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Transformer is one of the important equipment in the power grid, which helps to integrate
renewable energy into the transmission and distribution network efficiently. The safe and
stable operation of transformer is of great importance for the reliable transmission of
electricity generated from renewable energy and for the reliable use of electricity by the
end users. Therefore, it is important to assess the condition to avoid the faults of the
transformer. In this paper, a variable weight synthesizing assessment model is presented
that combines the G1 method, the entropy weight method, and a variable-weight method
proposed in this paper to assess the condition of transformer based on the offset of
the transformer equivalent circuit parameters. First, we propose deterioration indexes
oriented to the maintenance management needs, which can well reflect the degree
of deterioration of each transformer component. Second, the various defects of the
transformer are used as the assessment indexes, and the initial weight is given to the
assessment indexes according to the damage degree of the defect. The initial weight is
calculated comprehensively by the G1 method and the entropy weight method. Then,
each index is scored according to the offset of the equivalent circuit parameters, and
the weights are adjusted appropriately according to the scores of the indicators using a
variable weighting method to emphasize the severity of the defect or the “sub-health”
condition of the transformer. Finally, the respective scores and combined weights of
the assessment indexes are weighted to obtain a comprehensive score. The simulation
shows that the model is more sensitive to abnormal and “subhealth” conditions of the
transformer, which verifies the feasibility of the variable weight synthesizing model to
assess the condtion of the transformer.

Keywords: transformer condition assessment, variable weight synthesizing model, deterioration indexes, G1
method, entropy weight method

1 INTRODUCTION

For the power grid, renewable energy sources such as wind and solar are used on a large scale. They
play an important role in reducing carbon emissions and reducing operating costs (Fu et al., 2020). A
secure and stable power grid can reliably transmit electricity generated by renewable energy sources
to end users. Whether it is a large main transformer or a small and medium-sized low-voltage
distribution transformer of 35 kV and below, it has a wide distribution range and a large number, and
occupies an important position in the power grid. Once a power transformer fails, it will have a huge
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impact on the power system, bring a great negative impact on
industrial production and residential electricity consumption,
and seriously endanger the safety of life and property
(Kari et al., 2018). Therefore, only by accurately evaluating the
status of transformers can we reliably develop low-carbon, digital,
and intelligent renewable energy and achieve the goals of “carbon
peak” and “carbon neutrality” (Long et al., 2022).

Due to the environment, service life and continuous use
of the transformer, the health status of the transformer will
naturally deteriorate day by day, sowing the seeds for the
occurrence of faults. If the condition of the transformer can
be accurately assessd, technicians will be able to detect defects
in the transformer and take timely maintenance measures to
ensure long-term healthy operation. Therefore, it is important
to assess the condition of the transformer. However, from DL/T
1685-2017 Guide for condition assessment of oil-immersed
power transformers (reactors) (NEA,2017), it is known that
there are many assessment condition quantities of transformers,
and the changes of many condition quantities need to be
considered in combination with various factors. In addition, there
are ambiguous and uncertain relationships between different
condition quantities. Therefore, the condition assessment is very
difficult and the data is difficult to process.

In recent years, researchers have used intelligent techniques
such as fuzzy theory (Rexhepi and Nakov, 2018), clustering
(Eke et al., 2019), and neural networks (Islam et al., 2017) to fully
combine and utilize the condition quantities of transformers,
which can eventually assess the current health of transformers
more accurately and thus avoid large-scale power accidents
due to sudden failures. Many researchers have combined these
intelligent techniques and their improved methods with the
dissolved gas approach (DGA) for assessing the health of
oil-immersed transformers. (Lin et al.,, 2017) pointed out that
the traditional transformer condition assessment standards
were single, and different types of condition information in
power transformers gave different assessment results, which
made it difficult for equipment managers to make decisions.
To address these shortcomings, an artificial neural network
model for transformer condition assessment based on Yager
synthesis theory was proposed. (Yanetal,2019) combined
BP neural network with improved Adaboost algorithm, then
combined PNN to form a series of diagnostic models for
transformer faults. By connecting BP-Adaboost in series with
PNN, it not only improves the defect of BP-Adaboost algorithm
which does not diagnose samples, but also improves the
defect of PNN model which has low diagnostic accuracy.
(Arias Velasquez and Mejia Lara, 2020) proposed a new method
with the lowest computational cost, using genetic algorithm
to optimize ANN classifier, which was used to classify faults
with genetic algorithm-based optimizer instead of the traditional
RL action selection process. However, the DGA method is
often limited to fault classification of transformer fault states.
In fact, transformers are often in between normal and fault
conditions (Tian et al., 2019). Therefore, the condition of the
transformer cannot be accurately assessed by DGA alone.Many
researchers also integrate multiple condition quantities in
addition to dissolved gas data to assess the overall state of

