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Under partial shading conditions (PSCs), photovoltaic (PV) generation systems

exhibitmultiple local and a single globalmaximumpower point. Consequently,

global maximum power point tracking (GMPPT) is required to improve the

performance of PV systems in such scenarios. This paper comparatively

studies and evaluates the tracking performance of modern heuristic-

optimization-based GMPPT techniques. Monte Carlo method is used to

statistically analyze different methods. Simulation and experimental results

indicate that many of the algorithms have difficulties in balancing the

explorative and exploitative searching behaviors. Therefore, we propose a

variable vortex search (VVS), which is capable of improving the performance

of GMPPT by using a variable step size and deterministic starting points.

This paper will aid researchers and practical engineers to gain a thorough

understanding on how to use modern heuristic algorithms for maximum

power out of PV systems. Furthermore, it offers a comprehensive guidance

on how to perform efficiently GMPPT in the PV systems under PSCs.

KEYWORDS

maximum power point tracking (MPPT), partial shading condition (PSC), heuristic optimization,

solar PV (SPV) systems., vortex search (VS.) algorithm, global maximum power point (GMPP)

tracking

1 Introduction

As a renewable, clean, and convenient energy source, photovoltaic (PV)
is a promising technology that is doubling in size every 1–2 years globally
(Xiao et al., 2016; Danandeh et al., 2018; Kabir et al., 2018). Since the output power
of a PV system varies with the atmospheric conditions (e.g., temperature and solar
irradiance), the maximum power point tracking (MPPT) technology is necessitated
for extracting the maximum power available in PV systems (Zhou et al., 2021).
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When part of a PV string is shaded by fallen leaves,
clouds, or building shadows, etc., these shaded parts act as
loads and absorb energy (Bana and Saini, 2017; Atems and
Hotaling, 2018). The non-uniform solar irradiance will lead to
hot spots and cause the entire PV string to lose efficiency.
Bypass diodes are introduced to shift the redundant current
and prevent the hot spots (Seyedmahmoudian et al., 2016;
Li G et al., 2018). Under partial shading conditions (PSCs),
multiple peaks are exhibited in the power-voltage (P-V)
curve, which bring challenges to the optimization of the
power conversion. Among these peaks, there exist several
local maximum power points (LMPPs) and a single global
maximum power point (GMPP) (Rezk et al., 2017). Traditional
MPPT approaches, such as perturbation and observation
(P&O) (Kavya and Jayalalitha, 2021), incremental conductance
(InC), short circuit current (SCC) technique (Reisi et al., 2013),
constant voltage (CV) technique, and reference voltage based
track optimizer (Deboucha et al., 2021; Li et al., 2022), track the
GMPP using a defined step length and are based on a single
peak P-V curve. These methods can find the MPP quickly
under the uniform irradiation conditions (UICs) because of
their excellent local search ability (Kjær, 2012; Li H et al., 2018;
Ahmad et al., 2019), but they may find the LMPP instead of the
GMPP under the PSCs due to the lack of global optimization
ability.

The heuristic optimization algorithms, which can normally
obtain better exploratory capacity, have been used to address
the global maximum power point tracking (GMPPT) problems
in the last decade or so (Motahhir et al., 2020; Yang et al., 2020;
Díaz Martínez et al., 2021).These algorithms include salp swarm
optimization algorithm (Mirza et al., 2021), particle swarm
optimization (PSO) (Khare andRangnekar, 2013; Shi et al., 2015;
Soufi et al., 2017; Li H et al., 2018; Eltamaly et al., 2020),
shuffled frog leaping algorithm (SFLA) (Eusuff et al., 2006;
Neri and Cotta, 2012; Sridhar et al., 2017; Mao et al., 2018),
artificial bee colony algorithm (ABCA) (Fathy, 2015;
Soufyane Benyoucef et al., 2015; Sundareswaran et al., 2015a;
Jadon et al., 2017; Pilakkat and Kanthalakshmi, 2019; Pilakkat
and Kanthalakshmi, 2020), cuckoo search (CS) (Yang and
Deb, 2013; Ahmed and Salam, 2014; Mareli and Twala, 2018;
Mosaad et al., 2019; Mosaad et al., 2019; Eltamaly, 2021), firefly
algorithm (FA) (Lones, 2014; Teshome et al., 2016; Wang and
Liu, 2019), teaching learning based optimization (TLBO)
(Rao et al., 2012; Chao and Wu, 2016; Rezk and Fathy, 2017),
water cycle algorithm (WCA) (Eskandar et al., 2012;
Sarvi et al., 2014), flower pollination optimization (FPO)
(Yang, 2012; Diab and Rezk, 2017; Samy et al., 2019;
Yousri et al., 2019; Sundararaj et al., 2020), vortex search (VS)
(Doğan and Ölmez, 2015; Ali et al., 2018), Jaya algorithm (Jaya)
(Padmanaban et al., 2019; Rao, 2016; Rao and Saroj, 2017;
Huang et al., 2017b; Huang et al., 2017a), monarch butterfly
optimization (MBO) (Wang et al., 2019), satin bowerbird

