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With the expansion of scale of the grid-connected wind power, wind power

forecasting plays an increasing important role in ensuring the security and

steady operation and instructing the dispatch of power systems. In

consideration of the randomness and intermittency of wind power, the

probabilistic forecasting is required in quantifying the uncertainty of wind

power. This study proposes a probabilistic wind power prediction method

that combines variational modal decomposition (VMD), singular spectrum

analysis (SSA), quantile regression (QR), convolutional neural network (CNN)

and bidirectional gated neural network (BGRU). Firstly, a combination

decomposition method VMDS combining VMD and SSA is proposed to

decompose wind power sequence to reduce the complexity of the

sequence. Next, a feature extractor based on CNN and BGRU (CBG) is used

to extract complex dynamic features of NWP data and high-frequency

components. Then, the QR is performed by the BGRU based on the high-

order features to obtain the predicted values for different quantiles. Finally, the

kernel density estimation (KDE) is employed to estimate the probability density

curve of wind power. The proposed model can achieve reliable probabilistic

prediction while achieving accurate deterministic prediction. According to

comparisons with related prediction models, the effectiveness of the

proposed method is verified with the example test using datasets from the

wind farm in China.
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1 Introduction

The limitation of fossil fuels and the environmental

degradation caused by fossil fuels have restricted the

increasing global demand for electricity. Countries around the

world are promoting the rapid development of clean energy

represented by wind energy. In 2021, the newly installed wind

power capacity in the world exceeded 94 GW (Global Wind

Energy Council (GWEC), 2022). Due to the randomness,

volatility and intermittent of wind power, the large-scale grid

connection of wind power brings great uncertainty and risks to

the supply side of the power system (Georgilakis, 2008).

Therefore, accurate and reliable wind power forecasting is

important to the safe operation of the power system and the

utilization of wind energy (Jin et al., 2021).

Wind power prediction methods are mainly divided into

deterministic prediction and probabilistic prediction (Zhou et al.,

2021). Deterministic prediction is achieved through point

prediction models which have three types: statistical models,

machine learning models, and deep learning models. Many

statistical models have been applied to wind power prediction,

such as kalman filter (KF) (Liu and Liang, 2021), auto regressive

moving average (ARMA) (Erdem and Shi, 2011), auto regressive

integrated average (ARIMA) (Amini et al., 2016), etc. Commonly

used machine learning models include artificial neural network

(ANN) (Ren et al., 2014), support vector machine (SVM)

(Demolli et al., 2019), etc.

Compared with statistical and machine learning models, deep

learning models have stronger nonlinear mapping capabilities.With

the development of deep learning technology, some deep neural

network (DNN) models have been applied to renewable energy

prediction, including deep belif network (DBN) (Wang et al., 2018),

convolutional neural network (CNN) (Oh et al., 2019; Hong and

Satriani, 2020; Huang et al., 2022), recurrent neural network (RNN)

(Yu et al., 2018) etc. Ordinary RNN models suffering from the

gradient vanishment and gradient explosion are rarely used to

predict wind power (Zang et al., 2021), while its variants long

short term memory neural network (LSTM) (Yuan et al., 2019;

Wang et al., 2020; Zang et al., 2021) and gated recurrent unit (GRU)

(Niu et al., 2020; Peng et al., 2020; Kisvari et al., 2021) can deal with

the long-term dependency through specific internal structures.

The models mentioned above are all point prediction models.

The expected values of wind power are obtained while the results

are incapable of quantifying the uncertainty. Especially when the

wind power fluctuates strongly, the point prediction may be less

reliable and cannot meet the actual scheduling requirements.

Therefore, the probability density and interval prediction of wind

power have more significance in practical application and

become a hot research direction recently (Wang et al., 2017;

Zhang et al., 2019; Zhou et al., 2021).

Wind power probabilistic prediction can provide the

probability density functions of wind power at the future time

or the fluctuation interval under a certain degree of confidence

(Zhang et al., 2016). Commonly used probabilistic prediction

methods include error analysis method (Lv et al., 2021), upper

and lower bound estimation method (Liu et al., 2020), quantile

regression method (QR) (He and Li, 2018), etc. QR can construct

the relationship between the input and the output of different

quantiles, combined with the kernel density estimation (KDE) can

achieve probabilistic prediction. QR is essentially a linear model,

and its ability to express nonlinear data is poor. Some variants of

QR models such as neural network QR solve this problem by

combining QR with BP neural network (He and Li, 2018). In Ref.

