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A micro-phasor measurement unit (μPMU) configuration optimization approach is
proposed in this article, considering the numerous operation modes of distribution
network reconfiguration. The PSO algorithm with dynamic adaptability is used to
optimize the setup of μPMU and improve the accuracy of state estimation for each
distribution network operation mode. The configuration nodes of various operation modes
are grouped and assessed by K-means according to the shortest distance, and the
weights of the evaluation indexes are calculated by the AHP-CRITIC subjective and
objective combination weighting method. The node with the highest comprehensive
evaluation index is selected as the configuration node. The probability of multiple
operation modes is then introduced. Finally, using the IEEE 118-bus distribution
system as an example, the simulation demonstrates the proposed method’s
effectiveness in improving distribution network state estimate.

Keywords: distribution network, micro-phasor measurement unit, multi-operating conditions, AHP-CRITIC,
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INTRODUCTION

With the large-scale access of distributed power sources, the structure and operation mode of the
distribution network system are complex and changeable (Majdoub et al., 2018), and the volatility
and randomness of the high proportion of distributed generation also bring great challenges to the
operation and control of the distribution network (Huang et al., 2022). Therefore, the “observable”
and “controllable” capability of the distribution network is of vital importance to ensure the
economic and safe operation of the system (Liu et al., 2020), and high accuracy state estimation is an
important prerequisite for analyzing the operation state of the distribution network.

The existing measurement devices in the distribution network, including advanced measurement
system (AMI) and supervisory control and data acquisition (SCADA), can no longer meet the
operational control requirements of the distribution network. The micro-phasor measurement unit
(μPMU) is a GPS-based real-time measurement device that calculates electrical parameter of the
distribution network, including the magnitude and phase angle of the node voltage and the branch
current, in real time by collecting voltage and current phase quantities, and transmits data faster,
usually 10 ms or 20 ms (Zhang et al., 2021), which can significantly improve the distribution system’s
observability and measurement accuracy.

The existing measurement devices cannot cover the needs of distribution network condition
assessment in terms of data collection duration and accuracy due to the dispersed installation of
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distribution network measurement devices and the lack of real-
time measurement data. With the emergence and wide
application of μPMU, many scholars have used the μPMU for
state estimation. μPMU is not economical for distribution
networks with large node size to achieve system observability
just by installing the μPMU (Kandenkavil and Bhattacharya,
2018), a method of combining traditional measurement data
with μPMU data to build a hybrid measurement state
estimation method is provided. The hybrid weighted least
squares state estimation algorithm based on PMU and
SCADA is proposed in the study by Skok et al. (2016), Silva
et al. (2017), and Santos and Orillaza (2018) for the three-phase
unbalanced distribution network system, which not only ensures
the global observability of the system, but also satisfies the
economy and improves the accuracy of state estimation. A fast
three-phase state estimation method based on hybrid
measurements is proposed in He et al. (2021). The
redundancy of state estimation is significantly increased by
increasing the voltage pseudo-measurements through μPMU
measurements. A hybrid weighted minimum absolute state
estimation algorithm based on SCADA and μPMU is
proposed in the study by Santos and Orillaza (2018), which
has better stability than the weighted least square method. The
study proposes a three-phase distribution system state estimation
method based on Bayesian inference (Massignan et al., 2022). It
uses Bayesian information fusion to combine different types of
data and time scales for state estimation, which improves the
accuracy of state estimation pseudo measurement data.