optimization (SBO) (Moosavi and Bardsiri, 2017), yellow saddle
goatfish algorithm (YSGA) (Zaldivar et al., 2018), artificial
ecosystem-based optimization (AEO) (Zhao et al., 2019),
electric fish optimization (EFO) (Yilmaz and Sen, 2019),
harris hawks optimization (HHO) (Heidari et al., 2019;
Mansoor et al., 2020), and sparrow search algorithm (SSA)
(Xue and Shen, 2020). Inspired by the biological performance
or the physical phenomenon, most of these algorithms can
find the GMPP after a few iterations. To further improve the
tracking efficiency, Sundareswaran et al. (2015a) proposed a
P&O algorithm assisted through a colony of foraging ants
(CFA) method. The CFA technique successfully blends ant-
colony-based global search in the early stages of tracking
with the standard P&O method in the latter stages for
exploitative search. The genetic and cuckoo search algorithms
are used to increase the exploitative search ability of P&O in
(Ahmed et al., 2021). In Lian et al. (2014), implemented the
P&O for the first round and the PSO for the second round
of search. The P&O method reduces the search space of the
PSO. However, the inherent demerits of heuristic optimization
methods still cannot be avoided. The initial positions of
candidate solutions seriously affect the tracking performance
of GMPPT (Shams et al., 2020). Another demerit is that multiple
parameters are required in many heuristic methods. Tuning
of parameters is a time consuming process and decreases the
agileness of implementation (Koad et al., 2016). Besides, many
heuristic optimization methods choose the search behaviors by
different parameter settings, thus suffering from the problem of
parameter dependence (Koad et al., 2016). As a generic remark,
there are already a good number of publications on this issue
(Eltamaly et al., 2018), categorizing and summarizing existing
MPPT approaches is critical for future study. In addition, it
can be noticed that although heuristic algorithms have been
widely used for globalmaximumpower point tracking (GMPPT)
(Mao et al., 2020), there lacks qualitative and quantitative study
work on these algorithms.

Motivated by the above situation, twelve heuristic-
optimization-based GMPPT methods are comparatively
studied in this paper. Both software simulations and hardware
experiments are conducted for statistical evaluation. Most of
these methods lack an efficient mechanism to balance the
explorative and exploitative searching behaviors. Furthermore,
we develop a novel variable-vortex-search (VVS) based
GMPPT method. The starting points of the algorithm are
determined by a pre-search strategy so that the search space
is reduced. Then the search behavior of the VVS is modeled
as a vortex pattern by using a variable step size and mountain-
like tracking scheme according to the Gaussian distribution.
In the test, the proposed method is compared with eleven
heuristic- optimization-based GMPPT methods in terms of
tracking routines, accumulated energy, accuracy and tracking
efficiency.
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FIGURE 1
A typical PV string and the I-V and P-V characteristics of a 3 PV modules string under different shading conditions.

FIGURE 2
Classification of the modern heuristic algorithms.

FIGURE 3
The search process of the VVS under the PSC (G1 = 1000 W/m2, G2 = G3 = 800 W/m2, G4 = 600 W/m2): (A) Pre-search; (B) Determination of
the initial points; (C) An illustrative sketch of the VVS optimization.
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TABLE 1 Specifications of the Sanyo HIT-N225A01 module,
Kyocera KC175GT module and Jinghai JH-10 module.