(Zhang et al., 2019), a framework combining the point prediction

model with QR was proposed to achieve probabilistic prediction.

QRLSTM, QRGRU and QRMGM were proposed to prove the

effectiveness of the proposed framework. In Ref. (Peng et al., 2021),

a model called EALSTM-QR was designed, which combined QR,

LSTM, Encoder and Attention to improve the non-linear

expression of data. Yao et al. (He and Wang, 2021) combined

the LASSO regression with the QRNN model, and used ensemble

empirical mode decomposition (EEMD) to reduce the complexity

of the wind power sequence, which effectively improved the

prediction accuracy. In Ref. (Sun et al., 2022), a quantile

regression forest interval prediction model is proposed for

multiple fluctuation processes for ultra-short-term time scales.

Many scholars have proposed hybrid models that combine data

decomposition technology and prediction model to further improve

the accuracy of wind power prediction (Zhang et al., 2021). Common

data decomposition methods include empirical mode decomposition

(Bokde et al., 2018) (EMD), EEMD (Santhosh et al., 2018), empirical

wavelet transform (Hu and Wang, 2015) (EWT), variational mode

decomposition (Dragomiretskiy and Zosso, 2014) (VMD), singular

spectrum analysis (Yu et al., 2017a) (SSA), etc. In Ref. (Han et al.,

2019), a prediction method combining VMD and LSTM (VMD-

LSTM) is proposed to improve the accuracy ofmulti-step wind power

prediction. Similar to other combined models, VMD is used to

decompose wind power data into trend, periods and random

components; then, LSTM is used to deeply learn the characteristics

of the three components. Some studies combine different

decomposition methods to improve the overall prediction

performance. Sun et al. (Sun et al., 2021) proposes a secondary

decomposition strategy, which combines EWT and VMD to

comprehensively filter out the instability and noise of the wind

power sequence. In Ref. (Yu et al., 2017b), a hybrid model that

combines EMD, SSA and Elman uses SSA to reprocess the highest-

frequency component of the EMD component to improve the

accuracy of prediction.

Data of numerical weather prediction (NWP) includes forecast

data such as wind speed, wind direction, humidity, etc., which

including features related to wind power (Wu et al., 2021). Using

NWPdata as a feature input can improve the prediction performance

of wind power (Wang et al., 2021). The information contained in

NWP data is complex and diverse. Effectivemethods need to be used

to extract the dynamic features of NWP data as input to the

predictive model. Hao et al. (Yin et al., 2021) designed a feature

Frontiers in Energy Research frontiersin.org02

Zhu et al. 10.3389/fenrg.2022.937240

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.937240


extractor called CNNs-LSTM, which uses CNN and LSTM to extract

meteorological and temporal features of wind farms. Zang et al.

(Zang et al., 2020b) proposed a CNN-LSTM model, which applies

CNN to extract spatial features frommeteorological data, and LSTM

extracts temporal features from historical solar irradiance time series

data. In (Cheng et al., 2022), a model based on CNN and LSTM is

proposed for prediction of satellite-derived solar irradiance and

improves its learning ability relative to traditional learning models.

In Ref. (Wang et al., 2022), a load probability density forecasting

model based on convolutional long short-term memory

(ConvLSTM) is proposed to capture the deep information. CNN

has powerful capabilities of feature extraction and non-linear

expression, which can effectively extract important information

from input data (Zang et al., 2020a). GRU has powerful

capabilities of time series analysis and learning, and can effectively

extract the time series features of the sequence. This study uses the

feature extraction module that combines CNN and Bi-directional

GRU (BGRU) to extract features from NWP data.