Because of the huge scale, complicated, and changing structure
of distribution networks, the configuration optimization problem
of μPMUs is a practical challenge that has to be solved quickly.
Most problems for optimal μPMU configuration are currently
solved by using optimization algorithms to take the network-wide
observable and minimum number as the objective function,
consider different practical situations, or emergent conditions
as constraints, and use network-wide observable and minimum
number as the objective function. The mixed integer
programming algorithm is used to solve the problem by
Teimourzadeh et al. (2019), with the minimum number of
μPMUs as the objective function and the observability of the
system under the normal operation and the observability under
emergency conditions as constraints. Under the condition of
ensuring the observability of the system and the minimum
number of installations, the influence of the current channel is
considered in the study by Elaziez et al. (2020). The optimal
configuration result of μPMU is solved with the selection of
current channel as the constraint condition. Compared with
transmission networks, network reconfiguration is an
important process that distribution networks often undergo.
Most of the existing distribution network μPMU optimal
configurations are optimized based on the fixed network
topology during normal operation, without considering the
complex and variable topology of the distribution network.
Now, a μPMU device has been used in distribution network
state estimation to improve the accuracy of state estimation. A
new method of μPMU optimal configuration for the distribution
system based on a high precision state perception is proposed in

the study by Tian et al. (2019). And simulation results show the
effectiveness of the proposed method in improving state
estimation accuracy.

If the distribution line fails, when the fault occurs, the breaking
and clearing of the fault are generally completed within
milliseconds, and the state estimation period is generally
1–5 min, sometimes tens of seconds, so the influence on the
state estimation is small. After the fault occurs in the distribution
network, the system automatically removes and isolates the fault,
and restores the power supply in the non-fault area generally
requires 3–10 s shorter time, less impact on distribution network
state estimation. The method in this paper is suitable for the
operation mode of topology change after distribution network
fault reconstruction.

In addition, fault information is used in a lot of current
research for state estimation and parameter identification. Li
et al. (2018) proposed to extend the line parameters and fault
information (fault distance and voltage phasor of fault point) to
state variables, and conduct state estimation together with the
original node state variables to realize online parameter
identification. Wang et al. (2020) established the overall model
of the faulted active distribution network, where the fault location
was introduced as the state of the system. The state estimate
approach is then utilized to pinpoint the location of the problem.
Some people use the substation current and voltage values to
determine all possible short-circuit locations based on
impedance. In the case of multiple locations, in addition to
the voltage and current measured in the substation, the state
estimation will also use some bus available voltage measurements.
For each case, the location and fault current calculated by the
impedance-based method are used as inputs to the estimator,
which provides the fault location based on the normalized
residual analysis. Kume et al. (2020) proposed that the
impedance-based method uses the current and voltage values
of the substation to determine all possible short-circuit positions.
In the case of multiple locations, in addition to the voltage and
current measured in the substation, the state estimation will also
use some bus available voltage measurements. For each case, the
location and fault current calculated by the impedance-based
method are used as inputs to the estimator, which provides the
fault location based on the normalized residual analysis. Öner and
Göl (2016) used the PMU measurement value recorded during
the fault (before the circuit breaker is disconnected). These
measurements are used to determine the fault current flowing
on the fault line, and the weighted least squares are used for state
estimation and fault location.

A μPMU configuration optimization research is proposed in
this article, which takes into account numerous distribution
network operation modes with reconfiguration. Firstly, the
configuration of μPMU is optimized for various topologies.
Then, the K-means clustering algorithm is introduced, and the
obtained configuration nodes are clustered at the shortest
distance, and the four indexes of node degree, node
compactness, node importance, and node betweenness are
evaluated. The weight of the four indexes is solved using the
subjective and objective combination weighting technique of
AHP and CRITIC, and the comprehensive index of nodes is
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obtained. In each cluster, the node with the greatest
comprehensive index is chosen, and the final configuration
scheme is created. The node is fully re-evaluated on this basis,
considering the possibility of alternative distribution network
operating modes. For simulation verification, the IEEE-118 node
distribution network system is employed.