Parameter HIT-N225A01 KC175GT JH-10

Maximum Power Pmpp 215.46 W 175.11 W 9.44 W
Open Circuit Voltage Voc 51.60 V 29.20 V 10.24 V
Short Circuit Current Isc 5.61 A 8.09 A 1.33 A
Voltage at Pmpp 42.00 V 23.60 V 8.50 V
Current at Pmpp 5.13 A 7.42 A 1.11 A
Cells per Module 72 48 20

TABLE 2 Partial shading patterns for the step test.

Shading pattern Solar irradiance (W/m2) GMPP (W)

M1 M2 M3
1 500 200 100 11.52
2 800 400 100 20.59
3 1100 900 300 49.31

The main contributions of this paper are highlighted as
follows:

1. This paper statistically investigates modern heuristic
optimization methods for GMPPT in PV systems under
PSCs.

2. The challenges of heuristic-optimization-based GMPPT
techniques, especially the exploitative and explorative search
capabilities, have been analyzed through a comprehensive
study.

3. AnovelVVS-basedGMPPT,which is capable of balancing the
exploitative and explorative search capabilities, is proposed.

4. Experimental comparisons of different heuristic-
optimization-based GMPPT techniques in terms of the
tracking routines, accumulated energy, and tracking
efficiency are presented.

The following sections are organized as follows: the
characteristics of the PV strings are discussed in Section 2.
A comprehensive study of existing heuristic-optimization-
based GMPPT methods, followed by the proposed variable-
vortex-search (VVS) based GMPPT method, is presented
in Section 3. The simulation and experimental findings
are discussed in Section 4. Section 5 concludes this
paper.

2 Electrical characteristics of the PV
strings under partial shading
conditions

When bypass diodes are considered, the output I-V
relations of a PV module could be expressed as an extension
to its single-diode model, which can be written as Eq. 1

(Bouraiou et al., 2015; Ram et al., 2018).

Is = Ipv − Isat[exp(q
Vs + IsRs

NskTη
)− 1]−

Vs + IsRs

Rp
+ Ibp (1)

where Ipv is the photo-generated current, Isat is the reverse bias
saturation current of the diode, Ns is the number of PV cells
connected in series on the specified PVmodule, q is the electron
charge constant (1.60217× 10–19C), k is the Boltzmann constant
(1.38065× 10–23J/K), T is the temperature of the PN junction,
η is the diode ideality constant, Rs is the series resistance, and
Rp is the shunt resistance. The PV modules which are subject to
low solar irradiance will produce less current than the unshaded
modules at the same temperature.Therefore, themismatch losses
are caused. This kind of mismatch losses can be avoided by the
bypass diodes. The current flow via the bypass diode may be
calculated using Eq. 2.

Ibp = Isat, bp[exp(q
Vs

kTη
)− 1] (2)

where Isat, bp is the reverse bias saturation current of the bypass
diode.

The structure of a PV string is shown in Figure 1. According
to Kirchhoff ’s law, the system of nonlinear equations for a PV
string can be expressed by Eq. 3 (Ma et al., 2022).

V1 +V2 +⋯+VN −Vs = 0

I1 (V1) − I2 (V2) = 0

I1 (V1) − I3 (V3) = 0

…

I1 (V1) − IN (VN) = 0 (3)

In Figure 1, the I-V and P-V characteristics of a PV string
under uniform irradiance conditions (UICs) and PSCs are
displayed. It can be seen that the PV system performs staircase-
like I-V curves while its P-V characteristics exhibit multiple
peaks under PSCs. Under PSCs, traditional MPPT approaches
such as the P&O and InC will be locked in the LMPPs, resulting
in energy losses. As a result, it is critical to investigate MPPT
algorithms capable of handling PSCs.Figure 2

3 Heuristic-optimization-based
global maximum power point
tracking

Many researchers tried to tackle the GMPPT under PSCs via
heuristic optimization techniques. Generally, these techniques
can be roughly categorized into three major classes: swarm
intelligence (SI), physics-inspired algorithms (PIA), and human-
based algorithms (HBA) (Gogna and Tayal, 2013). The SI
techniques mimic creatures in nature. The physical laws inspire
the PIA approaches. Similarly, HBA are developed based on
human traits and behaviours. The classification of the modern
heuristic algorithms reviewed in this paper is summarized in.
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3.1 Swarm intelligence techniques

3.1.1 Particle swarm optimization
PSO is inspired by birds’ interactions (Eberhart and

Kennedy, 1995). The population V composed of m particles is
randomly initialized in the feasible space at the beginning of the
algorithm. The position of each particle Vi represents a voltage
set-point. In each iteration, the particle updates its speedwhich is
the change in voltage according to the individual best solution pi
which is found by itself and the global best solution pg according
to Eqs 4, 5.

vt+1i = wv
t
i + n1R0, 1 (pi −Z

t
i) + n2R0, 1 (pg −Z

t
i) (4)

Vt+1
i = V

t
i + v

t+1
i (5)

where vt+1i represents the ith particle’s speed in the t+ 1 iteration,
w is the inertia weight, n1 and n2 are the learning constants.