There are many studies based on wind power point forecasting,

but there is a lack of wind power probability forecasting models that

combine the advantages of combinatorial decomposition techniques

and deep neural networks. Reliable probabilistic predictions and

accurate point predictions of wind power need to be achieved

simultaneously. Based on the above analysis, this study proposes a

novel wind power probabilistic prediction model combining VMD,

SSA, QR, CNN, and BGRU (VMDS-QR-CBG). First, wind power

history sequence is processed by VMDS, where the SSA improves

VMD though making further operation on the high-frequency

components of the VMD. Next, the BGRU extracts the timing

features of the low-frequency components of the wind power;

CBG is used to extract the complex dynamic features of high-

frequency components and NWP data respectively. Then, BGRU

further extracts deep time-series features of all the extracted features,

and establishes a QR model to obtain predicted values at different

quantile conditions. Finally, the probability density function curve

(PDF) of wind power is obtained by kernel density estimation (KDE)

to achieve probabilistic prediction. Themodel can also achieve reliable

point and interval prediction. According to the discussions above, the

main contributions of this study can be summarized as follows:

• A novel combined data decomposition method called

VMDS is proposed, which combines VMD and SSA to

reduce the complexity of the original wind power

sequence and further extract the high-frequency trend

components. The input data processed by VMDS helps

to improve the accuracy of the prediction model.

• A feature extractor called CBG that combines CNN and

BGRU is used to extract features from complex data,

including meteorological data and high-frequency data.

• A hybrid VMDS-QR-CBG model with three input

channels is developed by combining VMDS and CBG

and QR to achieve reliable wind power point and

probabilistic prediction.

2 Proposed methodology

2.1 General process of the proposed
method

This section introduces the proposed model of wind power

probabilistic prediction. The flow chart of VMDS-QR-CBG is

shown in Figure 1, where the forecasting process can be

summarized as follows:

• VMDS for data decomposition.

The wind power sequence is decomposed into several

components using the proposed data decomposition method

VMDS. The low-frequency components and high-frequency

trend components are used as inputs to different channels.

• Feature extraction.

The input of the proposedmodel has three kinds of data, namely

VMD components XIMF, SSA components XIMFS and NWP data

XNWP. The features of the data are extracted by different modules.

The features extracted by each module are combined into Xf, which

is used as the input of subsequent modules.

• Probabilistic forecasting.

A probability prediction module based on QR and BGRU is

constructed, and prediction values under different quantiles are

FIGURE 1
Structure diagram of VMDS-QRCNN-BGRU.
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obtained according to fusion features Xf. At the same time,

deterministic forecast results and interval forecast results are

obtained. KDE is used to obtain the PDF curve of the predicted

value.

2.2 Combination decomposition VMDS

VMDS is a combined decomposition method composed of

VMD and SSA. Considering the degree of data utilization and

the training cost of the model, VMDS is used to decompose

the wind power data into 5 components. The main process is:

• VMD is used to decompose the wind power sequence X

into sub-sequences, XIMF1 to XIMF5, where XIMF1, and

XIMF2 are low-frequency components, XIMF3 to XIMF5

are high frequency-components.

• SSA is used to extract trend components of XIMF3 to XIMF5

to reduce the complexity of the sequence and highlight the

timing feature of the sequence. The trend components are

defined as XIMFS1, XIMFS2, and XIMFS3.

The principles of VMD and SSA are as follows.

2.2.1 Variational mode decomposition
VMD technology is a non-recursive signal multi-resolution

decomposition technology, which can decompose a complex signal

S into qmodal functions with different center frequencies (Hu and

Wang, 2015). The specific steps of VMD are as follows:

Calculate the unilateral frequency spectrum of each mode

based on the Hilbert transform method. Perform exponential

correction for each modal component to shift its phase to the

center frequency of the modal itself.

According to the Gaussian smoothness of the frequency-

shifted signal, the bandwidth is estimated to minimize the sum of

the estimated bandwidth of each sub-signal.

min
uk,ωk

⎧⎨⎩∑
k

�������zt[(δ(t) + j

πt
)puk(t)]e−jωkt

�������2⎫⎬⎭
s.t. S(t) �∑

k

uk(t)
(1)

The augmented Lagrangian function is introduced to turn

the constrained variational problem into an unconstrained

problem:

L(uk,ωk, λ) � β∑
k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣zt[(δ(t) + j

πt
)puk(t)]e−jωkt

∣∣∣∣∣∣∣|2
+
∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣S(t) −∑k uk(t)||2 + < λ(t), S(t) −∑

k

uk(t)>
(2)

Solve the Eq. 2 by the alternating direction multiplier

method, obtain the required q modal components uk, and the

center frequency ωk.