MICRO-PHASOR MEASUREMENT UNIT
CONFIGURATION OPTIMIZATION

Micro-Phasor Measurement Unit
Configuration Optimization Mathematical
Model
The node without power injection is referred to as a zero-
injection node in distribution network modeling, and the
current is nearly zero. The best configuration goal of μPMU is
to obtain the maximum state estimate accuracy, with zero-
injection nodes as the constraint, in the scenario where the
whole network is totally visible. The objective function of the
best μPMU design for a system with nodes is illustrated in Eq. 1.

min∑n
i�1
(Uirel − Uiestmit)2 + (θirel − θiestmit)2

s.t Ax + Ay≥ 1, ∀j ∈ I
(1)

where n is the number of nodes of the system; The element in
matrix x is xi, represents the installation of μPMU at node i, its
definition is shown in Eq. 2; A is the correlation matrix of system
nodes; I is a collection of all nodes of the system;Uirel, θirel are the
real values of voltage magnitude and phase angle of the nodes,
respectively;Uiestimat, θiestimat are the voltage magnitude and phase
angle of the state estimate; the elements in matrix y are yij, when
yij � 1, denoted as node j can be calculated by Kirchhoff’s law
based on the quantitative measurements of zero-injection node i
and its connected nodes; when yij � 0, then node j can’t be
calculated based on the quantitative measurements of zero-
injection node i and its connected nodes.

xi � { 1 Install μPMU in node i
0 Node i does not install μPMU

(2)

The system node correlation matrix is a binary matrix whose
elements are defined as in Eq. 3.

aij � { 1 i � j and node i is connected to j
0 Node i is not connected to j

(3)

Micro-Phasor Measurement Unit
Configuration Optimization Algorithm
The optimization objective model is solved by the improved
particle swarm optimization algorithm. The inertia factor,
which is based on the current particle swarm evolution speed
factor and aggregation factor, is dynamically changed by the
weight of its speed and position update (Zhang et al., 2005). It can

not only make the algorithm have dynamic adaptability, but also
improve the convergence performance of the algorithm.

The following are the steps of the improved particle swarm
algorithm:

1) Initialization: To begin, the maximum number of iterations,
the number of objective function independent variables, the
maximum particle velocity, and the number of populations
are all specified. The maximum particle velocity Vmax � 0.3,
the maximum number of iterations is 200, and the population
number is 300.

2) Calculating the fitness: The fitness function in this article is set
to the error value of voltage amplitude and phase angle of each
node, and the expression is (Uirel − Uiestmit)2 +
(θirel − θiestmit)2.

3) The individual optimal fitness and global optimal solution
calculation: The best fitness value of each individual is to find
the historical optimal location information for each particle,
and find the global optimal solution from these historical
optimal solutions. Then compared with the historical global
optimal solution, the minimum value is selected as the current
historical optimal solution.

4) Update the particle position and velocity: Update the
expression as shown in Eqs 4, 5.

Vid � ωVid + C1random(0, 1)(Pid −Xid)
+C2random(0, 1)(Pgd −Xid) (4)

Xid � Xid + Vid (5)
where ω is inertia weight; here the inertia factor is dynamically
changed, ω varies with particle aggregation and evolution speed,
as shown in Eq. 6; C is the learning factor, C1 = C2 = 2; Pid

represents the dimension d of the individual best fit for the i
variable; and Pgd represents the dimension d of the global optimal
solution.

ω � ωini − hωh + sωs (6)

h � min[F(gbt−1), F(gbt)]
max[F(gbt−1), F(gbt)] (7)

s � min[F(gbt), F]t
max[F(gbt), F]t (8)

where ωini is the initial value of ω, generally ω � 1; F(gbt−1) is the
global optimal value of the last iteration; F(gbt) is the global
optimal value of the current iteration; Ft is the average fitness
value of all current particles; and h and s are the evolution speed
and aggregation degree of particles, respectively. Finally, this
article takes the ωs value to 0.1, the ωh value to 0.5.

DISTRIBUTION NETWORK NODE
CENTRALITY ASSESSMENT

K-Means Node Clustering
The K-means clustering technique is the most widely used
unsupervised learning clustering algorithm. The idea is to
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partition a data set containing N variables into k distinct groups.
The K-means clustering algorithm uses Euclidean distance as a
measure of similarity between data. The Euclidean distance
expression between two data xi, xj, is shown in Eq. 9.

d(xi − xj) � ����xi − xj

����2 (9)
The objective function of K-means clustering algorithm is the

minimum loss function as in Eq. 10.