There are only three parameters in PSO, making it easy
to implement (Khare and Rangnekar, 2013). However, it has a
proclivity to become trapped in LMPPs. To increase the tracking
accuracy of PSO-based GMPPT, Shi et al. (2015) proposed a
dormant PSO (DPSO) to exploratively search the area of
the GMPP, and then the conventional InC algorithm will be
used to track the maximum output power of PV strings.
Li H et al. (2018) pointed out that PSO is very sensitive to the
initial values. They proposed an overall distribution PSO (OD-
PSO) to shrink the search region. InOD-PSO, the PSO algorithm
is improved so that each particle tends to be within a Cauchy
distribution range with the global best position, rather than the
global best position itself. In Eltamaly et al. (2020), a fast adaptive
PSO strategy for PV global peak tracker under dynamic PSCs are
presented. The problem of a long convergence time was handled
by changing the duty ratio of the dc-dc boost converter’s initial
values to the possible MPP locations. By boosting the ability of
exploitative search, this improvement decreases the convergence
time and avoids the early convergence of the original PSO.

3.1.2 Shuffled frog leaping algorithm
SFLA mimics the behaviour of a group of frogs as they look

for the spot with the most accessible food. In the SFLA, the
position of each frog represents a feasible solution. There are
several rocks in the pond where the frogs are located. In each
generation, the frogs will be allocated to the rocks. Only the frog
with the worst position on the rock will jump. The frog will first
jump towards the optimal position on the same rock. If the new
position is worse than the previous one, it will move to the global
optimal. Otherwise, it will jump randomly in the feasible area
(Eusuff et al., 2006).

In the SFLA, the frogs are divided into sub-populations
cyclically. A certain number of evaluations are permitted for a
sub-population ofm frogs. In each evaluation, the best frog is Pb,

and the worst frog is Pw. The distance of the worst frog trying to
move is expressed in Eq. 6.

Pt+1w = P
t
w +R0, 1 × (P

t
b − P

t
w) (6)

If Eq. 6 can produce a better solution, the frog’s position will
be updated. SFLA is unique in that it generates new solutions
through the grouping operators and mimetic fusion (Neri and
Cotta, 2012). This evolution mechanism selects the best and
the worst solutions of sub-populations and realizes independent
evolution.

A benchmark test in Sridhar et al. (2017) demonstrates that
SFLA performs better than P&O, PSO, and differential evolution
(DE) in power extracted, convergence, conversion efficiency,
dynamic response, and oscillations. Particularly, the SFLA
introduces the grouping concept to the optimization algorithm,
and the direction of SFLA’s particle is not affected by the
best or worst individual but by a group of frogs on a rock.
The grouping concept was combined with PSO to make an
application of grid-connected modular PV converter system
in Mao et al. (2018). The SFLA-based GMPPT slows down the
speed of both explorative and exploitative search behavior by
using the grouping concept.Thismechanism increases the global
search ability, but requires more particles and long time for the
search process.

3.1.3 Artificial bee colony algorithm
Inspired by the natural bee colonywork distribution, the bees

are divided into employed bees, onlooker bees, and scouts in
the ABCA.The feasible solutions are represented by the location
of bees (Nakrani and Tovey, 2004). Employed bees take their
memories to locate a food supply in the vicinity and convey this
information with onlooker bees. Onlooker bees exploitatively
search a food source. The employed bee of which the source has
been abandoned will turn to a scout bee and starts to search
for a new possible origin of food randomly (Karaboga and
Akay, 2009).