2.2.2 Singular spectrum analysis
SSA constructs a trajectory matrix based on the observed

time series, and decomposes and reconstructs the trajectory

matrix, thereby extracting sub-sequences representing different

components of the original time series (Dragomiretskiy and

Zosso, 2014). The specific steps of SSA are as follows:

Select the appropriate embedding dimension L to transform

the time series Xn = (x1, ..., xn) into the trajectory matrix A.

A �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 / xM−L+1
x2 x3 x4 / xM−L+2
..
. ..

. ..
.

/ ..
.

xL xL+1 xL+2 / xM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3)

Perform singular value decomposition (SVD) on matrix A,

and the SVD formula is as follows:

A � ∑rank(X)

i�1

��
λi

√
UiV

T
i (4)

Use the diagonal averaging method to transform the

decomposition matrix A into a matrix of length M. The

formula for diagonal averaging is as follows:

xp
k �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
k
∑k
m�1

xp
m,k−m+1 1≤ k<Lp

1
Lp ∑Lp

m�1
xp
m,k−m+1 Lp ≤ k<Qp

1
M − k + 1

∑M−k+1

m�k−Qp+1
xp
m,k−m+1 Qp ≤ k<M

(5)

Where the number of vectors Q � M − L + 1, Lp � min(L,Q),
Qp � max(L, Q).

2.3 Feature extraction based on deep
neural network

The DNNs mainly used in the model are CNN and BGRU.

Construct different feature extraction modules for different

inputs:

• The feature extraction of XIMF mainly considers the trend

component XIMF1 and the periodic component XIMF2.

Their fluctuation frequency is low and the trend is

obvious. Therefore, a two-layer BGRU is used to extract

the features of XIMF.

• The fluctuation frequency of XIMFS is high and the trend is

not obvious. Therefore, the feature extraction module that

combines CNN and BGRU (CBG) is used to extract the
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complex dynamic features of XIMFS. The structure of CBG

is cascaded, mainly including two layers of CNN and two

layers of BGRU.

• XNWP containsmany non-linear and low-correlation factors.

The CBG module is used to extract the spatiotemporal

features of the impact of XNWP on wind power.

The principles of CNN and BGRU are as follows.

2.3.1 Convolutional neural network
CNN is a DNNwith pooling operation, local connection, and

weight sharing based on convolution operation. It is widely used

to extract high-order features from complex data. 1D-CNN

structure mainly includes convolutional layer, pooling layer,

and fully connected layer (Huang et al., 2022).

The function of the convolutional layer is to extract features

from the input data by scanning through the convolution kernel.

The convolution formula is shown in Eq. 6. The function of the

pooling layer is to extract the convolutional layer. The features of

the feature vector are sampled, and while retaining the main

information of the feature vector, it can reduce the dimension of

the feature vector and the complexity of the network. The fully

connected layer is mainly used to integrate the features extracted

by the network, and then output the final feature vector of a

specific dimension after processing methods such as activation

functions. The overall calculation formula is shown in Eq. 7.

yl
p � r⎛⎝ ∑

q∈Tl−1
xl−1
q pvlp + blp⎞⎠, p ∈ Tl (6)

yl
j � σ⎛⎝ ∑Nl−1

i�1
Wijx

l−1
i + blj⎞⎠ (7)

2.3.2 Bi-directional gated recurrent unit
GRU optimizes and improves LSTM, reduces network

complexity, and maintains a learning performance

equivalent to LSTM (Peng et al., 2020). The gated loop unit

in GRU has two gate structures: an update gate and a reset

gate. The update gate controls the degree of retention of the

state at the previous moment in the current state, and the reset

gate controls the degree of combination of the current input

and the state at the previous moment. The calculation formula

of the hidden layer state ht of GRU is as follows:

zt � σ(Wzxxt + Wzhht−1 + bz) (8)
rt � σ(Wrxxt + Wrhht−1 + br) (9)

~ht � tanh(W~hh(rt ⊙ ht−1) + W~hxxt + b~h) (10)
ht � (1 − zt) ⊙ ht−1 + zt ⊙ ~ht (11)

GRU can make full use of the information of the current and

previous moments, but cannot obtain the unit information after

the current moment. BGRU combines two GRU networks with

opposite timings to fully obtain the hidden information before

and after the current unit, and further mine timing features.

