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Automated calibration of amaximumpower point tracking (MPPT) algorithm for

the photovoltaic (PV) system is pivotal for harnessing the maximum possible

energy from solar power. However, most existing calibration methods of such

an MPPT system are cumbersome and vary greatly with the environmental

condition. Hence, an automated pipeline capable of performing suitable

adjustments is highly desirable. We proposed a method using supervised

machine learning (ML) in a solar PV system for MPPT analysis. For this

purpose, an overall schematic diagram of a PV system is designed and

simulated to create a dataset in MATLAB/Simulink. Thus, by analyzing the

output characteristics of a solar cell, an improved MPPT algorithm on the

basis of a neural network (NN) method is put forward to track the maximum

power point (MPP) of solar cell modules. Moreover, we implemented the

algorithm in a hardware setup and verified the theoretical result with the

empirical data. Typically, the performance accuracy of the NN models is

around 97~98%. But our proposed model shows an even higher efficiency

(99.8% approximately) without adding to any extra computational cost.
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1 Introduction

With the advent of modern technology, renewable energy is the most talked about

topic in the world nowadays, mostly because of the global energy crisis. Consequently, the

search for green energy has led us to various forms of renewable energy, which derive

directly from the Sun or from heat generated deep within Earth. Included in the definition

is electricity and heat generated from solar, wind, ocean, hydropower, biomass,

geothermal resources, and bio-fuels and hydrogen derived from renewable resources.

Among them, solar energy is abundant in nature and does not pose any threat to

environmental hazards, and hence, is the safest option as a reliable power source

(Ramirez-Del-Barrio, 2017). Engineers developing solar inverters implement

maximum power point tracking (MPPT) algorithms to maximize the power generated

by photovoltaic (PV) solar systems (Mayatake et al., 2011). The algorithms account for

factors such as variable irradiance (sunlight) and temperature to ensure that the PV
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system generates maximum power at all times, making MPPT a

crucial factor (Hohm and Ropp, 2002; Esram and Chapman,

2007; de Brito et al., 2013; Motahhir et al., 2020). There are

several algorithms for MPPT analysis but each of them can be

categorized based on the type of the control variable it uses: 1)

voltage; 2) current; or 3) duty cycle. The main advantage of these

algorithms is their capability and flexibility to solve non-linear

problems. Moreover, they can generate the optimal solution or

multi-peak MPPT for global maxima with acceptable efficiency.

So, these methods show superior tracking performance over

conventional algorithms (Rezk and Eltamaly, 2015) (Subudhi

and Pradhan, 2013). To track the maximum power point (MPP)

efficiently, numerous algorithms have been proposed so far, such

as the perturb and observe (P&O) method, incremental

conductance (IC) method, fractional open-circuit voltage

(FOCV) method, short circuit current method, fuzzy logic-

based algorithm etc. While these approaches perform well and

produce overall acceptable results, the recent surge of data-driven

machine learning (ML) approaches holds great promise in this

research domain. Since supervised ML methods are trained

directly based on the data, no human-designed heuristics are

involved, which makes these techniques highly accurate and

robust.

Discussing previous works onMPPT algorithms first leads to

the perturb and observe (P&O) method which is very simple and

basic yet unacceptable in many cases because of its lesser

accuracy (Ibrahim et al., 2015) (Azad et al., 2017). For

example, in a real-life set-up, it is assumed that the system

does oscillate around the MPP, indicating that a continuous

perturbation in one fixed direction will lead to an operating point

which will be very far away from the actual MPP. This process

continues until the increase in insolation is reduced or eliminated

completely. Among other existing methods, the incremental

conductance (IC) method comes immediately after the P&O

method (Barua et al., 2016). Despite its higher accuracy in

comparison with the P&O method, it is not so easy to

implement. Both perturb and observe and the incremental

conductance are ideal examples of “hill climbing” algorithms

that can find the local maximum power point of the power curve

for the operating condition of the solar PV array. However, the

fractional open circuit voltagemethod and fractional short circuit

current method are also popular because of their improved

efficiency than that of the P&O method (Frezzetti et al.,

2014). Fuzzy logic is a bit complicated to implement but gives

satisfying results (Chekired et al., 2011) (Li and Wang, 2009).