the transformer. Most of the currently used methods are data
mining and intelligent algorithms such as combination of
subjective and objective weights (Zhao et al., 2013), cloud models
(Li et al., 2016; Du and Sun, 2020), fuzzy theory (Luo et al., 2007;
Lietal., 2015), object element theory (Tan et al., 2020), set-pair
analysis (Liao et al., 2010), association rules (Li et al., 2013) and
their improvement algorithms. (Khalyasmaa et al.,, 2019) used
random forest to solve the problem of actual technical status
of operating power transformers. The initial dataset consisted
of transformer oil analysis results, load conditions, infrared
snapshots and integrated features of the technical state of the
bushing, arrester and cooling system with a high accuracy of state
identification. (Miao et al., 2014) developed a transformer state
hierarchical assessment model incorporating a gray clustering
approach and improved D-S evidence theory to evaluate the
overall state of the transformer. The results showed that this
artificial neural network model using Yager synthesis theory had
better results than the traditional model. (Zhou and Hu, 2020)
used DGA data, oil testing data, and electrical testing data as
indicators to integrate condition information using a multi-factor
condition assessment method based on fuzzy sets and factor
spaces. In addition, an improved hierarchical analysis method is
proposed to estimate the relative importance of attributes.

However, researchers mostly use artificial intelligence
techniques to assess the condition of transformers, and the
accuracy of condition assessment depends on the acquisition
accuracy of data acquisition equipment to obtain characteristic
quantities. The difference between the fault data and the data
during normal operation is very small, and it is impossible for
artificial intelligence technologies to make a completely accurate
prediction. Second, researchers have also mostly assessed the
condition of transformers using data such as dissolved gas ratios
as indexes, i.e., diagnosing and assessing transformers based
on their phenomena. Although the occurrence of abnormal
phenomena is related to transformer defects to a certain extent,
it cannot be directly inferred that the transformer is not working
properly, and the specific fault location or type of fault cannot be
accurately inferred. Moreover, these methods of assessment based
on phenomena are not necessarily applicable to all transformers,
such as oil chromatography for oil-immersed transformers but
not for dry-type transformers.

Many researchers found that transformer equivalent circuit
parameters were closely related to transformer faults such as turn-
to-turn short circuit, winding deformation, and core multipoint
grounding. In addition, some standards (NDRC,2008;
NEA, 2010; AQSIQ, 2015a; AQSIQ, 2015b; NEA, 2021) also
confirm this. The variation of leakage resistance correlates with
the severity of winding deformation, the variation of short-
circuit resistance correlates with the severity of turn-to-turn short
circuit and poor contact, and the variation of excitation resistance
correlates with the severity of multi-point grounding of the core
or short circuit between the pieces. Therefore, using the leakage
resistance, short-circuit resistance and excitation resistance as
assessment indexes, the condition of the winding, core and
tap changer of the transformer can be assessed, providing a
reference for a comprehensive assessment of the transformer’s
condition. Accurate identification of these parameters can
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accurately detect faulty components and helps to assess the
condition of the transformer. Panetal (2017) proposed a
method for online detection of short-circuit impedance of
a three-phase transformer that allows online monitoring of
transformer winding deformation independent of transformer
three-phase load factor, three-phase load power factor, and three-
phase load unbalance conditions. Ouyang etal. (2018) used
online monitoring of the obtained transformer port information,
combined with PSO to identify all parameters of the transformer
T-equivalent circuit to improve the identification accuracy, and
by comparing the changes of the equivalent parameters in real
time, it can effectively determine whether there is an internal
fault in the transformer. Wu et al. (2018) proposed an online
identification method based upon the sudden short-circuit test to
achieve the accurate calculation of short-circuit impedance and
improve the testing capability and testing efficiency. Ecaterina
and Ion (2019) proposed a transformer equivalent circuit
parameter identification method for different equivalent circuits
of double-winding transformers. Jiao etal. (2014) used least-
squares method and time-domain fast algorithm to identify the
excitation inductance of transformer T-equivalent circuit, and
it is not affected by excitation inrush, system operation mode
changes and system harmonics and can be used for testing. The
transformer equivalent circuit parameter identification method
performs fault diagnosis from the essence of the transformer
rather than from the phenomena presented by the transformer
like the DGA mentioned earlier to diagnose whether a fault will
occur, so the method can reflect the severity of the transformer
fault more accurately and has a wider range of application.