L � ∑k

j�1∑n

i�1(xi − μj)2 (10)

where μj is the clustering center of the cluster jand i is the object
to be clustered in the data set.

Node Evaluation Metrics
The importance of nodes, the degree of nodes, the tightness of
nodes, and the betweenness of nodes are all considered in this
article while evaluating the node centrality of a distribution
network.

1) The node of importance (Zeng et al., 2021): It refers to the
numerical relationship between the new network cohesion
and the original network cohesion after shrinking a node. The
node importance is expressed as Eq. 11.

K(i) � 1 − z[G]
z[Gpxi] (11)

where Gpxi is the new network graph obtained after the
contraction of node i, and node i is the node that needs to be
selected after node clustering; and z[Gpxi] is the network
cohesion after node i shrinks.

Network cohesion (Li et al., 2012) is defined as Eq. 12.

z[G] � n − 1∑
i≠j
lij

(12)

where lij is the shortest distance between nodes i and j.

2) The degree of nodes (Liu et al., 2021): The degree of a node,
also called node correlation degree, is the number of edges
associated with that node. The degree of nodes is defined as
shown in Eq. 13.

R(i) � ∑n
j�1
aij (13)

where R(i) is the degree of node i; n is the total number of
branches; j is the j branch; andaij is whether j is associated with
node i.

3) The tightness of nodes: Node tightness is used to describe
the closeness of a node to other nodes in the distribution
network system. In this article, the branch impedance
modulus is used as the weight of the edge to form an
undirected weighted network. The tightness of nodes
index is expressed as Eq. 14.

T(i) � 1
n
∑
j≠i

1
dij

(14)

where dij is the shortest distance between node i and j. Dijkstra
algorithm is used to solve the shortest distance in this paper.

4) The betweenness of nodes (Xu et al., 2010): It refers to the total
number of shortest paths in the network divided by the
number of paths going through the edge, which accounts
for the ratio of the total number of shortest paths,
demonstrating the role, and influence of the corresponding
nodes or edges in the entire network. Eq. 15 shows the
definition of node betweenness.

Be(i) � ∑
j≠k∈N

njk(i)
njk

(15)

where N is the total number of system nodes; njk is the number of
shortest paths between node j and k; and njk(i) is the number of
the shortest paths passing through node i between node j and k.

Determination of Indicator Weights
Taking into account the benefits and drawbacks of subjective and
objective weighting methods, as well as decision makers’
preferences for attributes, while minimizing subjective
arbitrariness in attribution, in order to achieve a balance of
subjectivity and objectivity in attribute attribution, resulting in
true, and reliable decision results. In this article, the combination
of subjective and objective weighting method, AHP and CRITIC
method, is used to determine the weight of the four indicators.

AHP is a classical subjective weighting method (Zhang et al.,
2021). The specific steps are as follows:

1) Construct judgment matrix A.

A �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11 a12 · · · a1n
a21 a22 · · · a2n
..
. ..

.
1 ..

.

an1 an2 · · · ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (16)

2) The relative weight between layers is obtained from the
judgment matrix. The corresponding feature vector W is
solved by solving the maximum eigenvalue of A, and the
elements in W are normalized.

3) Calculation of consistency indicators. The calculation
formulas are shown in Eqs 17 and 18.

CR � CI

RI
(17)

CI � λmax − n

n − 1
(18)

where CI is the consistency index; n is the order of the judgment
matrix; λmax is the maximum eigenvalue of the judgment matrix
A; and RI is the average random consistency index.

The CRITIC approach is a comprehensive estimate of the
objective weight of the indicators based on their relative strength
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and the conflict between them (Zhang et al., 2022). The following
are the specific steps in the calculation:

1) Assuming that there are M evaluation indexes and N
evaluation objects, the original index data matrix is as follows:

X �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x11 x12 · · · x1m

x21 x22 · · · x2m

..