Also, fuzzy logic can reduce the slower tracking speed and the

oscillation noise around themaximum power point (MPP) which

are the two main disadvantages of the P&O method. But in this

era of artificial intelligence and the boom of neural network

architecture, using machine learning gives the most accurate

results within the shortest possible time span. As a result, no

other MPPT algorithm can beat the level of efficiency provided

by a neural network model of the solar MPPT controller. This

study supports this claim. Therefore, from the literature search, it

is evident that using ML-based models will not only increase the

performance accuracy but also automate the maximum power

point tracking process.

In this study, an NN model has been proposed to solve the

same age-old problem, that is, MPP tracking (Tsai et al., 2008)

(Messalti et al., 2015). The main challenge in using NN models

lies in training them properly, and hence, the novelty of this study

lies in tackling that challenge successfully.

This study successfully fulfilled the authors’ ultimate research

target of creating a fundamental framework for MPPT with the

help of artificial intelligence (AI). The main contributions of this

study are:

1) The complete dataset was prepared in such a way that it

eliminates data bias while supporting a wide range of

temperature and irradiance. Extra care has been taken to

make it free from overfitting.

2) To ensure higher accuracy than the existing models, the

supervised machine learning approach is taken for this

robust MPPT model.

Some existing models use the data required to generate the

ANN network obtained from the principle of the perturbation

and observation (P&O) method. Consequently, it pertains to the

errors that are generated from the P&O method (Messalti et al.,

2015). The error back propagation method is also used in some

models to train the neural network. But in our model, we took a

basic approach and used the basic equations of a solar cell circuit

model which is why the chances of in-built errors are taken care

of very well. Also, hardware support has been added to add to the

reliability of the simulation results.

The organization of the study is as follows:

• In Section 2, a detailed theoretical analysis of our proposed

model is provided since this base information will be used

in the experiments, especially in the schematic design.

• In Section 3, the design of the MPPT model has been

provided.

• The experimental results are described with rigorous

analysis in Section 4.

• Lastly, the study concludes in acknowledgement and

referencing recent related research works.

2 Theoretical analysis of the proposed
method

2.1 Temperature dependence and effect
of irradiance

While using any form of renewable energy, how it impacts

nature and how nature has its impact on it are some things we
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must keep under consideration. The same goes for using solar

energy as a power source. As the intensity of solar power depends

directly on the irradiance and temperature, we must consider the

environmental factors while extracting the maximum power

from solar panels.

The duration and intensity of sunlight that strikes the surface

of the PV panel directly control the numerical value of the output

current (Avila et al., 2017) (Subha and Himavathi, 2014). This

explains the reason for the popularity of solar energy as a form of

renewable energy in countries which are mostly tropical. But

unlike the output current, the output voltage does not undergo

such direct changes due to the change in irradiance.

The one factor that mostly affects the output voltage and

power is temperature. The relation between temperature and

output voltage is linear, so to increase the output voltage, a

higher temperature is preferable. As extra power in PV

modules is decreased in high temperatures, the advantage of

MPPT charge controllers also decreases. Hence, even at normal

operating temperatures, the additional unused power of an MPPT

charge controller compared to a PWM controller can be minimal.

2.2 Schematic of the base maximum
power point tracking model

The main focus of this study is on developing the controller

rather than designing the DC-DC converter. The problem is in

the supervised machine learning domain, and we used regression

to predict the value of the maximum power point current (Impp)

to track the maximum power point for a given irradiation G and

temperature T (Sedaghati et al., 2012).

Figure 1 shows that G and T are inputs for the PV panel which

generates the panel voltage (VPV) and drives the panel current (Ipv)

to a DC-DC converter and a controller. The MPPT controller

compares the value of the maximum power point current (Impp)

with IPV and generates the PWM switching signal (D) for the DC-

DC converter to deliver maximum power to the load. Since there

are multiple input variables, this will be multivariate regression

(Sinha et al., 2014). Coupling to the load to transfer the maximum

power requires providing a higher voltage or higher current.

