ct � ftpct−1 + itpgt (21)

4) Finalize what values need to be output, this value depends on
my cell state, will run a sigmoid layer to decide which parts of
the cell state will be exported. The cell state is then treated with
tan h (giving a value between [-1,1]) and multiplied it by the
output of the sigmoid to get the part we determine the output.

ot � σ(Wo · (ht−1, xt) + bo) (22)
ht � otp tan h(ct) (23)

One-way LSTM models use previous information to predict
subsequent information, while BILSTM can comprehensively
learn both forward and backward time-related information to
improve prediction accuracy. In PV power forecasting,
considering that information about the past and the future in
PV power time series data can play an important role at the same
time, we also used BILSTM for simulation experiments to
compare with LSTM. BILSTM models include both the
forward LSTM layer and the backward LSTM layer. In the
forward cell unit, the sequential input layer is the data,
obtaining the first set of state output {h1, h2..., hk}, in the
reverse cell unit, the data of the input layer is entered in
reverse order to obtain the second set of state output
{hk, hk−1..., h1}, the two sets of states are imported Spliced into
[h1, h1][h2, h2], ..., [hk, hk], and finally xt gets the input

FIGURE 8 | 14 June 2019 (sunny).

FIGURE 9 | 18 July 2019 (cloudy).
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corresponding to the state output is Ht � [ht, ht]. The structure
diagram of BILSTM is shown in Figure 2.

3.3 WOA-BILSTM Model
The prediction accuracy of the BILSTM model is mainly affected
by the learning rate and the maximum number of iterations.
However, the manual selection of the learning rate and the
maximum number of iterations is a huge workload and it is
difficult to find the optimal parameters, resulting in poor
prediction accuracy. Therefore, using WOA to optimize the
learning rate and the maximum number of iterations of
BILSTM, the combined WOA-BILSTM model is obtained as
shown in Figure 3.

4 PHOTOVOLTAIC OUTPUT POWER
PREDICTION MODEL
4.1 PPF Model Based on
FCM-WOA-BILSTM
Based on the theory of appeal, this paper constructs the PPF
model of FCM-WOA-BILSTM and its prediction flow Figure 4,
the whale optimization algorithm has good optimization ability,
excellent global convergence effect, and fast convergence speed.
Since the learning rate and the maximum number of iterations
are determined in the BILSTM training, it is often necessary to

select human experience in order to avoid the difference in
human experience affecting the prediction effect of the
BILSTM model. In this paper, the whale optimization
algorithm is proposed to optimize the learning rate and the
maximum number of iterations of the model.

In the actual forecasting process, we will first read the
corresponding data set from the SCADA system, and due to
the existence of “garbage data” in a large number of light-voltage
datasets, the data will first be cleansed, including the interpolation
and rejection of missing and outlier values. The modeling
steps are:

Step 1. Data processing of raw photovoltaic power data,
including the filling of missing values and the treatment of
outliers, excluding “garbage data” that is inconsistent with
actual production, and then normalizing the data due to the
different dimensions of each variable.
Step 2. The daily maximum, minimum, and average
irradiation intensity; the maximum, minimum, and average
temperature; and the maximum, minimum, and average wind
speed are taken as the feature vectors reflecting the daily.
Step 3. The dimension of the data obtained in step 2 is reduced
by PCA, the main factors affecting the photovoltaic output are
selected by the PCA algorithm, and the dimension of the
original high-dimensional data is reduced to facilitate the
visualization of two-dimensional data.
Step 4. The data reflecting the daily eigenvectors after
dimensionality reduction are clustered by FCM, and the
daily eigenvector data set is divided into four categories
according to the weather type: sunny, cloudy, rainy, and
extreme weather divide each type of data sample that is
well clustered into training sets and test sets.
Step 5. Initialize the dimensions, number of iterations, and
population number of WOA. The range of values for
parameters that determine the learning rate and the
maximum number of iterations.
Step 6. Bring the divided four sets of training sets to theWOA-
BILSTM model for training, and take the root mean square
error between the predicted value of the photovoltaic power
and the actual value of the model as theWOA the fitness value,
calculating the corresponding fitness of each population, using
the smallest fitness value as the optimization result, comparing

