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Normal power line insulators ensure the safe transmission of electricity. The defects of
the insulator reduce the insulation, which may lead to the failure of power transmission
systems. As unmanned aerial vehicles (UAVs) have developed rapidly, it is possible for
workers to take and upload aerial images of insulators. Proposing a technology to detect
insulator defects with high accuracy in a short time can be of great value. The existing
methods suffer from complex backgrounds so that they have to locate and extract the
insulators at first. Some of them make detection relative to some specific conditions such
as angle, brightness, and object scale. This study aims to make end-to-end detections
using aerial images of insulators, giving the locations of insulators and defects at the same
time while overcoming the disadvantages mentioned above. A DEtection TRansformer
(DETR) having an encoder–decoder architecture adopts convolutional neural network
(CNN) as the backbone network, applies a self-attention mechanism for computing, and
utilizes object queries instead of a hand-crafted process to give the direct predictions.
We modified this for insulator detection in complex aerial images. Based on the dataset
we constructed, our model can get 97.97 in mean average precision when setting the
threshold of intersection over union at 0.5, which is better than Cascade R-CNN and
YOLOv5. The inference speed of our model can reach 25 frames per second, which
is qualified for actual use. Experimental results demonstrate that our model meets the
robustness and accuracy requirements for insulator defect detection.

Keywords: insulator defect, object detection, DETR, deep learning, aerial image

1 INTRODUCTION

Insulators play an important role in the electric transmission line system since they provide
insulation and hold electric transmission lines mechanically. These components assist transmission
lines which transmit a quantity of high-quality electrical power to the users. Insulators are subjected
to large mechanical tension and extremely high voltage with a long time of exposure outdoors.
The working environment can lead to some defects of insulators which are direct threats to the
stability and safety of transmission lines (Park et al., 2017; Tao et al., 2018; Zhai et al., 2018). Hence,
considering the importance of insulators and the danger caused by insulator defects, efficient
detection of insulator defects can be practical and significant.

To figure out how to detect insulator defects, it is essential to understand the main types of
insulators and defects. Insulators can be divided into glass insulators, porcelain insulators, and
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composite insulators according to the material type. Among
them, the porcelain insulator is the most common one. Defects
such as dirty, crack, and burst often occur during the daily
running process. Among them, burst results in caps missing,
which is why burst defects can be the most dangerous defects.
Also, when a crack occurs, the glass insulator is designed to burst
so that it can be easily detected. The harm to the power system
brought by these defects can be concluded into one: the rated
insulation level of the insulator decreases. As a result, reclosing
devices of transmission lines fail to coincide, causing permanent
fault of transmission lines and seriously threatening the safety and
stability of the power grid. Considering the problems mentioned
above, it is reasonable for us to design a capable network to detect
burst defects occurring in the porcelain insulator.

Power transmission systems transfer electric energy over a
long distance and stretch over mountains and rivers where
workers have difficulty getting a close view of transmission
lines. In this case, aerial inspection platforms are available to
get pictures of electrical equipment from a short distance at
different angles. The high efficiency and safety provided by aerial
inspection platforms used in the task of visually inspecting
power transmission systems have been proven in many studies
(Wang et al., 2010; Luque-Vega et al., 2014). As unmanned aerial
vehicles (UAVs) have developed rapidly nowadays, they have
been equipped with a larger battery, stabler gimbal, and high-
definition camera. Compared with helicopters, UAVs can obtain
images which have the same or even better performance in
the subsequent work, while having a lower cost and more
convenient experience. A study by Takaya et al. (2019) presents
a UAV system designed for autonomous inspection of electrical
transmission lines. Wang et al. (2022) gives a review of UAV
power line inspection.