The only way to directly reflect whether a transformer is
defective is to start with its function, i.e., to analyze whether
the transformer is accurately completing its job of transforming
voltage. And by starting from the function, we can determine the
specific part of the transformer where the defect occurs, which
is also more widely applicable. As mentioned above, transformer
equivalent circuit parameters are closely related to transformer
faults such as turn-to-turn short circuit, winding deformation,
core multi-point grounding, etc. Accurate identification of these
parameters can accurately identify faulty components and give
maintenance recommendations. In this paper, leakage reactance,
short-circuit resistance and excitation resistance are used as
assessment indexes, which can assess the condition of the
winding, core and tap changer, so as to comprehensively assess
the condition of the transformer.

The main contributions of this paper are as follows:

e Most of the current researches assess the condition of
transformers according to the parameters reflecting whether
the phenomenon is abnormal or not. In contrast to these
studies, we assess the condition of transformers based on
its function, ie., according to the deviation between the
equivalent circuit parameters and the nominal value to assess
the severity of each defect, and then assess the condition of
transformers.

e The concept of deterioration indexes for maintenance
management needs is presented. The deterioration indexes
are used to reflect the deterioration level of windings, cores

and tap changers and to assess the condition of transformer
components.

e A variable weight synthesizing model is proposed. Different
from the current research, the focus of this paper is on
the innovation of the variable weight method. For the
characteristics of transformers, this paper proposes a variable
weight method and combines it with the G1 method and
the entropy weight method to comprehensively assess the
condition of transformers.

The rest of the paper is structured as follows: Section 2
presents the deterioration indexes of the transformer and
describes the condition assessment for distribution operation
and management. Section3 presents the variable weight
synthesizing model. Section 4 verifies the feasibility of the
variable weight synthesizing model for different health conditions
of transformers. Finally, conclusions are drawn in Section 5.

2 TRANSFORMER DETERIORATION
INDEXES AND CONDITION ASSESSMENT

2.1 Deterioration Indexes for Maintenance

Management Needs

Maintenance management is more focused on transformer
components and requires diagnostic methods that point to the
areas where problems occur. Therefore, the method designed
in this subsection will ultimately give indexes of the degree of
deterjoration that can be reflected to the defective components
to provide guidance for maintenance.

To reflect the degree of deterioration of each part of the
transformer more precisely, the characteristic quantities of each
part of the transformer need to be profiled. In general, the
specific data of each part of the transformer cannot be obtained
directly, and the corresponding parameters should be measured
by transformer-related experiments to indirectly reflect the
deterjoration status of each part of the equipment. The physical
quantities that can reflect the degree of deterioration of each part
of the transformer are called deterioration indexes.

The transformer degradation indicator is defined as a vector:

X = [x,%,%] (1)

where x, indicates the degradation of the winding, x, indicates
the degradation of the core and x; indicates the degradation of
the tap changer.

The deterioration indexes of winding include winding
deformation degree, winding insulation deterioration degree,
winding resistance, winding insulation resistance to ground,
winding capacitance and dielectric loss factor, short-circuit
impedance and load loss, etc.

The deterioration indexes of core include no-load current and
loss, no-load excitation characteristics, etc.

The deterioration indexes of the tap changer include tap
changer contact pressure, contact resistance, rotational torque,
etc.

The thresholds of each component of the deterioration indexes
X are given: x; =0 means intact, x, =1 means very serious
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deterioration (i=1,2,3). Taking winding deformation as an
example, if the relative change in leakage resistance is greater
than 2%, it can be determined that a winding deformation fault
has occurred. Therefore, the winding degradation index of the
transformer factory case can be defined as 0, and the winding
degradation index of the relative change of leakage resistance
reaching 2% is 1.

The deterioration indicators can reflect the severity of the
deterioration of the transformer components more accurately
and specifically, which in turn provides a basis for the diagnosis
of transformer faults. According to the previous analysis, the
transformer equivalent circuit parameters are associated with
the fault and with some of the deterioration indexes, so the
transformer equivalent circuit parameters can be used to analyze
the degree of deterioration of the transformer components and
the occurrence of the fault or not.

2.2 Condition Assessment for Distribution

Operation Management

Distribution operation management is more concerned with the
operation of transformers and requires assessment methods that
point to the overall health of the transformers. Therefore, the
method designed in this subsection will eventually give condition
assessment indicators that can be reflected to transformers to
provide guiding distribution operation management advice.

The change in the equivalent circuit parameters of a
transformer can reflect whether a fault is imminent or not. Within
the change threshold, the transformer is not faulty, but there is a
high probability that a certain defect exists, and the deterioration
of the defect will most likely lead to a fault. Therefore,
assessing the severity of defects can prevent transformer
faults.

There are several conditions of transformer as follows:

1) Transformer components are free of defects or the severity
of defects is very low, when the transformer is very healthy.

2) “Sub-health” condition. Most of the components of
the transformer are basically free of defects, and a
few components have very serious defects, or multiple
components are defective to some extent. Currently, the
health status of the transformer is not optimistic, and it is in
a “sub-health” condition.