Usually, a buck-boost scheme or sometimes a buck converter is

used with a voltage and a current sensor tied to a feedback loop

using a controller to vary the switching times of the switching

signal (Chauhan and Prakash, 2018).

But in conventional MPPT algorithms, boost-type DC-DC

converters are used instead of the buck topology since they can

switch between two different operating modes—the MPPTmode

and the voltage level control mode. Once the maximum available

solar power is drawn from the photovoltaic cells by the MPPT

controllers, DC-DC converters convert the voltage from one level

to another to deliver the maximum power to the load.

2.3 Parameters of the solar module in
simulation

Our study uses a simple and basic equivalent circuit model

for the solar PV cell comprising a real diode. The diode is placed

FIGURE 1
Block diagram for the entire system of the proposed model.
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in parallel with a current source but the current source is an ideal

one. The ideal current source supplies current which is in

proportion to the irradiance to which it is exposed. There are

two conditions of interest for the actual PV and for its equivalent

circuit. The first one is the current that flows when the terminals

are shorted together (the short-circuit current, Isc). The second

one is the voltage across the terminals when the leads are left

open (the open-circuit voltage, Voc).

In most real cases, a more robust PV equivalent circuit model

is required where some resistive elements accounting for power

losses, for example, a parallel leakage (or shunt) resistance Rsh

and a series resistance Rs are included. Such a circuit is used in

this study and is shown in Figure 2. In Figure 2, the electrical

equivalent model for the solar cell takes G and T as inputs and

produces Iph which flows through three different branches. One

portion of the current goes through a branch containing the

diode, the other two portions flow through the two types of

resistances (Tamrakar et al., 2015). The current produced from

the solar PV panel, Ipv is then supplied to the load.

Here, Iph is the photocurrent produced by solar power, Vpv

and Ipv are the voltage and the current measured at the output

terminal generated from the solar PV panel, respectively, Rsh and

Rs are shunt and series resistances, respectively, ID is the diode

current, and D is used to denote the diode.

Each solar panel or module is rated to produce a certain

portion of wattage, a fixed amount of voltage, and a definite level

of amperage under specific conditions (such as irradiance, air

mass, and cell temperature). But in ideal cases, all cells possess

similar characteristics with no mismatching losses (Peng et al.,

2013). The electrical characteristics of the PV module that are

used in this study along with temperature are shown in Table 1.

Here, n is used to denote the number of series-connected

solar cells in the PV array, Rs and Rsh stand for series and shunt

resistances, respectively, Isc and Voc are used for short-circuit

current and open-circuit voltage, respectively, and T is used to

denote atmospheric temperature.

2.4 Building blocks of the base model

The first step of creating the base model for making the

database and mathematical modelling of solar PV array in

MATLAB/Simulink requires the use of different equations for

obtaining the values of different electrical characteristics of the

equivalent circuit model.

The required equations for the five sub-system blocks of the

main Simulink block are given as follows.

Photo current:

IPH � {ISC +KI (T − 298)}G
1000

. (1)

Here, IPH: photo-current (A); ISC: short-circuit current (A);

KI: short-circuit current of the cell at 25°C or 298K and

1000 W/m2; T: operating temperature (K); and G: solar

irradiation (W/m2).

Saturation current:

FIGURE 2
Electrical equivalent model of the solar cell.

TABLE 1 PV module characteristics.

Parameter Value

N 54

Rs (Ω) 0.2210

Rsh (Ω) 415.4050

Isc (A) 8.21

Voc (V) 32.9

T (⁰C) 25
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I0 � (IRS × T3

T3
N

) e⎧⎨⎩q EG0( 1
TN

− 1
T)

nK
⎫⎬⎭ . (2)

Here, TN: nominal temperature = 298.15 K; EG0: band gap

energy of the semiconductor = 1.1 eV; q: electron charge = 1.6 ×

10−19 C; n: ideality factor of the diode; and K: Boltzmann’s

constant, = 1.3805 × 10−23 J/K.

Reverse saturation current:

IRS � ISC

e{
q×VOC

n×NS×K×T
} − 1

. (3)

Here, Voc: open-circuit voltage (V) and Ns: number of cells

connected in series.