The background of images taken by UAVs can be quite
complicated, which may result in false detections. In order to
reduce the disadvantageous impact of this issue, former studies
usually locate insulators at first and detect defects based on the
results of the first step. Traditional computer vision methods
principally finish the task of location through Histogram of
Oriented Gradient (HOG) features and Support Vector Machine
(SVM) classifiers (Zhao et al., 2016; Zuo et al., 2017). These
traditional methods have problems such as high computational
costs and tight requirements of images. With the development
of a deep learning network, quite a few efficient methods have
been proposed to locate defects of insulators. Hu et al. (2019)
and Zhao et al. (2019) located insulators using Fast RCNN and
Faster RCNN. Wu et al., 2019 used improving YOLOv3 as a
location method. Xia et al. (2022) and Qiu et al. (2022) show
the possibility of using CenterNet and YOLOv4 in this task.
Compared to traditional methods, a deep learning network can
accomplish tasks faster and more accurately according to these
works mentioned above.

Throughout the development of insulator defect detection
methods, there is no study that uses a transformer as a
backbone network. This study aims to bring a transformer,
which makes big success in Natural Language Processing (NLP)
tasks, to this specific task. When it comes to object detection,
Carion et al. (2020) developed aDEtectionTRansformer (DETR)

that showed a significant performance on the challenging
Common Objects in Context (COCO) dataset. Moreover, this
approach can get rid of many hand-designed components like
a Non-Maximum Suppression (NMS) procedure or anchor
generation. It achieves better performance on large objects
than a faster region-based convolutional neural network (Faster
R-CNN). The better performance than the state-of-art CNN
backbone network shows great potential in object detection tasks
or insulator defect detection more specifically.

The main contributions of this study are as follows.

1) As far as we know, we are the first to introduce a transformer
structure in the insulator defect detection task. The final results
show that the self-attention mechanism and encoder–decoder
structure have great potential in computer vision tasks.

2) While former studies have a complicated detection pipeline,
DETR is a true end-to-end approach which directly outputs the
final set of predictions containing not only bounding boxes but
also object classes due to parallel decoding.

3) The public insulator dataset is small in number and single in
insulator category; hence, we triple the number of images by
data augmentation and adding other types so that the model is
less likely overfitting and the result is more convictive.

The rest of this study is organized as follows: Section 2
briefly discusses related works of insulator defect detection and
Transformer. Section 3 presents the method we used and details
of our model. The settings and results of our experiment are
shown in Section 4. Eventually, we come to a conclusion in
Section 5.

2 RELATED WORK

In this section, we have a review of former works on insulator
defect detection. Since the method we proposed is based on deep
learning, only deep learning frameworks are reviewed. After that,
a brief introduction of Transformer, which is proposed in NLP
originally, is presented.

2.1 Insulator Defect Detection
With computers developing at top speed in the past decade,
deep neural networks, such as convolutional neural networks
(CNNs), requiring a high calculation power, can be realized and
put into use. As for object detection networks, there are two
main categories: one-stage networks and two-stage networks.
It is necessary to do research on these two categories. In the
work of Zhao et al. (2016), CNN is applied to extract features
of insulators; then they adopt Support Vector Machine (SVM)
to give results based on these features. This method does not
carry through deep learning and suffers from the problem
that different sizes of insulators affect feature extraction. To
overcome the disadvantage brought by traditional vision-based
methods, CNN is applied in the second step called Defect
Detector (Tao et al., 2018). The cascading architecture used in
that study transforms defect detection into a two-level object
detection, which can improve precision effectively. Nevertheless,
it costs a long time to give the final result. One-stage object
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detection methods such as You Only See Once (YOLO) are also
applied in the same task. YOLOv2 has already been used to
detect insulators, and it can output in an average time of 0.04 s,
while the accuracy only reaches 88% (Sadykova et al., 2019).
In the work of Liu et al. (2021), a YOLO-based model called
MTI-YOLO is trained to detect insulators in real time. The
result shows that it only takes 6.44 ms to output. A high
processing speed makes it possible to handle 155 frames per
second, so it can process videos taken by UAV, which is usually
24 or 30 frames per second. As a side effect of high speed,
the precision of 95% is not as high as that of the two-stage
methods.