2.4 Probabilistic prediction module

According to the fusion features obtained by the feature

extraction module, a prediction model based on BGRU and QR is

constructed.

Use BGRU to extract deeper timing features of Xf, and

send the results to the multi dense layers for processing. The

process can be expressed as:

y � f(W, b,Xin) (12)

Construct the quantile loss function as in Eq. 13 to realize

quantile regression.

~W(τ), ~b(τ) � argmin
W,b

∑n
t�1
ρτ(yt − f(W(τ), b(τ), Xt)) (13)

ρτ(μ) � μ(τ − I(μ)), I(μ) � { 1, μ< 0
0, μ≥ 0

(14)

Where the quantile τ is continuously taken in the range of (0,1),

the Adam gradient descent algorithm is used to optimize Eq. 13

to obtain the optimal estimated values of network parameters

W(τ) and b(τ) under different quantile conditions. Furthermore,

the predicted value of wind power at different quantile conditions

can be obtained according to Eq. 14.

~y(τ) � f( ~W(τ), ~b(τ), Xin) (15)

After obtaining the predicted values at different quantiles,

the deterministic prediction results and interval prediction

results can be obtained, which are ~y(0.5) and

[~y(τdown), ~y(τup)] respectively. τdown and τup are

determined by the confidence of the prediction interval.

τdown � 0.5α and τup � 1 − 0.5α while the prediction interval

confidence is 1 − α.

KDE is a classic non-parametric estimation method that

does not require prior assumptions (Zhang et al., 2019).

Provided at a given point y, the prediction value of the

prediction model at each quantile is ŷ = [ŷ1, ŷ2,. . ., ŷN],

the probability density function of y at a formula:

P(y) � 1
nB
∑n
i�1
K(yi − y

B
) (16)

Where B is the bandwidth, using grid search with cross-validation

to select the appropriate bandwidth. This study uses the

Epanechnikov as kernel function, the formula is as follows:

K(μ) � ⎧⎪⎨⎪⎩ 3
4
(1 − μ2), μ ∈ [−1, 1]

0, μ ∉ [−1, 1]
(17)
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KDE is used to fit the predicted values at different

quantiles to obtain the final PDF to achieve probability

density prediction.

3 Performance indicators

3.1 Evaluation metrics of deterministic
prediction

This study uses root mean square error (RMSE) and normalized

mean absolute percentage error (NMAPE) to evaluate the

deterministic prediction performance of the prediction model

(Zhang et al., 2019). The formulas are as follow:

RMSE �
������������
1
n
∑n
i�1
(yi − ŷi)2√

(18)

NMAPE � 1
n
∑n
i�1

∣∣∣∣yi − ŷi

∣∣∣∣
max

n

i�1 yi

× 100% (19)

The smaller the RMSE and NMAPE values, the better the

performance of the deterministic prediction model.

3.2 Evaluation metrics of interval
prediction

This study uses average coverage error (ACE),

prediction interval normalized average width (PINAW),

and interval sharpness (IS) to evaluate interval

prediction performance (Zhang et al., 2019). The formula is

as follows:

ACE � ⎛⎝1
n
∑n
i�1
{ 1, yi ∈ [lαi , uα

i ]
0, yi ∉ [lαi , uα

i ] − (1 − α)⎞⎠ × 100% (20)

TABLE 1 The basic information of data set.

Numbers Mean (MW) Std (MW) Max (MW) Min (MW)

1,440 11.15 7.67 48.44 0

FIGURE 2
Original wind power and VMDS decomposition results.

TABLE 2 The main parameter settings of VMDS-QR-CBG.

Algorithm Parameter Value

CNN1 of CBG kernel size 2 × 2

Number of kernel 16

CNN2 of CBG kernel size 2 × 2

Number of kernel 32

BGRU of CBG number of hidden layer nodes 32

BGRU of QRGRU number of hidden layer nodes 64

Dense number of hidden layer nodes 128,64

Dropout rate 0.2
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PINAW � 1
ns
∑n
i�1
(uα

i − lαi ) (21)

IS � 1
n
∑n
i�1

⎧⎪⎨⎪⎩ −2α(uα
i − lαi ), yi ∈ [lαi , uα

i ]
−2α(uα

i − lαi ) − 4(lαi − yi), yi < lαi
−2α(uα

i − lαi ) − 4(yi − uα
i ), yi > uα

i

(22)

ACE represents the coverage of the actual value in the

prediction area under a given confidence interval, and

reflects the reliability of the interval prediction. PINAW is

used to measure the width of the prediction interval and

reflects the acuity of interval prediction. IS measures the

comprehensive performance of interval prediction, because

ACE and PINAW are a pair of contradictory indicators.