Current through shunt resistance (shunt current):

ISH � V + I × RS

RSH
. (4)

Output PV current:

I � IPH − I0 × ISH × [e{q×(V+IRS)n×K×NS×T
} − 1]. (5)

The next step is to concatenate the five sub-system blocks and

build the main block to obtain the output current and voltage

from a solar module. Figure 3 shows that there are, in total, five

separate sub-system blocks for reverse saturation current (input

T and output IRS or Irs), saturation current (inputs T and IRS, and

output I0), photocurrent (inputs T and G, and output IPH or Iph),

shunt current (inputs I, V, and ISH or Ish), and PV current (inputs

V, T, I0, IPH, and ISH, and output I).

3 Design of the MPPT module

3.1 Proposed methodology

The design of the MPPT module can be divided into three

steps as shown in Figure 4. In the first step, the basic PV module

FIGURE 3
Main block connecting the five sub-system blocks.
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takes temperature and irradiance values as input data and gives

the current value at the MPP as output data (Pindi et al., 2020)

(Kumar et al., 2019). The second step is data collection which

relies on the simulation results from the first step. After the

training dataset is created, it can be used to train the proposed

multilayer perceptron (MLP)-type artificial neural network

(ANN) and obtain the final output from our test data (Jyothy

and Sindhu, 2018).

3.2 Simulation results of the base model

The PV array block of the MATLAB Simscape library

implements an array of PV modules. The array is built of

strings of modules which are connected in parallel, each string

comprising modules connected in series. This block allows us to

model preset PV modules from the National Renewable Energy

Laboratory (NREL) System Advisor Model (Jan. 2014) and the

PV modules that we define.

The PV array block is a five-parameter model using a current

source IL (light-generated current), diode (I0 and nI parameters),

series resistance Rs, and shunt resistance Rsh to represent the

irradiance- and temperature-dependent I-V characteristics of the

modules. Figure 5 shows that the solar PV module takes T and G

as inputs, and then the module generates output current and

voltage as denoted by I and V, respectively. The values of I and V

are used to generate an I-V graph and P-V graph for better

speculation of the MPP of the system.

Now, after simulating the prescribed model, the graphs (I vs.

V and P vs. V) derived from this simulation perfectly match the

known shapes of PV model outputs.

This implies that this model works correctly and the data

obtained from this model can be safely used for further

investigation and for training a neural network architecture

later on.

Figure 6 shows the current versus voltage graph which clearly

denotes that the MPP, the current value, and the voltage value at

the MPP can easily be perceived from this graph.

Figure 7 shows the power versus voltage graph which clearly

denotes the MPP, the voltage value corresponding to the highest

value of power, denotes Vmpp.

We know that any solar cell has Isc (here, 8.1A) and Voc (here,

32.9V) fixed. Here, the values of Vmp at Pmax can manually be

found for inputs T = 25 K and G = 1000 W/m2.

At power Pmax = 200.0170 W (found by scrolling down all

the power values, as these are the biggest data among all) at time

index = 2.6400, we get Vmp = 26.4000 V at the corresponding

time. This way, the values of T and G can be changed and the

corresponding values of Vmp at Pmax are calculated. Finally, the

value of the current at the maximum power point (Imp) is

obtained from these data or a short MATLAB code can be

generated to do the task in a short span of time.

FIGURE 4
Workflow diagram of the proposed methodology.

FIGURE 5
Schematic diagram of the output. Let Ir = 1000 W/m2 and
T = 25⁰C.
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For this cell, every necessary data can be found from the

workspace ofMATLAB. At this stage, the value of Vmp (voltage at

maximum power) at Pmax is required. To collect these data, a

simple workaround (Simulation Data Inspector>Log selected

Signals) is performed.

3.3 Creation of a customized dataset

After running a total of 1,300 simulations, we created our

own dataset for T starting from 15 to 40 units (40–15 + 1 =

26 values of T); (for each T, the values of G are 200, 210,

220. . .1,090 etc., totaling in 50 values). In real atmospheric

conditions, the difference between the maximum and

minimum temperature can be large for a certain geographical

area which is taken care of by the large range of temperature

values used in the dataset.