In summary, the performance that the latest CNN-based
models achieve shows the possibility to meet the practical needs
of insulator defect detection. As mentioned above, two-stage
networks can achieve high precision and recall rates benefited
from the two separated steps. At the same time, this structure
causes a problem that it is difficult to train and costs much
more time to process an image than one-stage networks. The
processes of two-stage networks have a common issue, which is
that they extract features of images at first and train a classifier
to classify boxes acquired in the first step. This makes it more
like a classification task rather than an object detection task. In
contrast, one-stage networks can achieve real time since these
models process an image within 10 ms. However, they have a
disadvantage, which is low accuracy. Considering the advantages
and disadvantages existing in both networks, this work prefers
one-stage networks because of the simple training and real time.
Hence, low accuracy is the most urgent problem to work out.The
CNN backbone used in the latest one-stage networks still shows

weakness. To achieve a better performance, the CNN backbone
should be replaced with a more advanced backbone.

2.2 Transformer
With the advent of Vaswani et al. (2017), attention models are
widely used in NLP, automatic speech recognition (ASR),
computer vision (CV), and so on. Since most competitive
neural sequence transduction models have an encoder–decoder
structure, the Transformer follows this overall architecture.
Inputs of Transformer are embedded into a sequence. After
adding positional encoding, input embedding is imported into
the encoder. The correlation among inputs is calculated. As for
the decoder, it is designed to output an element corresponding
to the relation of inputs since Transformer is applied in machine
translation.

With the big success of Transfomer, models based on
Transformer are proposed for many other tasks such as object
detection (Carion et al., 2020) and medical image segmentation
(Chen et al., 2021). To the best of our knowledge, we are the first
to bring a transformer-based network into the task of insulator
defect detection.

3 PROPOSED METHOD

For the purpose of detecting insulators and defects if any in aerial
images with a complex background, the method proposed here
aims to give a prediction bounding box fast and accurately. In
Figure 1, we show the whole pipeline of detection. To begin with,
the image is fed into a CNN backbone to generate a set of image

FIGURE 1 | DETR—model architecture.
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FIGURE 2 | Architecture of the backbone.

features. After that, features along with positional encoding are
passed into the transformer encoder. The transformer decoder
takes as input a number of embeddings called object queries.
The output of the encoder is added during the computation of
the decoder to generate the same number of embeddings. In the
end, each output embedding of the decoder can be computed by
a prediction feed-forward network (FFN) to give every box with
the corresponding class. In a special class, “no object” stands for
the meaning that nothing is detected in this box.

3.1 Backbone
DETR starts from inputting images ximg ∈ ℝ

3×H0×W0 where 3
denotes three color channels and H0 and W0 denote the height
and weight of input image, respectively. Significantly, images are
batched, and zero-padding is applied to ensure that inputs have
the same dimensions (H0, W0) as the largest one in the batch. A
CNN, for example, Residual Network (ResNet), generates set of
image features which is also called a featuremap f ∈ ℝC×H×W after
image convolving, where C = 2048 andH,W = H0

32
, W0

32
. After that,

1 × 1 convolutions are used to reduce C from 2048 to 256 but not
change map dimensions. A new feature map z0 ∈ ℝd×H×W , where
d = 256, is generated so that it can be handled in the following
processes. Figure 2 shows the architecture of the backbone, and
the dimension of the vector in every step is shown as well.