. ..
.

1 ..
.

xn1 xn2 · · · xnm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (19)

wherexij is the j index of the i node.

2) It is required to do dimensionless treatment for each index in
order to eliminate the impact of different dimensions on the
evaluation results. Eq. 20 shows the dimensionless calculation
formula for the positive evaluation index data.

x′ij �
xij −min(xij)

max(xij) −min(xij) (20)

where min(xij) and max(xij) are the minimum and maximum
values of the third node.

3) Indicator variability: It is expressed by standard deviation, as
shown in Eq. 21.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�xj � 1
n
∑n
i�1
xij

Sj �

�����������∑n
i�1
(xij − �xj)2
n − 1

√√ (21)

where Sj is the standard deviation of indicator j. The standard
deviation is used to represent the difference and fluctuation of the
internal values of each index. The greater the standard deviation is, the
greater the numerical difference of the index is, andmore information
can be reflected. The evaluation intensity of the index itself is also
stronger, and more weight should be assigned to the index.

4) Conflict of indicators: The expression is given as Eq. 22.

Rj � ∑p
i�1
(1 − rij) (22)

where rij is the correlation coefficient between index i and j.

5) Information quantity: The more information there is, the
more important it is to the overall evaluation index system,
and it should be given more weight. Eq. 23 shows the
calculating formula.

Cj � Sj∑p
i�1
(1 − rij) � Sj × Rj (23)

6) Objective weight: The objective weight of the index j is shown
in Eq. 24.

Wj � Cj∑p
j�1
Cj

(24)

The calculation of the combined weight coefficient is shown in
Eq. 25.

W′
j �

����
αjβj

√
∑n

j�1
����
αjβj

√ (25)

where αj is the weight calculated by AHP and βj is the weight
calculated by CRITIC.

OPTIMIZATION PROCESS CONSIDERING
MULTIPLE OPERATION MODES

In order to meet the rationality of configuration optimization of
μPMU measurement device under various operation modes, the
optimization scheme after reconstruction is considered. Various
operation modes include the normal operation mode and
reconstructing operation mode. The configuration optimization
scheme of the μPMU is obtained under different operation modes,
and the model diagram of configuration node is shown in Figure 1.

μPMU configuration optimization nodes are chosen according
to the following principles, as shown in Figure 1:

1) Create an empty set P as a node set to record the μPMU
configuration scheme’s node number.

2) The modified PSO method is used to optimize the
configuration of the μPMU according to the present
normal system architecture, as illustrated in Figure 2, and
the configured node number is stored in the set P.

3) The present distribution network is reconstructed using the
reconstruction rules, and the topology is re-optimized using
μPMU configuration, with the configured nodes being placed
in set P.

4) K-means grouping is used to group the configured nodes by
shortest distance, with the number of clusters equal to the
number of configured nodes.

5) The node importance, degree of nodes, node tightness, and
node betweenness of each cluster are calculated using Eqs
11–15, and the comprehensive index of the node is obtained
using the subjective and objective comprehensive weights of
AHP and CRITIC, and the node with the highest
comprehensive index is selected.

6) The configured nodes are thoroughly re-evaluated in light of
the possibility of various operationmodes. If a node appears in
multiple operation modes, its probability is the sum of the
operation mode’s probabilities.

EXAMPLE ANALYSIS

The IEEE-118 node test system is used as an example in this work.
Figure 3 depicts the IEEE-118 node test system. There are
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132 branches, 118 nodes, and 15 interconnection switches in the
system.

To begin, the IEEE-118 distribution network system is
10 times recreated, and the μPMU installation places of ten
different topologies are optimized. Table 1 shows the
switching positions before and after 10 different types of
reconstruction.

The configuration results using the μPMU optimization
configuration method for the ten topology reconfigurations in
this article are shown in Table 2.

The nodes are classified into eleven categories based on the
shortest distance in the synthesis of ten types of reconstruction
μPMU configurations illustrated in Table 2. And Table 3
displays the clustering results.