In the initial stage of the ABCA, the nectar source is
randomly generated, and the number is equal to the employed
bees. The movement of the employed bees is defined in Eq. 7.

vt+1i = x
t
i +R−1, 1 (xi − xk) (7)

where xk is the nearby nectar, xi is the current nectar. The
resulting possible solutions will be compared with the old
solutions, and a greedy selection strategy will be used to retain
the better solutions. Each onlooker bee selects a nectar source
based on probability which is given in Eq. 8.

pi =
Fi

∑Np
n=1

Fn

(8)

The ABCA integrated perturbation and observation
(ABCA-P&O) MPPT algorithm is utilized in (Pilakkat and
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Kanthalakshmi, 2020) for GMPPT. It should be noted that
increasing the population size to improve performance is
not the best option, as this will significantly increase the
tracking time. The Limit parameter is used to control the
transition from employed bees to scout bees. When the
Limit is small, the GMPPT process has stronger randomness
and slower convergence speed. When the Limit is large, the
movement direction of the colony is mainly dominated by
the greedy algorithm, and it is easy to fall into the LMPPs.
In Soufyane Benyoucef et al. (2015), an ABCA based GMPPT
method was proposed. Compared to the conventional MPPT
schemes such as the P&O and InC, it increases the exploitative
search ability. In Sundareswaran et al. (2015b), it is shown
that the ABCA has a better tracking efficiency than the PSO
and enhanced P&O (EPO) methods under the benchmark
performance test. The main drawback of the ABCA is the
unproductive behavior in exploitation (Jadon et al., 2017). In
Fathy (2015), proposed a modified artificial bee colony (MABC)
algorithm with an inertia weight formula for the food position
to avoid the local sub-optimal solution. Compared with the
genetic algorithm (GA), PSO, and ABCA results, the proposed
MABC has a higher efficiency. D Pilakkat et al. Pilakkat and
Kanthalakshmi (2019) proposed a modified P&O based MPPT
scheme by integrating ABCA in the first stage and P&O
algorithm in the second stage. As a result, P&O’s local search
capability and ABC’s global search capability are successfully
integrated to create the converter’s optimum duty cycle in a
quick and efficient manner.

3.1.4 Cuckoo search
CSwas developed by Yang et al. in 2009 (Yang andDeb, 2009;

Mareli and Twala, 2018). In nature, cuckoos lay their eggs in the
nests of other birds which can engage in direct conflict with the
intruding cuckoos. This is called the holoparasite. Each cuckoo
in the CS lays one egg at a time and deposits it in a nest chosen
at random.The top-notch egg nests will be passed on to the next
generation. The number of available host nests is a fixed value.
The host bird discovers the cuckoo’s egg with a predetermined
probability. The host bird can toss the egg and start again with a
fresh nest (Yang and Deb, 2013).

The cuckoo’s nesting path and location update formula is
given in Eq. 9.

xt+1i = x
t
i + α× L (λ) (9)

whereα is the step size, andL(⋅) submitted to Lévy flight function,
is given in Eq. 10.

L (s) = u
|v|1/1.5

(10)

Among them, u and v come from the normal distribution as
shown in Eq. 11.

u∼N(0,
{{{{
{{{{
{

Γ (1+ β) × sin(
πβ
2
)

Γ[(
1+ β
2
)]× β× 2(β−1)/2

}}}}
}}}}
}

2/β

)

v∼N (0,1)

(11)

where Γ denotes the gamma function, which is the extension
of the factorial function in the real and complex fields
(Mosaad et al., 2019). The above-mentioned Lévy flights is the
foundation of many other optimization methods. Many insects
and animals move over a long distance with various distance
steps. The Lévy flight may be used to effectively imitate this
feature (Pavlyukevich, 2007).

TheCS enjoys several advantages including fast convergence,
high efficiency and few tuning parameters. In Ahmed
and Salam (2014), a CS-based MPPT scheme with partial
shading capability was proposed. In 2019, Mosaad et al. (2019)
investigated the GMPPT of PV system based on the CS
algorithm. Compared with the neural network and incremental
conductance approach, the CS can track the GMPP under
various atmospheric conditions with lower power losses. The
improvement of CS performance is mainly due to Lévy flights,
where the step size is a heavy-tailed distribution. In the Lévy
flight, the step sizes comply with the power law. This feature
enhances global search performance of the CS-based GMPPT.