3.2 Positional Encoding
Since the self-attention layer in the encoder and decoder cannot
capture the absolute position of the sequence inputted, it is
necessary to inject additional information to input embeddings.
The process of adding extra infromation is positional encoding.
In the original work of Transformer (Vaswani et al., 2017), sine
and cosine functions of different frequencies are used:

PE(pos,2i) = sin(pos/10000
2i/dmodel)

PE(pos,2i+1) = cos (pos/10000
2i/dmodel)

(1)

where dmodel equals d in the feature map z0, pos denotes the
position in sequence and pos ∈ [1,HW], i denotes the dimension,

FIGURE 3 | Add positional encoding to the feature map.

and i ∈ [0,dmodel/2). With the help of sine and cosine functions,

sin (α + β) = sin⁡α ⋅ cos ⁡β+ cos ⁡α ⋅ sin⁡β
cos (α + β) = cos ⁡α ⋅ cos ⁡β− sin⁡α ⋅ sin⁡β

(2)

the relative position relationship between token pos and pos+ k
can be calculated by

PE(pos+k,2i) = PE(pos,2i) × PE(k,2i+1) + PE(pos,2i+1) × PE(k,2i)
PE(pos+k,2i+1) = PE(pos,2i+1) × PE(k,2i+1) − PE(pos,2i) × PE(k,2i)

(3)

The reason why the relative position of tokens is considered is
that objects in the image have their own positions. It is important
to add positional encoding to the feature map so that the model
can output a more accurate result. Since the feature map of the
image is 2-D, not only direction x but also y should be taken into
account. The amended positional encoding which is used here
looks like

PE(posx,2i) = sin(posx/10000
2i/128)

PE(posx,2i+1) = cos (posx/10000
2i/128)

(4)

PE(posy,2i) = sin(posy/10000
2i/128)

PE(posy,2i+1) = cos (posx/10000
2i/128)

(5)

where i ∈ [0,dmodel/4), posx ∈ [1,HW], and posy ∈ [1,HW]. The
positional encoding of axis x and y is calculated by 4, 5. We can
get two vectors PEposx ,PEposy ∈ ℝ

128×H×W . By concatenating these
two vectors, we can get the positional encoding of the featuremap
PE(posx,posy) ∈ ℝ

256×H×W .
The outputs of backbone and positional encoding are reshaped

into (HW,1,d = 256) and added together. The process described
above is visualized in Figure 3.

3.3 Transformer Encoder
The encoder is built up of N identical layers, and each layer
is made up of four sublayers. To be specific, the layer contains
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these components: multi-head self-attention, add and layer
normalization, and feed-forward network. Details of every part
will be introduced below.

3.3.1 Self-Attention
The input matrix can be split into 1-D vectors with dimension
d = 256, and the number of vectors is HW. Every 1-D vector is
transformed into query vector q, key vector k, and value vector
v via multiplying by three different transformation matrixes:Wq,
Wk, andWv,Wq,k,v ∈ ℝ

256×dq,k,v , separately. For the convenience of
calculations, vectors are packed together into matrixes:Q, K, and
V. According to Vaswani et al. (2017), attention is calculated as 6)
described:

attention (Q,K ,V) = softmax(Q ⋅K
T

√d
) ⋅V (6)

Thewhole process of calculation can be divided into four steps:

1 Compute the dot products of query and all keys as scores:
S = Q ⋅KT

2 Normalize scores to avoid the vanishing gradient of the softmax
function: S′ = S/√d

3 Obtain weights from scores:W = softmax(S′)
4 The attention score of itself is obtained byW ⋅V

Scores obtained in step 1 reflect the correlation between query
and key. The higher the score is, the more the attention given
when there is output prediction in the following procedure.
Assuming that d is large, the results of step 1 can be excessively
large and function softmax has a problem of vanishing gradient.
Hence, the results of step 1 should be divided by √d. Step 3
translates normalized scores into attention weights ranging from
0 to 1. Step 4 computes the weighted sum of value vectors.
According to the above analysis, the region of the insulator and
defect will get a high attention score after computing since the
model can learn from the dataset and figure out the point in
images.