FIGURE 10 | 22 June 2019 (rainy).
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it with the globally optimal result, updating the optimal
population location as well as the minimum fitness value.
Step 7. Start iterating, using the WOA algorithm to update the
two parameters corresponding to the population, repeat step 7
and 8 until the iteration is complete. Outputs the learning rate
and the maximum number of iterations corresponding to the
final optimal result for each model.
Step 8. By calculating the European-style clustering of the day
to be predicted and the center of clustering, the weather type of
the day to be predicted is determined, and the corresponding
model is substituted to obtain the corresponding photovoltaic
forecast power, RMSE, and MAE.

The flow of FCM-WOA-BILSTM photovoltaic power
prediction model is shown in Figure 4.

4.2 Error Evaluation Index
In order to better compare the prediction effects of each model,
three error evaluation criteria including mean absolute error
(MAE), root mean square error (RMSE), and determining
coefficient (R2) are used to analyze the feasibility and effectiveness.

RMSE �












∑N

t�1(Pact
t −Ppre

t )2
N

√
Ptotal

(24)

MAE � ∑N
t�1
∣∣∣∣(Pact

t − Ppre
t )∣∣∣∣

Ptotal × N
(25)

R2 � 1 − ∑N
t�1(Pact

t − Ppre
t )2∑N

t�1(Pact
t − Pave

t )2 (26)

Pact
t is the actual measured value of the output power of the

photovoltaic power station at time t (MW); Ppre
t is the predicted

value of output power (MW) of a photovoltaic power station at
time t; Ptotal is the installed capacity of the photovoltaic power
station (130 MW); Pave

t is the average value of actual power; Is n is
the total number of samples.

5 Case Analysis
For the historical data of a 130 MW installed capacity
photovoltaic power station in 2019, the sampling interval is
15 min. Using BP, GRU, LSTM, BILSTM, PSO-BILSTM,
FCM-PSO-BP, and FCM-WOA-LSTM models for short-term
PPF, the error of the prediction result is compared and analyzed
from various angles.

5.1 Experimental Data Preprocessing
The data cleaning of the sampling data of photovoltaic power
generation are carried out. Firstly, the abnormal data with the
photovoltaic output of 0 and the irradiation intensity of 0 are
eliminated. The key research time is 07:30–17:30, and the
sampling interval is 15 min. Due to the small difference
between sunrise and sunset every day, there are about 40
strongholds every day, and the missing values are
supplemented by interpolation, then the box bitmap is used to
eliminate the abnormal data. Each group of data includes four
environmental data variables: total irradiation intensity, air
temperature, air pressure, and relative humidity from 07:30 to
17:30 every day, as well as photovoltaic power data. Finally,
15,770 groups of experimental data are obtained. In order to
eliminate the noise in the time series data and reduce the
complexity of the data, the input of the acquired time-series
data is subject to component analysis to obtain two-dimensional
data with strong representativeness. The data samples were
clustered by FCM to classify the samples into four categories:
sunny, cloudy, rainy, and extreme weather.

5.2 Short-Term PV Power Forecast Based
on Similar Days of FCM-WOA-LSTM
Based on similar daily clustering, combined with the WOA-
BILSTM neural network, this paper establishes a short-term
prediction model of FCM-WOA-LSTM photovoltaic output
power, and the main implementation steps are as follows:

TABLE 2 | Error index of four models.

Weather type Predictive model RMSE MAE R2

Sunny BP 0.0297 0.0229 0.9859
FCM-PSO-BP 0.0248 0.0203 0.9903
LSTM 0.0306 0.022 0.9851
GRU 0.028 0.0182 0.9876
PSO-BILSTM 0.0317 0.0232 0.9840
FCM-WOA-BILSTM 0.0246 0.0183 0.9903

Cloudy BP 0.0501 0.0331 0.9065
FCM-PSO-BP 0.0516 0.0362 0.9007
LSTM 0.061 0.043 0.8617
GRU 0.0932 0.0787 0.6793
PSO-BILSTM 0.0536 0.0391 0.8856
FCM-WOA-BILSTM 0.0489 0.035 0.9110

rainy BP 0.0194 0.0138 0.964
FCM-PSO-BP 0.0116 0.0085 0.9869
LSTM 0.0178 0.0132 0.9698
GRU 0.0268 0.0180 0.9312
PSO-BILSTM 0.0170 0.0134 0.9697
FCM-WOA-BILSTM 0.0114 0.0078 0.9874

TABLE 3 | Reference values of the evaluation level.