3.1.5 Firefly algorithm
Yang et al. proposed the FA (Yang, 2009). The main rule

followed by FA is the light intensity emitted by fireflies at a
specific distance r that follows the inverse square law. In other
words, the light intensity is I∝ 1/r2 at the distance r. The view
of a single firefly is limited to several hundred meters at night
because the air absorbs light. Inspired by fireflies, the brightness
can be correlated with the objective function, and then the firefly
groups are sorted according to the brightness of each firefly from
smallest to largest. The Euclidean distance between the ith and
the jth fireflies is rij. The attraction of these two individuals is
defined as β = β0exp(−γr

2). The FA compares the brightness of
any two fireflies in the population. If Ii < Ij, the firefly i will fly
towards the firefly j as shown in Eq. 12.

xt+1i = xi + β0e
−γr2ij (xtj − x

t
i) +R0, 1ϵ

t
i (12)

where β0 is the attractiveness at r = 0, the randomization ϵiet can
be easily extended to other distributions such as Lévy flights.

The firefly algorithm has been criticized for differing
from the well-established PSO only in a negligible way
(Lones, 2014). The standard FA suffers from high computational
time complexity and sluggish convergence (Wang and Liu, 2019).
The experimental results of FA are not very stable, and the
worse values can deprave the performance of the entire tracking
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significantly. The main idea of the FA is that each firefly flies
towards the firefly brighter than itself, which will inevitably
lead to rapid convergence of the group. When the group is all
concentrated in one direction, the search ability of the algorithm
will decline rapidly and it will not be able to jump out of the local
optimum. In Teshome et al. (2016), introduced the average of the
brighter flies to replace the brighter individual in any two couple
of fireflies.The Teshome’s method can decrease the tracking time
and increase the tracking accuracy compared with the original
FA.

3.1.6 Harris hawk optimization
The HHO simulates the predation of Harris eagle. It was

developed by Heidari et al. (2019). It mainly consists of three
parts: the exploration, transition, and exploitation phases.

In the exploration phase, a random number q between 0 and
1 is created. Depending on the q, two strategies as shown in
Eq. 13 are possible.

Xt+1 = {
Xt
rand − r1|X

t
rand − 2r2X

t| q ≥ 0.5

[Xt
rabbit −X

t
m] − r3 [r4 ×Voc, string] q < 0.5

(13)

where Xt and Xt+1 are the positions of the hawks in the current
and next iteration, Xrand is a random hawk, Xrabbit is the position
of rabbit, r1, r2, r3, r4 are R−1, 1, and Xm is the central position of
the current hawks population.

The HHO switches between different behaviors according
to the escape-energy of the rabbit. Escape-energy is defined in
Eq. 14.

E = 2E0(1−
t

MaxItr
) (14)

where E is the escaping energy of the rabbit, and E0 is the initial
state of the energy at the beginning of each iteration, and its value
is random generated within [0,1].

In the exploitation phase, there are four behaviors for the
generation of the new position of the hawks: soft besiege (SB),
hard besiege (HB), soft besiege with progressive rapid dives (SB-
PRD), and hard besiege with progressive rapid dives (HB-PRD).
The choice of these behaviors relies on the generation of random
numbers and E. The SB and HB are the simple updating of the
hawks’ position according to Eqs 15, 16, respectively.

Xt+1 = Xt
rabbit −X

t −E|JXt
rabbit −X

t| (15)

Xt+1 = Xt
rabbit −X

t −E|δX (t) | (16)

Lévy flight is introduced to produce the step for the SB-PRD
and HB-PRD process as shown in Eqs 17, 18, respectively.

Xt+1 = Xt
rabbit −X

t −E|JXt
rabbit −X

t| +R0, 1 × L (17)

Xt+1 = Xt
rabbit −X

t −E|δX (t) | +R0, 1 × L (18)

The HHO-based MPPT method for PV systems under
PSCs was proposed in Mansoor et al. (2020). Large spikes in the
tracking curves occur as a result of the early investigation of
the search space for the HHO-based MPPT control. The cause
of this phenomena is that the worst solution always exists and
has an impact on the tracking process’s convergence. Despite this
problem, experiments showed that the HHO can obtain better
results than P&O and PSO through field atmospheric data and
case studies.

3.1.7 Flower pollination optimization
FPO can be concluded into the following two parts: abiotic

pollination and biotic pollination (Yang, 2012). In FPO, the biotic
is viewed as a global pollination process involving Lévy flights
by pollinators. A certain switch probability p ∈ [0,1] is used to
control the local pollination (explotitative search) and global
pollination (explorative search).