3) At least one element of the transformer is on the verge of
fault, at which point the transformer is about to fail and is in
poor health.

3 VARIABLE WEIGHT SYNTHESIZING
ASSESSMENT MODEL

3.1 Assessment Process

Using the variable weight synthesizing assessment model, the
transformer equivalent circuit parameters are compared to
nominal values to assess the condition of the transformer and
the degree of deterioration of each transformer component. The
transformer condition assessment indexes are shown in Figure 1.

The process of condition assessment developed with the
characteristics of the transformer is shown in Figure 2, and the
specific process consists of the following steps.

1) Leakage resistance, short-circuit resistance and excitation
resistance are used as assessment indexes to score the
four defects of winding deformation, winding turn-to-turn
short circuit, core chip-to-chip short circuit and poor tap
changer contact according to the parameter offset of the
transformer equivalent circuit. The score for each defect
in the transformer of ex-factory is 100 points, and 60
points when the industry standard fault threshold is reached.
The deterioration indexes are assessed comprehensively
according to the part corresponding to the defect, with 0
being no deterioration and 1 being serious deterioration.
For example, for windings, both winding deformation and
winding turn-to-turn short circuit correspond to winding
elements, and the deterioration indexes are obtained
by imputing the lowest value of the scores of these
two.

2) The Gl method and the entropy weight method are
combined to assign weights to each defect index according
to the degree of harm of the defect. For example, winding
turn-to-turn short-circuit defects are more hazardous
compared to core defects, so a greater weight needs
to be assigned to the winding turn-to-turn short-circuit
assessment index.

3) According to the scoring of each defect, a variable weight
method is proposed to adjust the weight distribution of each
index by the scoring situation to emphasize the severity of
defects. The greater the weight, the more serious the defects.
In addition, if the transformer is in a “sub-health” condition,
the changed weights can reflect this condition. Finally, the
weighting is calculated to obtain the overall rating of the
transformer.

It should be noted that if the short-circuit resistance has
changed, the presence of a defective tap changer contact cannot
be fully judged, because a defect in the winding can lead to a
change in short-circuit resistance and leakage resistance. If only
the short-circuit resistance changes, the presence of a defective
tap changer contact can be determined. Therefore, when it is
not completely certain that poor tap changer contact occurs,
the deterioration indicator of the tap changer is set to —1 and
the fault type is also —1, indicating that a fault with poor tap
changer contact may exist and alerting the staff to the tap changer
condition.

3.2 Principle of G1 Method

Without loss of generality, let x,x,,...,x,,(m > 2) be m maximal
indexes that have been processed by index type consistency and
dimensionlessness.

3.2.1 Determining Sequential Relationships
Definition 1: An index x; is denoted as x; > x; if its importance
relative to an evaluation criterion (or object) is not inferior to x;
(the symbol > indicates a non-inferior relationship).
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FIGURE 1| Transformer condition assessment index system.
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Weighted calculation to get the
overall score

End

FIGURE 2 | Flowchart of transformer condition assessment.

Definition 2: If the indexes x,,x,,...,x,, have a relational
expression with respect to an evaluation criterion (or object)

xXp =X 2 2 (2)

then the evaluation indexes x,x,,...,x,, are said to have
established a sequential relationship with each other according to
>. Here x; denotes the i-th evaluation index after {x;,} is > ordered
by the sequential relationship. For the convenience of writing, x;
is still written as x,(i = 1,2, ...,m) in the following.

TABLE 1 | r, assignment reference.

i Description

1.0 X,_, has the same importance as x;

1.2 X, is slightly more important than x,

1.4 X, is significantly more important than x,
1.6 X, is strongly more important than x;,
1.8 X, is extremely more important than x;

3.2.2 Give the Ratio Judgment of the Relative
Importance Between x,_; and x,

Let the rational judgments of experts about the ratio w;_,/w, of
the importance of evaluation index x,_, to x, be respectively

Wi /wy=r(k=mm-1,m-2,...,3,2) (3)

Refer to Table 1 for the assignment of 7,.

3.2.3 Calculation of the Weighting Factor w,,
If the expert gives the rational assignment of r;, then w,,is

wm=(l+iﬁrl)_ (4)

k=2 i=k

W =rw (k=mm-1,m-2,...,3,2) (5)

3.3 Principle of Entropy Weight Method

The entropy weight method (EWM) is an objective assignment
method that is stripped of the interpretation of the basic
principles of information theory. It uses information entropy to
measure the information utility value of each evaluation factor
and determine the entropy weight (Tan et al., 2020). Information
is a measure of the degree of order of the system, and entropy is a
measure of the degree of disorder of the system. If the information
entropy of the index is smaller, the more information the index
provides, the greater the role it should play in the comprehensive
evaluation, and the higher the weight should be.
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TABLE 2 | Transformer fault assessment standards.