Level Posterior
difference ratio C

Small
error probability P

excellent C ≤ 0.35 p ≥ 0.95
good 0.35 ≤ C ≤ 0.50 p ≤ 0.95
qualified 0.50 ≤ C ≤ 0.65 p ≤ 0.80
Failed C > 0.65 p < 0.70

TABLE 4 | Results of the evaluation level.

Weather type Posterior
difference ratio C

Small
error probability P

Level

Sunny 0.056 1 excellent
Cloudy 0.230 0.967 excellent
rainy 0.164 1 excellent
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Determine the basic structure of the BILSTM neural network,
determine the inputs and outputs of the training samples, and the
structural parameters and hyperparameters of the neural
network, and use the initial learning rate and the maximum
number of iterations of the BILSTMneural network as particles in
the WOA algorithm. The WOA optimizes the hyperparameters
of the BILSTM network to establish a preliminaryWOA-BILSTM
basic model.

The forecast day in the test set is randomly selected, and the
daily feature vector corresponding to the selected forecast day is
determined. The weather type of the forecast day is determined
through the Euclidean Distance measurement between the
forecast day and each cluster center. The samples in the
weather type category of the forecast day are extracted and
brought into the WOA-BILSTM model for training. After
meeting the conditions, the training is ended and the model is
established.

In order to verify the effectiveness of the proposed FCM and
WOA in improving the accuracy of short-term photovoltaic
power prediction of the basic model of bidirectional long-term
and short-term memory network. Take 14 June 2019 (sunny), 18
July 2019 (cloudy), and 22 June 2019 (rainy) as the forecast days,
and verify them through three models: BILSTM, FCM-BILSTM,
and FCM-WOA-BILSTM. The prediction results for 14 June

2019 (sunny), 18 July 2019 (cloudy), and 22 June 2019 (rainy) are
shown in Figures 5–7, respectively.

It can be seen from Figure 5 that under the condition of sunny
weather, the power fluctuation range is small, and the prediction
error of BILSTM basic model in the initial stage of sampling on that
day is too large. After adding FCM clustering algorithm, the
prediction error of FCM-BILSTM in the initial sampling stage of
the day is relatively improved. On this basis, the prediction error of
FCM-WOA-BILSTM model after introducing the WOA algorithm
is significantly reduced in the initial sampling stage of the day.

As can be seen from Figure 6, in cloudy weather, the power
fluctuation is relatively large, and there are large errors in the
basic BILSTMmodel at each prediction time of the day, especially
in the initial stage of sampling on the day. FCM- BILSTM has
significantly improved the prediction of the initial sampling stage
of the day compared with BILSTM, but there is still a large error
between the prediction data of the whole day and the actual
sampling data. The prediction results of FCM-WOA-BILSTM
model perform well in the initial sampling stage of the day, and
the prediction data accuracy of the sampling points within the
whole day (with large fluctuation at the 16th sampling point) is
very high.

It can be seen from Figure 7 that under rainy weather
conditions, BILSTM model has the same problem of low

FIGURE 11 | Probability density distribution of PPF.
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accuracy in the initial stage of sampling on that day, and the
prediction error is generally large for the whole day. Compared
with BILSTM model, FCM- BILSTM model has improved the
prediction accuracy, and FCM-WOA-BILSTM model has
significantly improved the prediction effect and high accuracy
at each sampling point. Combined with the prediction curves of
various models under various weather types, it can be seen that
FCM-WOA-BILSTM model has significantly improved the
prediction accuracy of BILSTM basic model, with small error
fluctuation and good prediction effect.

Table 1 shows the underlying BILSTMmodel selected and the
introduction of FCM and WOA Schematic diagram of the
algorithm’s FCM-BILSTM and FCM-WOA-BILSTM models
predicting performance in various weather types.