At each iteration of FPO, a randomnumberR0, 1 is generated.
If R0, 1 is smaller than the switch probability p, the global
pollination described in Eq. 19 will be carried out.

xt+1 = xt + L(g− xt) (19)

where L is a step size drew from the Lévy flight, g is the best
individual discovered among all solutions. If R0, 1 is larger than
the proximity probability p, local pollination described in Eq. 20
will be carried out.

xt+1 = xt +R0, 1 (x
t
j − x

t
k) (20)

where xtj and x
t
k are pollen frommultiple blooms of the same type

of plant.
Only two parameters are needed in FPO. In Diab and

Rezk (2017) and Samy et al. (2019), the results of a complete
evaluation of the FPO-based GMPPT versus DE and PSO with
two distinct PV string configurations reveal that the FPO has the
highest efficiency.Many researchers tried to improve the tracking
speed of the FPO by the introduction of random factors. In
Sundararaj et al. (2020), Cauchy preferential crossover is utilized
to accelerate the FPO. As a result, the steady-state oscillations are
reduced during the MPPT process. Yousri et al. (2019) combine
the chaos maps with FPO and improve the dependability and
stability of the FPO. When compared to FPO, the chaotic
FPO (C-FPO) delivers improved tracking efficiency and a 50%
reduction in tracking time.

3.2 Human-based algorithms

3.2.1 Teaching learning based optimization
The TLBO algorithm was created by Rao et al. in 2011

(Rao et al., 2012). No algorithm-specific parameters need to
be tuned when using the TLBO. Two basic learning modes,
learning through teachers (teacher phase) and learning through
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communication with other students (learner stage), are used to
describe the TLBO. In TLBO, a population refers to a group of
students. The student’s score is similar to the fitness value of the
optimization problem, and is represented by power value in the
GMPPT.The individual who gets the best solution for the whole
group is considered to be the teacher. In the teaching phase of
TLBO, the update equation for the position of each teacher is
expressed by Eq. 21.

xt+1i = x
t
i +R0, 1 ×(xteacher −TF×

Np

∑
n=1

xn) (21)

where TF ∈ [1,2] is a teacher factor, xteacher is the individual with
the best fitness value.

In the learner phase of TLBO, the update equation for the
position of each learner is expressed by Eq. 22.

xt+1i = x
t
i +R0, 1 × |xi − xj| (22)

where xj is a randomly selected learner with i ≠ j. In TLBO, xti
will update only if xt+1i is better than xti for both teacher phase
and learner phase.

The algorithm-specific parameters are not required byTLBO.
In Rezk and Fathy (2017), the TLBO is used to find the GMPP
for a partially shaded PV system. In the PSCs investigated,
the average tracking time of GMPP is decreased by more than
23.8% when compared to PSO. However, the TLBO is easy to
fall into the LMPPs (Fathy et al., 2018). An improved teaching-
learning-based optimization (I-TLBO) is applied to perform
GMPPT in (Chao andWu, 2016). I-TLBO increases the tracking
accuracy and improves the tracking response. The proposed I-
TLBO uses an adaptive teaching factor TF which is equal to
P(xlearner)/P(xbest), where P(xlearner) is the current power value of
the learner and P(xbest) is the current best power value. The TF
in I-TLBO decreases as the distance between the learner and the
best candidate decreases, which will greatly strengthen the local
search capability.

3.2.2 Jaya algorithm
The Jaya algorithm, named after the victory in Sanskrit,

is a heuristic optimization method that does not require any
algorithm-specific parameters (Rao, 2016). The foundation of
Jaya is the belief that the best option for a particular circumstance
should be followed, while the worst solution should be avoided
(Rao and Saroj, 2017).

In the Jaya based GMPPT algorithm, the initial solutions are
randomly generated in [0,Voc, string]. Afterwards, each solution is
randomly updated using Eq. 23.

xt
′

i = x
t
i +R0, 1 (x

t
best − |x

t
i|) −R0, 1 (x

t
worst − |x

t
i|) (23)

where the subscripts i is the index of candidate solution. The
first term R0, 1(x

t
best − |x

t
i|) drives the current candidate solution

xti to the positions that are close to the best solution. Vice

versa, the second term R0, 1(x
t
worst − |x

t
i|) forces the current

candidate solution away from the worst solution. xt+1i is updated
to xt

′

i only if xt
′

i gets a better fitness value than xti, otherwise
it will still be xti. This loop will continue until the MaxItr is
reached.