To make the data randomized, they are modified using

simple mathematical techniques. This helps prevent data bias

for the neural networkmodel. The basic three operations used are

shuffling, splitting, and transposing.

Shuffle: all the collected data are shuffled randomly.

Splitting: in this study, the data matrix size is 1,300 × 3. Now,

the data file is split into two different files:

1) The input file includes T and G data;

2) the output file includes Imp data.

Transpose: as per the requirement of MATLAB’s neural

fitting (nftool), the features (i.e., inputs) have to be in the

columns of the data matrix. The input matrix must be

transposed which includes T and G values. Similarly, the

target matrix (i.e., output) must also be transposed. Finally, a

FIGURE 6
Current vs. voltage graph.

FIGURE 7
Power vs. voltage graph.

FIGURE 8
Block diagram of the NN architecture model.
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column matrix which includes Imp values can be obtained in this

process.

3.4 Fitting data into neural network
architecture

In this study, a multilayer feed-forward network was used as

the neural network architecture. Here, each layer of nodes

receives input data from the previous layers. The outputs of

the nodes in one layer are inputs to the next layer. Moreover, the

inputs to each node are combined using a weighted linear

combination. Finally, the result is modified by a nonlinear

function before being output.

As per definition, this neural network is formed in three

layers, called the input layer (passive nodes), hidden layer (active

nodes), and output layer (active nodes); the first layer is the input

and the last layer is the output. Figure 8 shows that the neural

network architecture used in this model comprises 15 hidden

neurons in the hidden layer.

In this MLP NN, adaptive moment estimation (Adam) has

been used as the optimization algorithm instead of the classical

stochastic gradient descent procedure (Salah and Fourati, 2019).

For the loss function, the mean squared error (MSE) method has

been applied. The number of epochs and the value of the learning

rate are 1,000 and 0.001 s (approximately), respectively.

At first, both the input (two variables) and output (two

variables) data files were loaded. Then, 5% of our data was

selected as the test dataset which includes 65 samples, 85%

data as the training dataset which includes 1,105 samples, and

10% data as the validation dataset which includes

130 samples.

3.5 Use of Bayesian-regularized artificial
neural networks for regression analysis

Bayesian neural networks (BNNs) are important in specific

settings, particularly when the factor of uncertainty is taken

care of. Some examples of these cases are decision-making

systems, (relatively) smaller data settings, Bayesian

optimization, model-based reinforcement learning, and other

similar areas.

In our model of MPPT, we used Bayesian regularized

artificial neural networks (BRANNs) because of their higher

level of robustness compared with standard back-propagation

nets. Another reason for using the BRANN is that it can lessen or

eliminate completely the need for lengthy cross-validation. In

fact, Bayesian regularization is a very sturdy mathematical tool

that converts a nonlinear regression into a well-posed statistical

problem statement in the manner of ridge regression. Hence, the

Bayesian regularization method was chosen as the training

algorithm as it works best even for smaller data.

4 Experimental results

After creating and training the network, a very small mean

square value of error was observed which ensures the

effectiveness of the model. The MSE value for testing is very

low (~2.87 × 10-3) for the proposed model.

4.1 Simulink deployment

Simulink deployment of the model has made it a very handy

tool which instantly shows the MPP after setting the input

parameters. Moreover, the time lag to generate the output is

very negligible, hence establishing the model as a fast one.

Figure 9 shows that if we insert T and G values (here, T = 25⁰

and Ir = 1000 W/m2) as inputs to the function fitting the NN

model, it instantly shows the corresponding current value at the

MPP (here, I_mp(A) value = 7.592 A).

4.2 Bias values and weight values in the
neural network architecture

As an additional parameter, bias values in the NN

architecture help adjust the output along with the weighted

sum of the inputs to the neuron. Another important use of

FIGURE 9
Simulink deployment of the NN model.

FIGURE 10
NN architecture with weight and bias values.
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bias values is that they help shift the activation function in either

the right or left direction. Bias values for the input in the hidden

layer are portrayed in the following table. Figure 10 shows the

NN architecture which takes the input for the inner hidden layer,

then comes the output layer, and finally, the output can be

obtained at the last stage. W and B indicate the weight values

and the bias values, respectively.