There is a disadvantage to single-head attention. Considering
the situation that several objects appear in one image, it is hard
for themodel to catch all objects at one glance. Hence,multi-head
attention is proposed, as shown in Figure 4. Combining several
single-head self-attention layers, we can get the result containing
different information worth noticing, which is distributed in
different positions of the image. 7) can explain the whole
computing.

multi− head (Q,K ,V) = concatenate (head1,…,headh)WO

headi = attention(QW
Q
i ,KW

K
i ,VWV

i )
(7)

where WQ
i ∈ ℝ

256×dq,WK
i ∈ ℝ

256×dk ,WV
i ∈ ℝ

256×dv and WO ∈
ℝhdv×256.

3.3.2 Add and Layer Normalization
In this sublayer, add represents adding original input, which
is the feature map, to the output of the last sublayer. This
can ensure that some important features will not be forgotten
after computing, which is called residual connection. Layer

FIGURE 4 | Multi-head attention consists of h single-head attention running
in parallel.

normalization (Ba et al., 2016), which is the norm for short,
is applied after residual connection. Norm is designed for
normalizing a layer so that it can avoid the exploding gradient and
vanishing gradient largely. To be specific, the mean and standard
deviation of these data are set to 0 and 1, respectively, as shown
in 8)

μ = 1
H

H

∑
i=1

ai

𝜎 = √ 1
H

H

∑
i=1
(ai − μ)

2

a′ =
a− μ
𝜎

(8)

whereH denotes the number of layer units, a denotes the old unit,
and a′ denotes the new unit. The whole computing is shown as

norm(z0,attention (Q,K ,V)) (9)

3.3.3 Feed-Forward Network
Another sublayer of the decoder is the feed-forward network,
which is added after attention computing and can be denoted like
(10)

FFN (x) = 𝜎 (0,xW1 + b1)W2 + b2 (10)

whereW1 andW2 denote two parameter matrixes used for linear
transformation and 𝜎 denotes the activation function, which is
ReLU here. FFN will not change dimensions of input, while the
dimensions of the hidden layer are usually larger.
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3.4 Transformer Decoder
As can be seen from Figure 1, the decoder contains the same
sublayers as the encoder since it follows the original architecture
of Vaswani et al. (2017). Nevertheless, there still exist differences
between them. The output of the original one is probability
denoting the prediction distribution of words, which means that
it predicts one word in sequence at a time. The design of object
queries makes it possible to output N embeddings in parallel at
the same time. After that, embeddings are transformed into N
predictions with a box and labeled by prediction FFN.

3.4.1 Object Queries
Object queries have a similar function as positional encoding, it
is learnable, while the former is fixed, as shown by 1). The role
of object queries is to introduce a fixed-size set of predictions,
and the number is N (here, N = 100), which is usually larger
than the number of existing objects in the input image. With
a combination of encoder output that carries information of
input images, optimal bipartite matching between predicted and
ground truth objects can be inferred by loss functions.

3.4.2 Computing of the Decoder
The input of the decoder is initialized as zero vectors ∈ ℝN×b×256,
which has the same dimensions as object queries. The following
computing is similar to that of the encoder: input and object
queries are added as key and query vectors of themulti-head self-
attention sublayer, while the input also plays the role of the value
vector.The result of attention computing is normalized by the add
and norm sublayer.

As for the multi-head attention sublayer, its query comes from
object queries and the output of the last sublayer.Theoutput of the
encoder acts as a key after adding positional encoding. The value
directly derives from the encoder. Asmentioned before, attention
computes the relevancy between key and query. Putting it another
way, query carries information of different objects, while key
and value carry global information of the input image since they
derive from the encoder. If an image exhibits the feature of an
object proposed in object queries, the attention score will be large
enough.The following computing of the decoder is similar to that
of the encoder.