As can be seen from Table 1, on sunny days, the RMSE of the
BILSTM, FCM-BILSTM, and FCM-WOA-BILSTM models are
0.0627, 0.0272, and 0.0248, respectively, and the MAEs are
0.0355, 0.0203, and 0.0193, respectively. It shows that the
prediction accuracy of each model is higher under the sunny
weather type. The introduction of the FCM algorithm on the
BILSTM model reduces the RMSE by 0.0355 and the MAE by
0.0152 on the basis of the original high accuracy, demonstrating
the effectiveness of the intervention of the FCM algorithm for
photovoltaic power prediction. Introducing WOA on the basis of
FCM-BILSTM, its RMSE and MAE are further reduced, which

effectively proves the practicability of WOA in optimizing
BILSTM hyperparameters under sunny days. At the same
time, on a sunny day, the R2 of BILSTM was as high as
0.9372 and increased to 0.9881 after the introduction of FCM.
On the basis of FCM-BILSTM, the WOA algorithm was added to
optimize the hyperparameters of BILSTM, and R2 was further
increased to 0.9903. It can effectively improve the stability of
photovoltaic power prediction. In cloudy conditions, the RMSE
of BILSTM, FCM-BILSTM, and FCM-WOA-BILSTMmodels are
0.1102, 0.0673, and 0.0489, respectively, and the MAE are 0.0557,
0.0494, and 0.035, respectively, indicating that in cloudy weather
with relatively large power fluctuations, the FCM and the WOA
algorithm greatly improve the accuracy of the prediction model.
Compared with the BILSTM model, the FCM-WOA-BILSTM
reduces the RMSE by 0.0613 and the MAE by 0.0207,
demonstrating that the FCM and WOA algorithms can
effectively improve the prediction accuracy of the BILSTM
model in rainy weather. After the introduction of FCM and
WOA, its R2 increased from 0.5477 to 0.9110, which proved that
FCM and WOA algorithms can effectively improve the stability
of photovoltaic power prediction in rainy conditions.

In the rainy season, the RMSE of the BILSTM、FCM-
BILSTM, and FCM-WOA-BILSTM models are 0.0582, 0.0197,
and 0.0116, respectively, and the MAE are 0.041, 0.0129, and
0.0085, respectively. It can be seen that on rainy days with large

FIGURE 12 | 97.5% Confidence interval of PPF under different climatic conditions.
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power fluctuations, compared with BILSTM, FCM-BILSTM
reduces RMSE by 0.0385 and MAE by 0.0281, indicating that
FCM is effective in improving photovoltaic power prediction
accuracy on rainy days, while FCM-WOA-BILSTM compared
with the FCM-BILSTMmodel, the RMSE and MAE of the model
are further reduced, which proves the feasibility of WOA to
optimize BILSTM on rainy days. The R2 of FCM-BILSTM and
FCM-WOA-BILSTM are 0.9626 and 0.9869, respectively,
demonstrating that FCM and WOA algorithms can effectively
improve the stability of photovoltaic power prediction on
rainy days.

To sum up, under various weather types, bothWOA and FCM
algorithms can effectively improve the accuracy and stability of
photovoltaic short-term power prediction.

In order to further verify the universality and superiority of the
short-term photovoltaic power prediction model proposed in this
paper, the prediction performance of the FCM-WOA-BILSTM
model and other neural networkmodels is compared to the sunny
weather with small power fluctuations and the cloudy and rainy
weather with large power fluctuations. Figures 8–10 show the
power prediction curve of each model under different weather
types, and Table 2 shows the RMSE, MAE, and R2, each model
under various weather types comparison results of the three
evaluation indicators.

As can be seen from Figures 8–10, the FCM-WOA-BILSTM
model proposed in this paper has high prediction accuracy and

good performance in various weather types. On sunny days when
the output power is relatively stable, the energy concentration of
each model predicts the power output situation better.

It can be seen from Table 2 that its RMSE is below 0.031 and
the R2 above 0.985. Compared with FCM-PSO-BP model with
high prediction accuracy, the model proposed in this paper is
basically the same in RMSE and R2, but has an improvement of
0.002 in Mae, indicating that the prediction effect of this model is
better under the condition of high accuracy. When the output
power fluctuates greatly (on cloudy and rainy days), there is a
certain deviation between the prediction curve of each model and
the real power curve, and the prediction effect is lower than that
on sunny days. The prediction effect of LSTM model and BP
model is poor.