For nodes in 11 clusters, four node indices were calculated,
and the nodes were then thoroughly examined. A node with
the highest index is chosen from 11 clusters based on the size of
the comprehensive assessment index. Table 4 shows the results
of the node indicator evaluation.

The subjective and objective weights of the four indicators of
node degree, node compactness, node importance, and node
betweenness of these nodes are determined using the AHP
and CRITIC methods, respectively. The judgment matrix’s
creation is shown in Eq. 26.

A �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1 0.5 0.5 0.5
2 1 1 0.5
2 1 1 0.5
2 2 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (26)

The obtained subjective weights are the degree of node
ω1z � 0.14, the tightness of nodes ω2z � 0.23, the importance of
nodes ω3z � 0.4, and the betweenness of nodes ω4z � 0.23.

The parameters and objective weights calculated by the
CRITIC objective weighting method are shown in Table 5.

FIGURE 1 | Optimization process model diagram.

FIGURE 2 | Improved PSO optimization flow chart.
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The combination weights are the degree of node ω1 � 0.257,
the tightness of nodes ω2 � 0.156, the importance of nodes
ω3 � 0.295, the betweenness of nodes ω4 � 0.292.

On the basis of reconfiguration, the probability of normal
operation and reconfiguration is considered. The comprehensive
index of nodes is derived with a 50% likelihood of normal

FIGURE 3 | IEEE-118 node test system.

TABLE 1 | IEEE-118 system topology Reconfiguration.

Topology Switch breaking
position

Disconnect switch

Before reconfiguration / 8–24, 9–42, 17–27, 46–27, 25–35, 43–54, 37–62, 49–62, 58–96, 75–88, 77–99, 73–91, 83–108, 86–105,
110–118

Reconfiguration topology1 24–25 9–42, 17–27, 46–27, 25–35, 43–54, 37–62, 49–62, 58–96, 75–88, 77–99, 73–91, 83–108, 86–105, 110–118
Reconfiguration topology2 35–47 8–24, 9–42, 17–27, 46–27, 43–54, 37–62, 49–62, 58–96, 75–88, 77–99, 73–91, 83–108, 86–105, 110–118
Reconfiguration topology3 43–44 8–24, 9–42, 17–27, 46–27, 25–35, 37–62, 49–62, 58–96, 75–88, 77–99, 73–91, 83–108, 86–105, 110–118
Reconfiguration topology4 49–50 8–24, 9–42, 17–27, 46–27, 25–35, 43–54, 37–62, 58–96, 75–88, 77–99, 73–91, 83–108, 86–105, 110–118
Reconfiguration topology5 57–58 8–24, 9–42, 17–27, 46–27, 25–35, 43–54, 37–62, 49–62, 75–88, 77–99, 73–91, 83–108, 86–105, 110–118
Reconfiguration topology6 72–73 8–24, 9–42, 17–27, 46–27, 25–35, 43–54, 37–62, 49–62, 58–96, 75–88, 77–99, 83–108, 86–105, 110–118
Reconfiguration topology7 74–75 8–24, 9–42, 17–27, 46–27, 25–35, 43–54, 37–62, 49–62, 58–96, 77–99, 73–91, 83–108, 86–105, 110–118
Reconfiguration topology8 82–83 8–24, 9–42, 17–27, 46–27, 25–35, 43–54, 37–62, 49–62, 58–96, 75–88, 77–99, 73–91, 86–105, 110–118
Reconfiguration topology9 104–105 8–24, 9–42, 17–27, 46–27, 25–35, 43–54, 37–62, 49–62, 58–96, 75–88, 77–99, 73–91, 83–108, 110–118
Reconfiguration
topology10

110–112 8–24, 9–42, 17–27, 46–27, 25–35, 43–54, 37–62, 49–62, 58–96, 75–88, 77–99, 73–91, 83–108, 86–105
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operation and a 5% probability of each reconfiguration. As illustrated
in Figure 4, a comprehensive index of nodes with various operating
modes is evaluated.