3.5 Prediction Heads
In this layer, final prediction bounding boxes and the
corresponding classes are output. A 3-layer perceptron with the
ReLU activation function and a linear projection layer compose
the prediction FFN. Asmentioned before,N is usually larger than
the number of objects in the image, so the embedding which
has nothing to match after prediction FFN is classified as ∅.
In order to find optimal bipartite matching between prediction
and ground truth, the Hungarian algorithm is brought into the
model. 11) shows how the Hungarian algorithm works

�̂� = argmin
𝜎∈SN

N

∑
i
Lmatch (yi, ̂y𝜎(i)) (11)

where yi and ̂y𝜎(i) denote ground truth and prediction,
respectively, Lmatch (yi, ̂y𝜎(i) denotes a pair-wise matching cost

when mapping is 𝜎i, and argmin∑Ni L aims to figure out what 𝜎
has as the lowest matching cost. Matching cost can be computed
by (12)

Lmatch (yi, ̂y𝜎(i)) = −𝟙{ci≠∅}p̂𝜎(i) (ci) + 𝟙{ci≠∅}Lbox (bi, ̂b𝜎(i)) (12)

where yi = (ci,bi) and ci is the label of ground truth i, bi ∈ [0,1]
4 is

the box carrying information of center coordinates, height and
weight, ̂y𝜎(i) = ( ̂p𝜎(i)(ci), ̂b𝜎(i)) denotes prediction with mapping
𝜎(i), ̂p𝜎(i)(ci) denotes the probability of label ci, ̂b𝜎(i) denotes
the prediction box, and Lbox(bi, b̂𝜎(i)) denotes the difference of
two boxes between ground truth and prediction. Difference is
computed by (13)

Lbox (bi, ̂b𝜎(i)) = 𝜆iouLiou (bi, ̂b𝜎(i)) + 𝜆L1 ∥ bi − b̂𝜎(i)∥1 (13)

where 𝜆L1 and 𝜆iou denote two common loss functions used in
object detection. Since ℓ1 loss has different scales for small and
large boxes, even if their relative errors are similar and the later
one is scale-invariant, a linear combination of these two losses is
adopted here to make the best of both loss functions.

After finding the optimal bipartitematching �̂�, Hungarian loss
can be computed by (14):

Lhungarian (y, ̂y) =
N

∑
i=1
[−logp̂�̂�(i) (ci) + 𝟙{ci≠∅}Lbox (bi, ̂b�̂�(i) ] (14)

4 EXPERIMENTS

In this section, our method is evaluated for insulator defect
detection. To begin with, experimental configurations, an
overview of our dataset, evaluation criteria, and supplements
of the experiment are presented. Afterward, we adopt different
pretrained models in our method and evaluate some other
competitivemethods on our dataset.The results of thesemethods
are compared after evaluation. Finally, some results are visualized
on examples of datasets.

4.1 Experiment Description
4.1.1 Experimental Configuration
In this study, all experiments are finished on the following
experimental configurations: a server with an Intel Xeon Gold
6136 CPU, four NVIDIA TITAN Xp with 12 GB GPU memory
each, and 192 GB RAM with a frequency of 2666 MHz. More
specific configurations are presented in Table 1.

TABLE 1 | Details of experimental configurations.

Parameters Configuration

CPU Intel Xeon Gold 6,136/3.0 GHz
GPU 4 * NVIDIA TITAN Xp/12 GB
Accelerated environment CUDA 11.0
Operating system Ubuntu 18.04.5 LTS
Training environment PyTorch 1.9.1, Python 3.8.3
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FIGURE 5 | Examples of training samples: (A) negative sample and (B) positive sample.

FIGURE 6 | Overview of the dataset constructed here.

4.1.2 Dataset
As far as we know, there is no standard insulator dataset
for widespread use. In the work of Tao et al. (2018), they
proposed a public dataset called “CPLID” based on aerial
images captured by a UAV with a DJI M200 camera.
However, all images containing defects are synthesized by
data augmentation so that it can easily result in overfitting.
To improve the robustness of our model, another 40 aerial
images are included and some data augmentation methods
such as horizontal and vertical flip, 90° rotation clockwise
and counter-clockwise, and upside down are adopted
here.