3.3 Evaluation metrics of probabilistic
prediction

This study uses continuous ranked probability score

(CRPS) to evaluate probabilistic prediction performance

(Peng et al., 2021). The formula is as follows:

CRPS � 1
n
∑n
i�1
∫+∞
−∞
[F(yi) − I(ŷi − yi)]2dyi (23)

F(yi) � ∫yi
−∞

P(xi)dxi (24)

The smaller the CRPS, the better the overall performance of

the model’s probabilistic prediction and the higher the reliability.

4 Testing results and discussions

4.1 Datasets

The original data comes from a wind farm in Jiangsu, China,

which contains the wind power series data and NWP data for the

whole year of 2017.Wind power data is collected every 15 min, so

there are 96 data points in a day. Table 1 shows the basic

information of the data set. The dataset has strong

nonlinearity and non-stationarity. NWP data includes wind

speed at different heights, wind direction at different heights,

temperature, air pressure, humidity, etc.

In the experiment of this study, the input dimensions of wind

power data and NWP data are both set to 10. The first 80% of

each data set is used as the training set, and the last 20% is used as

the test set.

FIGURE 3
PDF at different moments predicted by VMDS-QR-CBG.

TABLE 3 The values of the CRPS of different models.

VMDS-QR-CBG VMD-QRCNN-BGRU VMDS-BGRU QRCNN-BGRU QRGRU QRCNN

0.621 0.713 0.686 0.696 0.716 0.722
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4.2 Result of VMDS

The wind power sequence is processed by VMDS to obtain

two low-frequency components and three high-frequency

components. The partial decomposition result of Dataset is

shown in Figure 2, where IMF1 to IMF5 are the results of

VMD, and IMFS1 to IMFS3 are the results of further

processing by SSA. VMD parameters are set as: penalty

parameter is 1,000; initial center frequency is 0;

convergence criterion is 10–6. SSA parameters are set as:

Embedded window length is 10.

4.3 Models and parameter settings

Several predictive models were proposed as comparison

models to verify the superiority of the comprehensive

predictive performance of VMDS-QR-CBG. The models

are VMD-QR-CBG, VMDS-QRGRU, QRCNN-GRU,

QRLSTM, QRGRU. VMD-QR-CBG is used to illustrate

the superiority of VMDS. VMDS-QRGRU is used to

reflect the effect of proposed module of multi-source

feature extraction. QRCNN-GRU, QRLSTM, QRGRU are

common deep learning models that do not use data

decomposition technology, which reflect the overall

performance of the proposed combined model.

The main layer design and hyperparameter settings of

VMDS-QR-CBG are shown in Table 2. The setting of the

model parameters is obtained through multiple experiments

and is suitable for the scale of the dataset. The settings of the

hyperparameters of the comparison models are kept as

uniform as possible to reflect the superiority of the

proposed combined model under a unified hyperparameter

setting. The training configuration of the five models is the

same: the training round is 200, the optimizer is Adam,

the early stop waiting round is 10, and the validation set

ratio is 0.1. The model proposed in this study sets

199 quantile points, and quantile points τ = [0.005, 0.01, ...,

0.99, 0.995].

4.4 Analysis of prediction result

4.4.1 Probability density prediction results
The predicted value at different quantiles obtained by the

models using QR, can estimate the PDF of each observation

point through KDE. Figure 3 shows the PDFs of six randomly

selected observation points for the dataset. Figure 3 shows that

most of the actual values are close to the peak of the PDF and

close to the predicted median. This shows that the proposed

probabilistic prediction model is effective.

Table 3 shows the value of the CRPS of the probabilistic

prediction results of different models. Among them, the CRPS of

VMDS-QR-CBG is the smallest, indicating that the

comprehensive performance of the probabilistic prediction of

VMDS-QR-CBG is the highest.