All the bias values and weight values can be readily obtained

from the model and are mentioned in Tables 2–4 which will

make the hardware implementation of the proposed MPPT

model possible in no time.

Another important parameter in the NN architecture is the

weights, which represent the strength of the connection between

units. If the weight value of node 3 is higher than that of node 4,

neuron 3 has a higher influence over neuron 4. Hence, weight

values can bring down the importance of the input values.

Weights of input in the hidden layer are given in the

following table.

In an NN model, a neuron first computes the weighted sum

of the inputs. For the inputs (x1, x2, x3,. . ., xn) and the weights

(w1, w2, w3, . . . ,wn), a weighted sum is computed as

x1w1 + x2w2 + x3w3 . . .+ xnwn.

Subsequently, a bias (constant) is added to the weighted sum.

x1w1 + x2w2 + x3w3 . . .+ xnwn + Bias.

Finally, the computed value is fed into the activation

function, which then prepares an output.

Output, Y = Σ (Weight × Input) + Bias.

Activation function: (x1w1 + x2w2 + x3w3 . . .+ xnwn + Bias)

These functions are mathematical tools that can normalize

the inputs.

4.3 Checking the accuracy of the result

Bin represents the number of vertical bars observed on the

graph. Figure 11 shows that the total error from the neural

network ranges from 0.2222 (leftmost bin) to 0.1968 (rightmost

bin). This error range is divided into 20 smaller bins, so each bin

has a width of [0.1968- (−0.2222)]/20 = 0.02095.

Each vertical bar represents the number of samples from the

dataset, which lies in a particular bin. For example, on the left half

of the graph, there is a bin corresponding to the error

of −0.07468 and the height of that bin for the validation

dataset is 200.

It means that 200 samples from the dataset (training + test)

have an error which lies in the following range:

[(−0.07468—0.02095/2), (−0.07468 + 0.02095/2)]

The range (−0.012135, 0.008815) is even less than the range

of the bin corresponding to −0.07468.

Figure 12 shows three plots for the regression analysis, the

plot for the training data shows that only one data point deviates

from the line of regression, the plot for the test data shows that

almost all the data points are either on or very close to the line of

regression, and there is an overall third plot for the whole dataset.

The result of the regression analysis is as follows:

1) Training: only one data point deviated from the locus of the

straight line.

2) Test: no data point deviated from the locus of the straight line.

3) Validation: error was zero for the validation dataset.

4.3.1 Verification
Although this model is a software-based one, it was

implemented in a hardware setting to check the acceptability

TABLE 2 Bias values of input in the hidden layer.

Bias values for
input in the
hidden layer

−0.0788662358905827

−0.199252461268044

0.476703785811994

0.0788437136945187

0.0788437137489292

−0.0843897428619086

0.0788437137616096

−0.0788437136323596

0.0788437137854139

−0.0511645156192877

0.0521386721602554

0.0788437137594562

0.0788437137550028

0.325165283314198

0.199252475098178

TABLE 3 Weights of input in the hidden layer.

T G

0.330659943126136 0.375354867765757

−0.243061055602675 −0.302898742825237

−0.413686729890811 0.124969405112560

0.0503908825102565 −0.242889973645394

0.0503908825336595 −0.242889973660344

0.286942170255656 −0.871006037765083

0.0503908825390176 −0.242889973663920

−0.0503908824834618 0.242889973628136

0.0503908825490957 −0.242889973670382

−0.194105547886448 −0.882406133751217

−0.685142210229390 0.629560967118233

0.0503908825379756 −0.242889973663218

0.0503908825362639 −0.242889973662112

0.796782784260382 −0.181097405343480

0.243060836205972 0.302898505989682
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of the results (Mujumdar and Tutkane, 2013) (Hwang et al.,

2019). Figure 13 shows the simple hardware set-up where one

solar panel, one lead-acid battery (100AH), two rheostats, two

multimeters, cables, and one solar panel controller were used.

Also, a boost regulator was used here, and the bias values and the

weight values were used with the help of an Arduino board. The

dimensions of the panel were 1006 × 676 × 30 mm, and the other

panel specifications are as follows. Table 5 states the solar panel

specifications used in the hardware experiment.