FCM-PSO-BPmodel and themodel proposed in this paper are
very stable in various evaluation indexes, in which FCM-
WOALSTM remains above 0.91 in R2. The cloudy world is as
high as 0.9869, and the robustness of the model has been at a high
level. It can be seen from the figure that under the sunny weather
type, the prediction effect of each model is better than that of the
cloudy and rainy weather types, and the prediction error of the
FCM-WOA-LSTM model proposed in this paper is smaller than
that of other models. The above results show that the FCM-
WOA-LSTM model prediction has higher prediction accuracy
and can better generate electricity for optical volts under different
weather types.

FIGURE 13 | 95% Confidence interval of PPF under different climatic conditions.
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5.3 Posterior-Variance Test
Set the actual value of the t-moment to be Pact

t and the predicted
value to Ppre

t , �Pact is the average value of the actual value of the test
set power, e(t) is the residual error at time t, and its average value is �e:

�Pact � 1
n
∑n
t�1
Pact
t (27)

e(t) � Pact
t − Ppre

t (28)
�e � 1

n
∑n
t�1
e(t) (29)

Suppose the variance of the original data is the square of S1, the
variance of the residual is the square of S2, then:

S21 �
1
n
∑n
t�1
(Pact

t − �Pact)2 (30)

S22 �
1
n
∑n
t�1
(e(t) − �e)2 (31)

The posterior difference ratio C = S2
S1
, the small error frequency

P � P{e(t) − �e|≤ 0.6745S1} , and the indicators C and P can be
used to test the prediction and fitting effect of the model. For
prediction with good generalization ability, the index C must be

very small, because the value of C is small, indicating that S1 is
large and S2 is small, S1 is large, indicating that the observed data
has a large dispersion, and the original data has poor regularity,
and S2 is small, indicating that the dispersion of the prediction
error is small, and the swing range of the prediction error is small.
Small error probability P, the larger the p value, the more points
where the difference between the residual and the mean value of
the residual is less than 0.6745 S1, indicating that the residual is
relatively close and the prediction fitting effect is good. According
to the P and C values, the model prediction accuracy is divided
into four categories (Table 3).

The posterior difference method was used to test the FCM-
WOA-BILSTM model, and the accuracy of the model was tested
with the prediction results of three different weather types, and
the test results were obtained in Table 4.

It can be seen from Table 4 that on 14 June 2019 (Sunny), the
posterior difference ratio C = 0.056 is obtained, and the small
error probability P = 1, so the prediction accuracy level on sunny
days is excellent. On 18 July 2019 (Cloudy), the posterior
difference ratio C = 0.230 and the small error probability p =
0.967 were obtained, so the prediction accuracy level in cloudy
was excellent. On 22 June 2019 (rainy), the posterior difference
ratio C = 0.164 was obtained, and the small error probability P =
1, so the prediction accuracy level in rainy was excellent.

FIGURE 14 | 90% Confidence interval of PPF under different climatic conditions.
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Through the post-error test of the power prediction results
under different weather types, it can be seen that the prediction
accuracy grades are excellent, which further verifies the
universality of the FCM-WOA-BILSTM model under various
weather types.

6 UNCERTAINTY ANALYSIS OF PPF

6.1 Non-Parametric Kernel Density
Estimation
Accurate uncertainty analysis of photovoltaic power prediction is
of great significance for grid scheduling. In the uncertainty
analysis of this study, NPKDE and confidence intervals were

used to reflect the error distribution of the PPF. NKPDE is
different from PDE in that it does not need to know the data
distribution in advance, and it is more practical. In this study, the
Gaussian kernel function is selected as the kernel function of
NPKDE.

6.2 Calculation Analysis
6.2.1 Probability Density Estimation of PPF Error
Determining the probability density distribution characteristics
of the error is the premise of using the confidence interval to
calculate the distribution range of the actual value of photovoltaic
power. The NPKDE method in Section was used to calculate the
probability density distribution of sunny, cloudy, and rainy.
Figure 11 is the probability density distribution of PPF.