By calculating the probability integral transformation

(PIT) of the predicted value and analyzing whether it obeys

a uniform distribution, the reliability of the probabilistic

prediction model can be verified. The QQ chart is used to

visually analyze whether the PIT value of the prediction model

result obeys a uniform distribution.

Figure 4 is the QQ plot of the PIT values of the

probabilistic prediction results of VMDS-QR-CBG. The red

straight line is the uniform distribution of the theoretical

situation, and the blue is the probability distribution of the

FIGURE 4
QQ plot of probability prediction results of VMDS-QR-CBG.

TABLE 4 Interval predication error statistics of different models.

Indicators VMDS-QR-CBG VMD-QRCNN-BGRU VMDS-BGRU QRCNN-BGRU QRGRU QRCNN

PINAW95% 0.137 0.161 0.172 0.189 0.236 0.219

ACE95% 1.197 1.283 2.972 2.297 2.253 1.621

IS95% −0.249 −0.307 −0.291 −0.321 −0.432 −0.401
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predicted value of the PIT value. It can be seen from Figure 4

that the distribution of the PIT values are in the Kolmogorov

5% significant band, which shows that the probabilistic

prediction results of VMDS-QR-CBG are reliable.

4.4.2 Analysis of interval prediction results
Excellent interval prediction performance requires that the

acuity of prediction should be improved as much as possible

FIGURE 5
Interval prediction results of Datast1 of different models.

TABLE 5 Deterministic predication error statistics of different models.

Indicators VMDS-QR-CBG VMD-QRCNN-BGRU VMDS-BGRU QRCNN-BGRU QRGRU QRCNN

RMSE/MW 0.492 0.570 0.538 0.587 0.718 0.726

NMAPE/% 1.940 2.240 2.116 2.261 2.639 2.713
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FIGURE 6
Point prediction results of Datast1 of different models.

FIGURE 7
Comparison of prediction results indicators for different datasets.
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while ensuring the reliability of prediction. Table 4 shows the

error statistics of the interval prediction of each model, including

evaluation indicators: PINAW, ACE, IS. The following

conclusions can be drawn: Compared with models using data

decomposition technology, the evaluation indicators of QRCNN-

GRU, QRLSTM, QRGRU models are much inferior. The ACE

value of the models without the decomposition technology is

generally higher than that of the model using the decomposition

technology. However, the PINAW value is much lower than the

model using decomposition technology. This shows that the

prediction interval of models such as QRCNN-GRU is

relatively wide, so that the reliability of prediction is

improved, but the acuity of prediction is reduced, thereby

reducing the overall performance of interval prediction. The

IS values of the model using VMD or VMDS are

0.1–0.5 lower than the IS value of models such as QRCNN-

GRU. In summary, compared to traditional models that do not

use data decomposition technology, the interval prediction of

VMDS-QR-CBG has better performance.

The comparison of the interval prediction performance of

VMDS-QR-CBG and VMD-QR-CBG is to verify the

effectiveness of the proposed VMDS. The ACE value of

VMDS-QR-CBG is lower than that of VMD-QR-CBG, which

shows that the reliability of VMD-QR-CBG is slightly higher

than that of VMDS-QR-CBG. However, the PINAW value of

VMDS-QR-CBG is respectively lower than VMD-QR-CBG by

14.9%. The IS value of VMDS-QR-CBG is respectively higher

than VMD-QR-CBG by 18.8%. The above analysis shows that

the proposed VMDSmethod is helpful to the improvement of the

model’s interval prediction performance.

The comparison between the interval prediction

performance of VMDS-QR-CBG and VMDS-QR-GRU is to

verify the effectiveness of the proposed combined model. The

PINAW value of VMDS-QR-CBG is respectively lower than

VMDS-QR-GRU by 20.3%. Moreover, the IS value of VMDS-

QR-CBG is respectively higher than VMDS-QR-GRU by 14.4%.

The above analysis can show that the proposed combination

method using CBG to extract the dynamic features of the NWP

data and SSA components is effective.

The interval prediction results are shown in Figure 5. All

models have good prediction performance, but the interval width

of VMDS-QR-CBG is significantly narrower than that of other

models. VMDS-QR-CBG can both ensure reliability and high

sensitivity in wind power with large fluctuations.