4.3.2 Analysis
Since the proposed NN model is a simple one-layer network,

it can be implemented in real-time. Also, temperature and

irradiance values do not change rapidly in real environmental

conditions (Rezk et al., 2020). Hence, the timing analysis shows

that it takes only around 1 millisecond to produce the output,

thus proving the model to be very time efficient.

In real-time settings, noise gets added in every step of the

MPPT analysis procedure, for example, while receiving input

data through the sensors. Moreover, human errors also get

involved during manual data collection. To counter this noise

issue, some additive white Gaussian noise (AWGN) was added

during the training phase, and then finally trained themodel with

the data corresponding to the clean result and received better

performance with test data. So, it shows less discrepancy even

with very noisy data, thus adding to the robustness of the model.

For countries with extreme weather conditions, the

difference between the maximum temperature value in the

summer and the minimum temperature value in the winter

can be a large number. In such cases, the dataset used in this

study can easily be modified and some temperature values close

to the maximum and minimum temperature values of that

specific region of the world can be added. Similar tasks can be

done for varying irradiance levels in remote places of the world.

This is easy but important modifications of the dataset can add to

the flexibility of the model.

The simplest method for MPPT analysis so far has been the

P&O method but the proposed model, being a very simple feed-

forward network, can easily replace the P&O method.

The low-cost hardware set-up proves that this model is very

cost-effective.

4.3.3 Performance comparison
Discrepancy: from the simulation data, for T = 25 K and G =

1000 W/m2, Imp = 7.5764 A but the neural network model

produces Imp = 7.592 A. The percentage of deviation from

simulation data= (7.592–7.5764)/7.5764 × 100% = 0.206%.

TABLE 4 Weights in the output layer.

Weights in the output
layer

0.526055556926590

−0.526712907336645

0.560221719680131

−0.357268781908311

−0.357268781972241

−0.335049187325717

−0.357268781987367

0.357268781834757

−0.357268782015078

0.371791504344763

−0.318328545469931

−0.357268781984634

−0.357268781979911

−0.244907095063019

0.526712952341475

TABLE 5 Solar panel specifications.

Parameter Value

Model type ZM-A-M-100

Cell type 156 mm × 104 mm

Cell arrangement 36 cells in series

Dimensions (mm) 1,006 mm × 676 × 30 mm

Material Monocrystalline silicon

Maximum power 100 W

Number of cells 36 pcs

FIGURE 11
Error histogram of the output data.
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FIGURE 12
Plot for regression analysis.

FIGURE 13
Full hardware set-up.
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So, this neural network model for tracking the maximum

power point is very effective. Increasing the number of neurons

in the hidden layer gives even better results (by adjusting

network size). This model data was used to calculate the

accuracy also.

4.3.4 Efficiency
Percentage of accuracy of the model data= (1–0.206%) =

99.794%. This high accuracy is one of the novelties of this study.

The size of the hidden layers to produce such a close

approximation of the MPP is only 15.

For this same environmental condition, other popular and

easy-to-implement methods give much lesser efficiency, for

example, P&O has an accuracy level of 67.4%. The efficiency

slightly increases in the case of the IC method (above 80%) but

nowhere near compared to our NN model. If the fuzzy logic-

based algorithm is used, the efficiency can be increased up to as

high as 96% despite the model becoming very complex to

implement and the time-lag becoming a major concern (Chim

et al., 2011; Baraskar et al., 2016; Narendiran et al., 2016).

Usually, the NN models show an efficiency of around 98%.

But the proposed model shows a higher efficiency (99.8%

approximately) than even the other existing NN models of

MPPT analysis for the same temperature and irradiance value.

So, the improvement is approximately ~ 2% for just one solar

panel (comprising 36 pieces of cells).

This information is obvious from Table 6, which

represents the comparison between the proposed method in

this study and other popular and conventional MPPT

methods, namely perturb and observe (P&O), incremental

conductance (IncCond) method, constant voltage (CV),

constant Current (CC), and fuzzy logic (FL). Being an ML-

based method, along with the advantage of automation, the

proposed model is cost-effective and time-efficient. Fuzzy

logic-based algorithms are automated and have fast

convergence speed, but they are usually computationally

costly. For a better comparison among the methods, MPPT

tracking waveforms are shown in Figure 14.