It can be seen from Figure 4 that the nodes with the highest
comprehensive index value in each cluster are 2, 4, 12, 29, 55, 64, 66,
79, 96, 110, and 116, respectively. As a result, μPMU devices are
installed at these 11 nodes, and the state estimate results are compared
using the probability of different operation modes and without using
the probability of different operation modes, as shown in Table 6.

Table 6 shows that the proportion of reconstruction is small after
considering the operation probability, and the comprehensive index
of reconstruction configuration is small in the node evaluation,
because the probabilities of all operation modes are the same
without considering the operation probability. As a result, when
considering the operation probability, the state estimate results are
better than when not considering the operation probability. However,
the state estimation accuracy in the system reconstruction without
considering the operation probability is higher thanwhen considering
the operation probability because without considering the operation
probability, the proportion of each after operation is the same as the
normal operation, and thus the weight of the comprehensive index of
all nodes is the same. The weight of the comprehensive index of the
μPMU configuration node in the reconstruction is small when
considering the operation probability, whereas the weight of the
comprehensive index of the μPMU configuration node in the
normal operation is large, resulting in a high state estimation
accuracy without considering the probability.

TABLE 2 | μPMU configuration scheme.

Topology μPMU configuration location

Reconfiguration topology1 2, 18, 23, 34, 38, 52, 54, 92, 97, 101, 106
Reconfiguration topology2 4, 36, 47, 55, 60, 68, 81, 84, 90, 104, 110
Reconfiguration topology3 4, 13, 36, 47, 58, 67, 81, 84, 97, 105, 114
Reconfiguration topology4 4, 18, 23, 34, 38, 52, 54, 92, 97, 101, 106
Reconfiguration topology5 2, 13, 34, 54, 58, 60, 67, 79, 105, 109, 100
Reconfiguration topology6 2, 4, 21, 29, 47, 61, 63, 82, 96, 98, 110
Reconfiguration topology7 4, 36, 47, 55, 60, 68, 81, 84, 90, 104, 110
Reconfiguration topology8 2, 4, 8, 18, 20, 31, 47, 59, 94, 110, 116
Reconfiguration topology9 2, 14, 23, 32, 47, 56, 64, 83, 94, 100, 106
Reconfiguration topology10 4, 12, 38, 44, 64, 75, 89, 96, 104, 108, 114

TABLE 3 | Clustering results.

Cluster Node

Cluster 1 23, 54, 60, 61, 110
Cluster 2 4
Cluster 3 52, 58, 59, 83, 84, 92, 94, 96, 97, 98, 108, 109
Cluster 4 14, 20, 67, 79, 89, 104
Cluster 5 44, 64, 75
Cluster 6 50, 66, 68, 81, 82, 106
Cluster 7 8, 29, 31
Cluster 8 32, 36, 38, 55, 101
Cluster 9 12, 13, 18, 34, 56, 114
Cluster 10 21, 47, 90, 105, 116
Cluster 11 2, 63, 100

TABLE 4 | Indicator assessment results.