After that, a novel dataset of 2085 images is generated and
divided into training, validation, and testing sets, which contain
1800, 225, and 60 images, respectively.The size of every image is

576 × 432 here. Figure 5 shows the positive and negative samples
of the dataset. Figure 6 shows an overview of the dataset we
constructed here.

4.1.3 Evaluation Criteria
On the basis of former works, there are four criteria widely used
for evaluation in object detection: precision(P), recall(R), F1, and
mean average precision (mAP) (Powers, 2020). The formulas of
criteria used in this study are shown below:

P = TP
TP + FP

(15)

R = TP
TP + FN

(16)
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AP = ∫
1

0
P (R)dR,mAP = 1

N

N

∑
i=1

APi (17)

where TP, FP, TN, and FN are defined as shown in Table 2.
Denominators of P and R denote the number of defects
of prediction and ground truth, respectively. P(R) denotes a
precision-recall curve, AP is the area under the curve, and the
mean AP of all classes ismAP.

When classifying the prediction as positive or negative, it
involves an important judgment: Intersection over Union (IoU).
The IoU for comparing similarity between two arbitrary shapes
A and B is attained by Rezatofighi et al., 2019:

IoU =
area ∣ G⋂P ∣

area ∣ G⋃P ∣
(18)

where G and P denote the bounding box of ground truth
and prediction, respectively. In the aerial image after detection,
the model outputs several prediction bounding boxes with the
corresponding labels, and it is easy to do the calculation of each
box. Setting a threshold, prediction boxes are classified as positive
or negative by comparing IoU with the threshold.

FPS is used for measuring the detection speed of the model.
The higher FPS is, the higher the number of images the model
can handle per second.

4.1.4 Supplements of the Experiment
Training parameter settings are shown in Table 3.

4.2 Performance of DETR
4.2.1 Performance of Different Backbones
As mentioned in Section 3, CNN is adopted to generate a feature
map of the input image. ResNet-50 and ResNet-101 put up

TABLE 2 | Definition of confusion matrix.

Ground Truth Prediction Definition

Positive Positive TP
Positive Negative FN
Negative Positive FP
Negative Negative TN

TABLE 3 | Training parameter settings of DETR.

Parameter Value

Epochs 300
Batch size 2
Drop out 0.1
Object queries 100
IoU threshold 0.5
Encoder layers 6
Decoder layers 6
Attention heads 8
Learning rate drop at 200
Initial learning rate 0.0001
Updated learning rate 0.00001

a good performance, so both are adopted here. In addition,
according to Li et al., 2017, the resolution of the feature map can
be increased by removing a stride from the first stage of the
backbone and adding a dilation to the last convolution, which
can be called ResNet-50-DC5 and ResNet-101-DC5, where DC5
denotes dilated C5 stage. Benefitting from higher resolutions of
the feature map, a small object can be better detected. As Table 4
shows, considering the accuracy and time consumption, it is
reasonable for us to adopt ResNet-50 as the backbone.

4.2.2 Comparison With Other Object Detection
Models
Asmentioned above, one-stage and two-stagemethods have their
own features. To be specific, one-stage models conclude results
within a shorter time than two-stagemodels, while the accuracy is
lower. The latest work shows that Cascade R-CNN has been used
in insulator defect detection (Wen et al., 2021). Feng et al. (2021)
have proved that YOLOv5 can achieve the highest accuracy at
86.8%, and mAP is 95.5%. In order to evaluate the advantage
of the proposed model compared with other models, we have
CascadeMask R-CNN (Cai andVasconcelos, 2019) and YOLOv5
(Jocher et al., 2022) as strong competitors.