Clearly, our proposed method performs more efficiently than

the other traditional approaches. For different partial shading

settings, these MPPT tracking waveforms follow a similar

pattern. However, we did not include any hybrid algorithm to

keep our proposed model computationally inexpensive, easy to

implement, and cost-effective.

5 Conclusion and scope of the future
work

In this study, an overall schematic diagram of a photovoltaic

system is designed. By analyzing the output characteristic of a

solar cell, an improved MPPT algorithm on the basis of the NN

method is put forward to track the MPP of solar cell modules.

The theoretical results show that the improved NN MPPT

algorithm has higher efficiency than the P&O method in the

same environment, and the photovoltaic system can keep

working at the MPP without oscillation and misjudgment. So,

it can not only reduce misjudgment but also avoid power loss

around the MPP.

TABLE 6 Comparison with other conventional and popular MPPT methods.

MPPT
method

Type Complexity
level

Convergence
speed

Prior
training

Efficiency
(%)

Sensed
parameter

Cost Automation

P and O Online Low Low No 67.4 V and I Easily
affordable

No

Inc Cond Online Medium Varies No 81.39 V and I Less expensive No

CV Online Medium Varies No 75.35 V Less expensive No

CC Online Medium Varies No 80.61 I Less expensive No

FL Al High Fast Yes 90.08 V and I Expensive Yes

Proposed
method

Al Low Fast Yes 99.80 V and I Easily
affordable

Yes

FIGURE 14
MPPT tracking waveforms of the proposedmethod and other
conventional methods.
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There are two major limitations of this proposed method.

First, the work in this study does not consider variable load

conditions. However, load variation will be included as another

input parameter to the proposed NNmodel in the future work of

these authors (Shams et al., 2021a) (Shams et al., 2021b; Chtita

et al., 2022). Second, in the hardware setup, there is no motion

control for partial shading (Fares et al., 2021) (Pervez et al., 2021).

A decent future research idea might be to adjust the hardware

setup to incorporate a smart system to work efficiently in

different partial shading conditions.

The experiments were done in the capital city of a tropical,

fast-developing country (Dhaka, Bangladesh), where using solar

power is quite significant considering the poor economic

condition of many people (Thentral et al., 2022) (Mirza et al.,

2022). Therefore, the cost-effectiveness of a realistic MPPT

approach is vital for real-life implementation and our method

can track the maximum power point without adding to any

significant installment cost. Also, the same experiments have

been repeated in other major cities (Rajshahi, Sylhet, and

Chittagong) of Bangladesh to include environmental

variability, and similar results have been reported.

Since this is a “Supervised Machine Learning”-based approach,

the training and testing dataset has been made publicly available on

the “HARVARD DATAVERSE” website. This is to ensure the

reproducibility of the results presented in this work. Dataset link:

https://doi.org/10.7910/DVN/IH6AC2. In case of any technical

problems on the website, the dataset might be provided upon

request by the corresponding author. Moreover, how this dataset

has been created and how it is used to train and test our ML model

has been described in great detail in Section 3. Therefore, this

scheme makes it a reproducible work. Different irradiance levels

and partial shading conditions have been incorporated into the new

dataset (will be published soon) so that this same model can be

trained and tested using the revised dataset without altering any

experimental setting mentioned in this study. Supervised machine

learning (ML) is used in solar systems when the target feature

(output) is known or available (Alloghani et al., 2020). In the case of

our proposed method,

1) The ground truth dataset has been created using a

conventional and popular MPPT approach. Since it is a

customized dataset, it performs very efficiently for a

particular geographical region and similar customized

datasets can be created using the same steps for other

geographical areas, which makes this procedure overall

generalized in nature.

2) This dataset has been used to train our proposed supervised

ML model and the test accuracy proves that this model can

predict the MPP very efficiently. This method is

computationally inexpensive and easily applicable in real-

life settings. Otherwise, in the absence of the target feature

variable, unsupervised ML models will be appropriate for

training, validating, and testing.
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