Parameter Fault

Judging standard(s)

Leakage resistance Winding deformation

Winding DC resistance Turn-to-turn short circuit

No-load loss
Tap changer contact resistance

Short circuit between core chips
Poor tap changer contact

1)Relative change is greater than 2%

2)Maximum relative mutual difference of three single-phase
parameters is greater than 2.5%

1)The difference between phases is greater than or equal to 4% of
the average value of the three phases

2)The difference between lines is greater than or equal to 2% of the
average value of the three phases

3)Change greater than or equal to 2% compared to the previously
measured value at the same site

4)Unbalance rate: the difference between phases is greater than
4%, the difference between lines is greater than 2%

Significant change compared to previous test value

Generally no more than 5001

3.3.1 Data Standardization

Firstly, each index is de-scaled. Assuming that m indexes
X, X,,....X,, are given, where X, ={x,x,,...,x,}, assuming a
value of Y,,Y,,...,Y,, after normalizing the data for each
indicator, then

X;; —min (X,
Y. =
¥ max(X;) - min
_ max (X1) i
57 max(X,) - min(X,

2 X) (zf X is a forward zndex)
(6)

) (zf Xj; is a reverse index)

3.3.2 Solve the Information Entropy of Each Index
From the definition of information entropy in information
theory, the information entropy of a set of data is

E;=-In ()" ) p,Inp, ?)
i=1

TABLE 3 | Transformer equivalent circuit parameters in relation to the faults.

Changed parameter(s) Fault(s)

Leakage resistance
Winding resistance and
leakage resistance

Winding deformation

Turn-to-turn short circuit or

turn-to-turn short circuit and poor tap changer
contact

Short circuit between core chips

Poor tap changer contact

Excitation resistance
Winding resistance

TABLE 4 | Equivalent circuit parameters of transformer.

Symbol Quantity Value
Rr short-ircuit resistance 2.4390 Q
X7 short-circuit reactance 17.8340
Ly short-circuit inductance 0.0568H
R, magnetic resistance 169490 O
X magnetic reactance 47775 Q
L, magnetic inductance 166.5677H

where

oh, j=1,...,m (8)

If p; = 0, then define ZPU Inp,=0
i=1

3.3.3 Determine the Weights of Each Index

According to the formula of information entropy, the information
entropies E|, E,, ..., E,, of each indicator are calculated. the weight
of each indicator is calculated by information entropy.

1-E

ijZE_

where k refers to the number of indicators, i.e., k = m.

1,2,...,m) )

3.4 G1-Entropy Weight Method Combined
Weighting

The subjective weights W, calculated by the G1 method are
obtained from Eqs 2-5, and the objective weights W2 calculated
by EWM are obtained from Eqs 6-9. Using Eq. 10, the initial
weight of the j-th index is calculated as

Wi;- Wy
Wy =

Z WlJ WZJ

Jj=1

(10)

3.5 Variable Weight Method to Determine
the Index Weights

In this subsection, a variable weight method is proposed to adjust
the initial weights of each assessment index according to the
scoring of each defect, emphasizing the severity of the defect. The
larger the weight, the more serious the defect. In addition, if the
transformer is in a “sub-health” condition, this condition can be
reflected by the changed weights.

Let the weights of n defects be w,,w,,...,w,, and the scores of
defects be x,,x,,...,x,. The steps of the variable weight method
are as follows:
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FIGURE 3 | Simulink transformer simulation circuit diagram.

TABLE 5 | Assessment of the importance of indexes-G1 method.

Expert X3 X4 Xy X4
Expert 1 0 1.3 1.6 1.5
Expert 2 0 1.2 1.7 1.1
Expert 3 0 1.2 1.1 1.1
Expert 4 0 1.5 2.0 1.2

TABLE 6 | Assessment of the importance of indexes—entropy weight method.

Expert X4 Xy X3 Xy
Expert 1 3 4 2 8
Expert 2 5 7 2 9
Expert 3 4 5 1 7
Expert 4 6 7 3 8

1) Highlighting the severity of defects that are about to turn
into faults. If the minimum value of the score of each defect
X,in < 60, the weight of the index corresponding to the score
is set to w,,;,, > 1. The weights of the other indexes are set as
(1-w,,;,,)/(n-1). In this paper, we take w,,,, = 1.2.

2) Highlighting the “sub-health” condition of the transformer.
If the maximum mutual difference |Ax|<5 and the
minimum value x,,, <90 for each defects score, or if
more than two defects scores are less than or equal to
70, then let w; =0.2(i = 1,2---,n). If the score of poor tap
changer contacts is -1, then let w; =0.26(i=1,2:--,n—-1)
and w, = 0.