Node Degree
of nodes

Node
tightness

Node
importance

Node
betweenness

Node Degree
of nodes

Node
tightness

Node
importance

Node
betweenness

2 2 0.182 0.0411 1 64 1.5 0.1446 0.1472 0.6388
4 1.5 0.1668 0.0275 0.7253 66 1 0.0713 0.1075 0.238
8 1 0.2 0.0153 0.0228 67 1 0.0609 0.1633 0.197
12 1 0.0867 0.1502 0.1274 68 1 0.0478 0.1897 0.146
13 1 0.0644 0.082 0.1152 74 1 0.029 0.0465 0.103
14 1 0.0596 0.0783 0.092 75 1 0.0285 0.0451 0.0755
18 1 0.0395 0.148 0.2228 79 1.5 0.0577 0.0853 0.2979
20 1 0.058 0.092 0.1726 81 1 0.0516 0.0943 0.1304
21 1 0.0526 0.0755 0.1405 82 1 0.0468 0.0659 0.0878
23 1 0.0458 0.336 0.1734 83 1 0.0442 0.0747 0.0861
29 2 0.207 0.048 0.6532 84 1 0.0402 0.072 0.0485
31 1 0.1868 0.0257 0.3346 89 1 0.0342 0.2519 0.2076
32 1 0.1586 0.0754 0.3038 90 1.5 0.0493 0.1016 0.2435
34 1 0.071 0.116 0.2325 92 1 0.0472 0.0863 0.1046
36 1 0.0567 0.1467 0.035 94 1 0.0381 0.0671 0.0477
38 1 0.066 0.175 0.203 96 1 0.027 0.0791 0.1017
44 1 0.0277 0.0579 0.0489 97 1 0.0429 0.0735 0.0819
47 1 0.0223 0.0857 0.1248 98 1 0.04 0.0589 0.0489
50 1 0.0508 0.0538 0.1451 100 1.5 0.0306 0.065 0.5768
52 1 0.0474 0.04 0.0675 101 1 0.1336 0.129 0.343
54 0.5 0.0331 0.0946 0 104 1 0.059 0.1605 0.3338
55 1 0.0277 0.1878 0.1772 105 1 0.0503 0.064 0.2316
56 1 0.07 0.1662 0.1586 106 1 0.0484 0.1031 0.2667
58 1 0.0419 0.2286 0.1017 108 1 0.0431 0.1055 0.2017
59 1 0.0328 0.087 0.0713 109 1 0.0392 0.048 0.1418
60 1 0.0316 0.0803 0.0532 110 1.5 0.0378 0.1116 0.1317
61 1 0.0306 0.0492 0.0363 114 1 0.0287 0.2565 0.1443
63 1 0.02 0.061 0.6823 116 1 0.0515 0.1452 0.0776
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CONCLUSION

In this article, the μPMU configuration optimization of topology
changes after distribution network reconfiguration is considered.
The probability of various operating modes is estimated based on
reconfiguration, and the μPMU configuration and node
comprehensive assessment are re-carried out. Using the IEEE-

118 distribution network node as an example, the following
conclusions may be drawn:

1) A μPMU configuration optimization approach is provided
that considers topology changes following
reconfiguration. μPMU configuration optimization that
takes into account distribution network reconfiguration

TABLE 5 | CRITIC weighting calculation results.

Index Variability of indices Conflict of indicators Information content Weight

Degree of nodes 0.255 1.884 0.48 0.406
Node tightness 0.05 2.15 0.107 0.091
Node importance 0.062 3.556 0.222 0.187
Node betweenness 0.21 1.777 0.374 0.316

FIGURE 4 | Node centrality index after adding probability.

TABLE 6 | State estimation results considering operation mode probability.

Mode of operation Reconstruction considered Reconstruction not considered

Mode of operation amplitude error/p.u phase angle error/° phase angle error/° phase angle error/p.u
Normal operation 0.042 0.052 0.052 0.065
Reconstruction 1 0.058 0.054 0.058 0.052
Reconstruction 2 0.071 0.058 0.066 0.047
Reconstruction 3 0.053 0.048 0.039 0.043
Reconstruction 4 0.058 0.065 0.056 0.064
Reconstruction 5 0.051 0.052 0.04 0.048
Reconstruction 6 0.044 0.058 0.032 0.056
Reconstruction 7 0.065 0.064 0.064 0.06
Reconstruction 8 0.038 0.054 0.034 0.053
Reconstruction 9 0.051 0.046 0.048 0.042
Reconstruction 10 0.062 0.051 0.053 0.046
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and the probability of different operating modes is more
in line with the actual condition of distribution network
systems, making the scheme more practical and relevant.

2) The state estimation accuracy of the reconstructed operation
mode is improved, and the μPMU configuration optimization
method obtained in this article meets the accuracy
requirements for the state estimation results of the normal
operation mode. It is also suitable for distribution systems
with large nodes.
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