As shown in Figure 11, the histogram represents the
distribution of the PPF error, the yellow dotted line is the
probability density distribution of the PPF error obtained by
the parameter estimation method, and the black solid line
represents the probability density distribution of the PPF error
obtained by the NPKDE method. The figure shows that,
compared with the parameter estimation method, the
probability density curve obtained by the NPKDE method can
more accurately describe the distribution characteristics of the
PPF error.

FIGURE 15 | 85% Confidence interval of PPF under different climatic conditions.

TABLE 5 | Coverage rate of confidence interval.

Weather type Confidence level (%)

97.5 95 (%) 90 (%) 85 (%)

14 June 2019 (sunny) 100 100 94.55 91.02
18 July 2019 (cloudy) 98.15 94.4 92.59 87.04
22 June 2019 (rainy) 100 100 96 92.31
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After the probability density distribution of the PPF error was
obtained, the uncertainty distribution of the PPF was quantified
using confidence intervals. Figures 12–15 shows the distribution
of confidence intervals at 97.5%, 95%, 90%, and 85% confidence
levels for different weather conditions of the FCM-WOA-
BILSTM prediction model. In Figures 12–15, the solid yellow
line represents the PV power forecast value obtained by the
FCMWOA-BILSTM method, and the solid black line
represents the actual PV power.

The results show that under different weather conditions, a small
part of the actual value of photovoltaic power is not within the
confidence interval due to other potential factors, including NWP
error, photovoltaic power plant failure, and shutdown.However, most
actual values of photovoltaic power are still within the confidence
interval with a probability greater than the confidence level.

Table 5 shows the coverage of PPF confidence intervals based
on the FCM-WOA-BILSTM model under different
meteorological conditions. The coverage of the PPF confidence
interval is above the confidence level. This confirms that using the
NPKDE method to quantify the confidence interval can
accurately describe the distribution range of the actual power
output of photovoltaic power generation.

Uncertainty analysis of PPF is an important strategy to
promote photovoltaic power consumption and improve grid
stability. Based on the photovoltaic power generation of the
FCM-WOA-BILSTM model, this study proposes to use
NPKDE to quantify the power error distribution. It can be
seen from the interval coverage (PCIP) table that the NPKDE
algorithm can accurately calculate the FCM-WOA-BILSTM
model. prediction error distribution.

7 CONCLUSION

Aiming at the problem that the accuracy and universality of
photovoltaic power short-term prediction models under different
weather types are difficult to balance, this paper proposes an
optimized neural network hybrid model combined with similar
daily clustering. To accurately calculate the probability density
distribution of forecasting error, the NPKDE method is used to
calculate the probability density distribution characteristics of
forecasting error, and the confidence interval and coverage rate of
day-ahead PPF. The key findings are as follows:

(1) The prediction effect of BILSTM model under different
weather types is different. In this paper, the FCM
algorithm based on similar days is used to cluster
photovoltaic historical data, and four types of similar-day
sample sets are obtained. It is proved that using the FCM
algorithm to classify weather can effectively improve the
prediction accuracy of the model.

(2) The WOA is used to optimize the hyperparameters of the
bidirectional long-short-time memory network and,
compared with the optimization algorithms such as PSO
and GA, the WOA algorithm has stronger optimization
performance. Compared with a single BILSTM model, the
prediction effect is significantly improved.

(3) Under different weather types, the RMSE andMAE are lower
than other models in the paper, which proves that the
prediction accuracy of the FCM-WOA-BILSTM model is
relatively high, and R2. It is above 0.985 on sunny and cloudy
days, reflecting the high prediction stability of the model.

(4) The NPKDE method is found to describe the probability
density distribution characteristics of the PPF error with
greater relative accuracy compared to the parametric method.

The combinatorial model proposed in this paper is more
complex and cannot take into account the predicted accuracy
and prediction speed. Future studies could fruitfully explore this
issue further by reducing the loops of the program and changing
it to vector operations and through improvements to
optimization algorithms. Strive to achieve the highest possible
speed of calculation without losing the accuracy of prediction.
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