3) Highlighting that the transformer is on the verge of fault. If
the minimum value of the score of each defect is in the range
of [60, 63], then the weight of the defect corresponding to
the score is set to w,,;,, and 0.9 <w,,,, < 1. The weights of
other defects are set to (1-w,,,,)/(n—1). In this paper, we
take w,,,, = 0.95.

4) If the scores of the defects do not match the above, then
the optimal value (100) is subtracted from each score and
the resulting difference is added to the corresponding initial
weight. The maximum weight is multiplied by a factor
p(p = 2). Finally normalize the weights. In this paper, we
take p = 2.

4 SIMULATION AND VALIDATION

4.1 Judgment Standard for Condition

Assessment

According to “DL/T 574-2010 Guide for reactance method to
detect and diagnose winding deformation of power transformer”,
“DL/T 596-2021 Preventive test code for electric power
equipment” and other standards (NDRC, 2008; NEA, 2010;
AQSIQ, 2015a; AQSIQ, 2015b; NEA, 2021), there are clear
standard for judging four common faults, including winding
deformation, turn-to-turn short circuit, short circuit between
core chips and poor tap changer contact. The transformer fault
judging standard summarized from these standards are shown in
Table 2. It can be seen that these faults are closely related to the
transformer equivalent circuit parameters.
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TABLE 7 | Variation of parameters due to transformer defects.

No. Phase A Phase B Phase C
R7 unchanged Ry increased by 1% Ry reduced by 1%
] X7 unchanged X7 reduced by 1% Xt increased by 0.5%
R, unchanged R, unchanged R,, unchanged
X, unchanged X, reduced by 0.06% X, increased by 0.05%
Ry increased by 500uQ R7 unchanged Ry increased by 300uQ)
5 X7 unchanged X7 unchanged X7 unchanged
R,, unchanged R,, unchanged R,, unchanged
X, unchanged X, unchanged X, unchanged
Ry reduced by 0.2% Ry increased by 0.1% Ry increased by 0.2%
3 X7 reduced by 0.5% X7 reduced by 0.2% Xr increased by 0.1%
R, increased by 0.015% R, reduced by 0.01% R, increased by 0.005%
X, reduced by 0.05% X, reduced by 0.01% X, reduced by 0.01%
Ry reduced by 0.2% Ry increased by 1% Ry increased by 1.3%
4 X7 increased by 1% X7 reduced by 1% X7 reduced by 1.2%
R, increased by 0.05% R, reduced by 0.01% R, reduced by 0.04%
X, reduced by 0.04% X, reduced by 0.05% X, reduced by 0.06%
Ry reduced by 0.3% Ry increased by 0.4% Ry increased by 0.5%
5 Xrincreased by 0.5% Xt reduced by 1% Xt reduced by 0.2%

R, increased by 0.013%
X, reduced by 0.05%

R, increased by 0.015%
X, reduced by 0.02%

R, reduced by 0.016%
X, reduced by 0.05%

TABLE 8 | Results of the condition assessment and the degree of deterioration of the components.

No. Score of each defect Winding deterioration index Core deterioration index Tap changer deterioration index Overall score
1 [75.76, 60, 100, —1] 1 0 -1 61.40
2 [100, 99.59, 100, 53.84] 0.01 0 1.15 44.59
3 [90, 92, 90, —1] 0.25 0.25 -1 70.72
4 [64.37, 70.21, 66.67, —1] 0.89 0.83 -1 52.34
5 [75.76, 84.03, 89.33, —1] 0.61 0.27 -1 79.52

As can be seen from Table 2, the changes in leakage resistance,
winding DC resistance, no-load loss and tap changer contact
resistance can reflect the defects of each transformer components
and have clear numerical standards for fault diagnosis. The
excitation resistance changes with the no-load loss, so the change
in excitation resistance can be used to determine whether there is
a short circuit between the core chips and its severity. However,
there is still a coupling between transformer parameters and
the fault connection, e.g., winding resistance and tap changer
contact resistance are both considered as winding resistance
in the transformer equivalent circuit. Therefore, the change in
winding resistance cannot be accurately determined whether
it is a short circuit between turns or a poor tap changer
contact or both. The correspondence between transformer
equivalent circuit parameters and faults is briefly summarized in
Table 3.