The dataset used here is exactly the same as that we used
in our model. The performance of these detection methods is
shown in Table 5. The best performance of every column is
highlighted in bold. In addition, the backbone of Cascade R-
CNN and YOLOv5 used here is ResNet-50, the same as that of
DETR. DETR gets the best average precision in all classes and the
mean average precision. However, YOLOv5 as a strong one-stage
method achieves a much higher FPS than DETR and Cascade
R-CNN. The standard FPS of the video shot by UAV is 24, 30,
60, or 120. Hence, DETR can handle a normal video as well as
YOLOv5.Thedesign of object queriesmakes it possible forDETR
to achieve the highest accuracy. Even though one-stage and two-
stage methods have some hand-craft design such as anchor and
proposal box, it is an unstable way to detect an object in images
because thesemethods need prior knowledge of the dataset to get
good results.

TABLE 4 | Detection performance of different pretrained CNN models.

Pretrained CNN Model mAP(%) FPS (Frames Per Second)

ResNet-50 97.97 25
ResNet-101 98.37 17
ResNet-50-DC5 98.87 15
ResNet-101-DC5 99.01 12

TABLE 5 | Detection performance of different methods.

Model AP (Insulator) AP (Defect) mAP (%) FPS

DETR 100.0 95.93 97.97 25
Cascade R-CNN 97.4 90.6 94.0 6
YOLOv5 94.3 96.8 95.6 143
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FIGURE 7 | Aerial image with woods in the background: (A) cascade R-CNN, (B) YOLOv5, and (C) DETR.

FIGURE 8 | Aerial image with earth in the background: (A) cascade R-CNN, (B) YOLOv5, and (C) DETR.

FIGURE 9 | Aerial image with the half insulator: (A) cascade R-CNN, (B) YOLOv5, and (C) DETR.

Aerial images shot by UAVs usually contain complex
backgrounds and insulators that differ from one another in
appearance, shape, and size because of different filming angles,
distance, and ambient light. To validate the accuracy and
robustness of our proposed model, it is necessary to visualize
the performance of DETR and compare it with two competitors
as shown in Figures 7–10, where each figure contains three
subfigures corresponding to Cascade R-CNN, YOLOv5, and
DETR. Prediction bounding boxes, class labels (insulator or

defect), and confidence scores are plotted and written on figures.
Figure 7 shows a scene with woods in the background, which is
common in power line inspection. All models are really good at
insulator detection,while YOLOv5does not have high confidence
in giving answers. Something goes wrong in defect detection
where cascade R-CNN gives a false positive prediction and
YOLOv5 gives no detection. DETR detects all objects wanted
with high confidence. Figure 8 shows another common scene,
which is earth in the background.The three models all detect the
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FIGURE 10 | Demonstration that our model has learned how to detect other
categories of insulators.

right objects, while YOLOv5 still suffers from low confidence.
Figure 9 has a background similar to Figure 8, whereas the
insulator is incomplete, which may be challenging for models
to detect accurately. The results show that Cascade R-CNN
has a problem in detecting defects, while YOLOv5 and DETR
can give accurate detections. YOLOv5 is somewhat affected in
giving confidence. The attention mechanism, which computes
attention scores among features extracted from input images,
enables our model to recognize another category of insulators.
Figure 10 shows that DETR can detect a single suspension string;
however, the dataset has nothing about this category. Based
on the results observed in Figures 7–10, DETR achieves better
performances than the representative models of two-stage and
one-stage methods no matter how complex the background of
aerial images is.

5 CONCLUSION

In this study, a novel encoder–decoder architecture is presented
for insulator and defect detection. The attention mechanism
is adopted for computing the relevance of features in images
extracted by CNN. A learnable positional encoding called object
queries is adopted to acquire prior knowledge about the locations
of objects needed to detect instead of the hand-crafted process
used in two-stage and one-stage methods. Bipartite matching
loss between ground truth and prediction is adopted for giving
optimal results. Based on a public insulator dataset called
“CPLID”, a 3 times larger dataset containing more categories
of the insulator is constructed here. DETR gets 97.97 in mean
average precision, which is the best among the three models. We
can conclude from experimental results that our model has the
ability to achieve end-to-end insulator defect detection accurately
in real time.
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