4.4.3 Analysis of deterministic prediction results
This study selects the median of the probabilistic

prediction results of each model as the deterministic

prediction result of wind power.

Table 5 shows that the RMSE and NMAPE of VMDS-QR-

CBG are the lowest. RMSE decreased by 13.6, 8.6, 16.2,

31.5 and 32.2% respectively compared with other models.

NMAPE decreased by 0.300, 0.176, 0.312, 0.699 and

0.773 respectively compared with other models.

Figure 6 is a comparison diagram between the predicted

values of each model and the actual value of wind power. Figure 6

shows that each model can accurately predict the change trend of

wind power, and the predicted value of the VMDS-QR-CBG

model is the closest to the actual value of wind power. In

summary, VMDS-QR-CBG can better ensure accurate

deterministic prediction of wind power.

4.4.4 Generality verification
Data sets of different seasons are selected as the prediction

objects to verify the versatility of the model in different

meteorological conditions. Figure 7 shows the index

comparison of the prediction results of different models for

the four datasets. Both point predictors and probabilistic

indicators of the proposed model are optimal in different

datasets, which indicates that the proposed model has high

generality.

5 Conclusion

This study proposes a combined model of wind power

probabilistic prediction based on combined decomposition

and QR and CBG, namely VMDS-QR-CBG. The multi-

channels input data of the model is constructed by VMDS,

which can reduce the complexity of the data and improve the

prediction ability of the model. CBG has powerful feature

extraction ability, which can improve the accuracy of the

whole model compared with the traditional model. Finally,

QR and KDE combine VMDS and CBG to realize

probabilistic prediction. Compared with the traditional model,

VMDS-QR-CBG has better comprehensive performance in wind

power prediction. The proposed combined model can achieve

high reliability and acuity interval prediction and reliable and

effective probabilistic prediction while ensuring the accuracy of

point prediction. The proposed model combines a variety of

methods, and the structure of the model is complex. The model

can attempt to be optimized for larger scale wind power forecasts.
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Nomenclature

Indices

k Index of sub-sequence

t Index of time

l Index of layer

τ The quantile point

i Index of sample

p/q Index of channel

Parameters

XIMF/XIMFS/XNWP The VMD components, SSA components and

NWP data

X The historical wind power data input

Xf The fusion features

uk(t) The discrete sub-signal with different frequencies obtained

by VMD

ωk The center frequencies of sub-signal

δ(t) The unit impulse function

S(t) The original complex signal to be decomposed

λ(t) The Lagrangian multiplier value at time t

β The weight coefficient to ensure the accuracy of the

reconstructed signal

L(·) The joint objective function

‖ · ‖2 The two-norm function

λi The i-th eigenvalue

Ui The eigenvector corresponding to the i-th eigenvalue

Vi The i-th principal component

yl
p The output vector of the p-th channel of the l-th layer

xl−1
q Input vector for the q-th channel of the l-1-th layer

Tl / Tl−1 Number of channels for l-th layer and l-1-th layer

vln The l-th layer the n-th convolution kernel vector

r(·) Activation function: rectified linear unit function

Wij The weight between the i-th neuron and the j-th neuron

Nl−1 The number of neurons in the l-1-th layer

blj The bias of the j-th neuron

σ(·) Sigmoid activation function

zt / rt Output of update gate and reset gate

ht The state of the hidden layer at time t

Wzx / Wzh/ bz Weights and biases of update gate

Wrx / Wrh/ br Weights and biases of reset gate

tanh Hyperbolic tangent function

Xin The historical data input

y The wind power forecast output

W/b The network weight and bias

f(·) A nonlinear function reflecting the relationship between Xin

and y

Xt The input of the t-th sample

yt The actual value of the wind power of the t-th sample

f(W(τ),b(τ),Xi) The predicted value of wind power at τ-quantile

W(τ)/b(τ) The network parameters related to τ-quantile

ρτ(·) The check function

I(·) The indicative function

~y(τ) The predicted value of wind power at the τ-quantile
B The bandwidth

K(·) The kernel function

n The number of test samples

ŷi The predicted values output by the i-th sample

uαi / l
α
i The lower and upper bounds of the prediction of the i-th

sample

α The significance level

s The difference between the max value and the min value of the

actual value

P(·) The probability density function

F(·) The cumulative density function
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