4.2 Defect Simulation Results and Analysis
In this paper, a simulation model for the identification of
short-circuit resistance, short-circuit reactance and excitation
resistance of a three-phase variable power transformer is
established based on the nameplate parameters of SG10-1000/10
dry-type power transformer of a water supply station, where the
rated capacity Sy =1,000kVA, frequency f= 50Hz, transformer

high-voltage side line voltage U, =10kV, transformer low-
voltage side line voltage U, = 0.4kV, coupling group labeled
Dynll, no-load loss P,=1770W, load loss P, =8130W, no-
load current percentage I, =0.006, short-circuit impedance
percentage U, = 0.04, based on these data the parameters of the
transformer y-type equivalent circuit can be calculated, as shown
in Table 4.

The Simulink transformer simulation circuit diagram is shown
in Figure 3.

The RMS value of the three-phase externally applied voltage
is set to 10kV, and the three-phase voltage is symmetrical.
The excitation resistance R, =1.6949x 10°Q, excitation
inductance L, =166.5677H, and short-circuit impedance
Z, = 2.4390 + j17.8340C2 for each phase. The power factor is set to
0.9 and the load factor is 40%. In this case, the deterioration index
of each component is 0, and the overall score of condition is 100.

4.2.1 Determine Initial Weights

4.2.1.1 Calculate the Index Weights W, According to the G1
Method

Four defect types of winding deformation X, turn-to-
turn short circuit X,, short circuit between core chips X,

Frontiers in Energy Research | www.frontiersin.org

June 2022 | Volume 10 | Article 941985


https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

Zhang et al.

Synthesizing Model for Condition Assessment

TABLE 9 | Comparison of weighting results.

No. Method 1 2 3 4
G1 method 0.30 0.46 0.25 0

’ G1-EWM 0.32 0.40 0.28 0
G1-EWM combined with variable weight method in Du and Sun (2020) 0.29 0.57 0.14 0
Method in this paper 0.03 0.95 0.03 0
G1 method 0.19 0.29 0.15 0.37

5 G1-EWM 0.22 0.28 0.20 0.30
G1-EWM combined with variable weight method in Du and Sun (2020) 0.13 0.16 0.11 0.60
Method in this paper -0.07 -0.07 -0.07 1.20
G1 method 0.30 0.46 0.25 0

3 G1-EWM 0.32 0.40 0.28 0
G1-EWM combined with variable weight method in Du and Sun (2020) 0.32 0.39 0.28 0
Method in this paper 0.26 0.26 0.26 0
G1 method 0.30 0.46 0.25 0

4 G1-EWM 0.32 0.40 0.28 0
G1-EWM combined with variable weight method in Du and Sun (2020) 0.35 0.37 0.28 0
Method in this paper 0.26 0.26 0.26 0
G1 method 0.30 0.46 0.25 0

5 G1-EWM 0.32 0.40 0.28 0
G1-EWM combined with variable weight method in Du and Sun (2020) 0.38 0.39 0.24 0
Method in this paper 0.64 0.22 0.14 0

TABLE 10 | Comparison of assessment results.

Method 1 2 3 4 5

G1 method 74.53 82.53 90.91 67.62 82.88

G1-EWM 76.25 85.84 90.80 67.37 82.86

G1-EWM combined with variable weight method in Du and Sun (2020) 70.25 72.11 90.78 67.19 82.17

Method in this paper 61.40 44.47 70.72 52.34 79.52

and poor tap changer contact X, are used as the assigned
defects, and four experts based on their experience on these
four indexes and give the relative importance between the
indexes. The experts agreed on the importance ranking of
X,>X,>X, >X,. The specific rank assessment is shown in
Table 5.

The subjective weights W, = [0.1853, 0.2867, 0.1544, 0.3735]
are calculated according to Egs. (2-5).

4.2.1.2 Calculate the Index Weights W, According to the
Entropy Weight Method
Experts assess the importance of the defects. Table 6 shows
the importance levels of the four indexes assessed by the
experts, where important = 1, slightly important = 3, significantly
important = 5, strongly important = 7, and extremely important =
9, and the number in between is the level of importance between
the two. The assessment of the importance of indexes is shown in
Table 6.

The objective weights W, = [0.2585, 0.2635, 0.2390, 0.2390]
are calculated according to Eqs 6-9.

The initial weights of assessment indexes are obtained from
Eq. 10 as W = [0.2223, 0.2791, 0.1951, 0.3034].

4.2.2 Based on the Variable Weight Method and
Weighted Calculation to Obtain Comprehensive
Evaluation Results

Table 7 shows the variation of the equivalent circuit parameters
when the transformer is partially defective in the simulation.
Table 8 shows the composite score of the transformer’s condition,
as well as the values of the deterioration indexes, calculated by
the variable weight synthesizing assessment model based on the
parameter variations in Table 7. In Table 8, bold indicates scores
that are worth paying attention to.

For case 1, the score of turn-to-turn short circuit has reached
60, and the winding deterioration index is 1. Because the inter-
wire imbalance of DC resistance of the winding has reached 2%,
it has reached the threshold of fault occurrence specified by the
standard.

For case 2, the final tap changer score is 6.16 points lower
than expected, the degree of deterioration is 0.15 higher, and
the overall score is lower than expected. After examination,
it is found that there is an error in converting the short-
circuit resistance to winding DC resistance and converting it to
operating temperature (75°C). However, since in practice this
method is not used alone to determine the defective condition
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of the tap changer, the results of this evaluation can be used as a
reference for the relevant personnel.

For case 3, in addition to the tap changer fault, the maximum
mutual difference between the scores of the other three faults is
less than or equal to 5 and the minimum score is 90, and the
score of poor tap changer contact is —1. Therefore, the weight is
changed according to point (2) of the variable weight method, and
a comprehensive score is obtained.

For case 4, the transformer equivalent circuit parameters all
have certain changes and two faults have scores lower than 70.
The composite score obtained is as expected and reflects that
the transformer is in a serious “subhealth” condition. Besides,
each deterioration index also corresponds accurately to each fault
score, which can reflect the severity of transformer winding and
core deterioration.

For case 5, the defect situation satisfies point (4) of the variable
weighting method, and the combined score is close to the lowest
score for each fault, highlighting the most severe defect situation
of the transformer. The deterioration index also corresponds
accurately to each fault score.

In order to further verify the effectiveness of the method
proposed in this paper, the G1 method, G1-EWM method, and
G1-EWM combined with variable weight method in (Du and
Sun, 2020) are compared with the overall scores calculated by
the method proposed in this paper. The weighting results are
shown in Table 9, and the final assessment results are shown in
Table 10.

A comparison of the weighting results and the assessment
results shows that the score of 60 for the turn-to-turn short circuit
in case 1 reaches the fault threshold. The score of less than 60 for
the tap changer defect in case 2 indicates a fault in the tap changer.
However, the assessment results of the first three methods in
Table 10 fail to highlight their severity, and the method proposed
in this paper has a higher sensitivity. As can be seen from the
final weights, defects that reach or exceed the fault threshold
are assigned significantly greater weights than the other weights,
enabling the assessment results to more accurately reflect the
severity of the defect. In cases 3 and 4, the scores of each defect
show that the transformer is in “subhealth” condition, which is
not reflected in the assessment results of the first three methods
in Table 10. For case 5, the minimum value of each defect score is
75.76, which is more serious compared to the other defects scores.
The assessment results of the first three methods in Table 10 also
do not reflect this severity. The method proposed in this paper,
by adjusting the weights, is able to assign the maximum weight
to the defect corresponding to the lowest score, highlighting the
severity of the defect.

5 CONCLUSION

In this paper, a variable weight synthesizing assessment model
is proposed, which adopts the idea of weight assignment to
make a comprehensive assessment of transformer based on the
offset of transformer equivalent circuit parameters.In addition,

deterioration indexes describing the degree of deterioration of
transformer components are proposed from the perspective
of maintenance management needs, so that the condition
of each component of power transformers can be distinctly
reflected in the form of data to provide guiding maintenance
advice.

The model firstly uses leakage resistance, short-circuit
resistance and short-circuit reactance as assessment indexes. The
G1 method and the entropy weight method are used to assign the
initial weight to the defects, and the defects are scored according
to the deviation of the equivalent circuit parameters. Secondly, a
variable weight method is proposed, which adjusts the weight of
defects according to the severity of each defect of the transformer
and the “sub-health” condition of the transformer, and obtains
the final weight of each defect. Finally, the respective scores and
comprehensive weights of the defects are weighted to obtain a
comprehensive score.

In five simulation cases, the Gl assessment model, G1-
EWM assessment model, GI-EWM combined with variable
weight model in (Du and Sun, 2020) and the variable weight
synthesizing model proposed in this paper are applied to
assess the transformer. The variable weight synthesizing model
proposed in this paper is more sensitive to the abnormal and
“subhealthy” conditions of the transformer. For cases 1 and 2,
the assessment results of the proposed model are close to the
lowest value of each defect score, which does not exceed 10
points, while the assessmet results of other models differ from
the lowest value by up to 32.17 points. In simulation cases 3
and 4, the scores of each defect show that the transformer is in
a “subhealth” condition. The assessment result of the proposed
model is lower than the minimum score of each defect, which
can reflect this condition. The assessment results of other models
are higher than the minimum score. For case 5, the minimum
value of each defect score is 75.76. The assessment result of
the proposed model is closest to this value, which is 3.76. But
the assessment results of other models differ from this value by
6.41 at the minimum. It verifies the feasibility of the variable-
right comprehensive assessment model for transformer condition
assessment, and can provide guiding opinions in distribution
operation management.
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