The Jaya-basedMPPTmethodwas developed byHuang et al.
for the PV strings working under PSCs in Huang et al. (2017b).
The simulation results show that the Jaya-based method
takes fewer iterations to converge to the GMPP and has a
higher dynamical tracking efficiency than PSO methods. In
Huang et al. (2017a), a prediction model-guided Jaya algorithm
was proposed. The iterative search procedure incorporates a
cubic-spline-based prediction model to guide the updating of
candidate solutions. In the Jaya-basedMPPT, the particles are far
away from the global worst solution and approach to the optimal
global solution. This mechanism accelerates the convergence,
but it also makes the Jaya algorithm easily fall into a local
optimum.

3.3 Physics-based algorithms

3.3.1 Water cycle algorithm
The WCA simulates the water cycle process in nature.

It sets three types of individuals in the population: sea,
river and streams. The sea is the optimal individual of the
current population, the river is a certain number of good
individuals, and the remaining poor individuals are streams
(Eskandar et al., 2012). For the application of WCA in GMPPT,
Npop of individuals will be generated. Among them, Nsr = 1+Nr
is the total number of the river and the sea. Nstream = Npop −Nsr
is the number of streams. Eq. 24 is given to designate raindrops
to the river and sea depending on the intensity of the flow.

Nsn = round(|
Costn
∑Nsr

s=1
Costs
| ×Nstreams), n = 1,2,…,Nsr (24)

whereNsn is the number of streams that flow to the specific river
or sea, and Cost denotes the power value.

During the iteration, the new position of streams and rivers
are given in Eqs 25, 26.

Xt+1
stream = X

t
stream +R0, 1 ×C× (X

t
river −X

t
stream) (25)

Xt+1
river = X

t
river +R0, 1 ×C× (X

t
sea −X

t
river) (26)

The WCA introduces an evaporation condition to avoid the
problem of falling into a local optimum. If |Xsea(t) −X

i
river(t)| <

dmax for any river i, the random new river will be generated to
replace the old river i. dmax is a small number and decreases with
the iteration shown inEq. 27.
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FIGURE 4
Verr and Pacc test results with different algorithms under (A) PSC1: 3S-KC175GT; (B) PSC2: 5S-KC175GT; (C) PSC3: 7S-KC175GT; (D) PSC4:
3S-N224A01; (E) PSC5: 5S-N224A01; (F) PSC6: 7S-N224A01; (G) PSC7: 3S-JH10; (H) PSC8: 5S-JH10; (I) PSC9: 7S-JH10.

dmax (t+ 1) = dmax (t) −
dmax (t)
Tmax

(27)

The WCA-based MPPT is compared with the P&O for
PV energy conversion under PSCs in Sarvi et al. (2014). The
findings demonstrate that by removing the random number and
acceleration coefficients components, the WCA simplifies the
MPPT control method. In comparison to P&O, the suggested
WCA technique provides exceptional accuracy and speed.
However, a large number of individuals are needed to ensure
robustness (Heidari et al., 2017).

3.3.2 Vortex search
Vortex search (VS) was proposed by Doğan and

Ölmez (2015). The VS is inspired by the vortex pattern created
by the flow of the stirred fluid (Ali et al., 2018). In the VS, the

vortex is first centered on the initial center μ0 as shown in
Eq. 28.

μ0 =
Voc,string

2
(28)

After the generation of the initial solution, the neighbor
solutions Ct(s) (initially t = 0) are randomly generated around
the initial solution μ0 using a Gaussian distribution as shown in
Eq. 29.

p(x|μ,Σ) = 1

√2π|Σ|
exp{−1

2
(x− μ)TΣ−1 (x− μ)} (29)

where x is the random variable, μ is the sample mean (center of
the vortex), and Σ is the con-variance matrix.
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FIGURE 5
VGMPP and Vest distribution of the VVS, Jaya, TLBO, and WCA: (A) HIT-N225A01 PV string; (B) KC175GT PV string; (C) JH-10 PV string.

The best solution from C0(s) is chosen in the selection
phase to replace the present circle centre mu0. The candidate
solutions which are outside the search boundaries are shifted
inside the boundaries. During each iteration, the inverse
incomplete gamma function Eq. 30 is used to reduce the radius
value.

γ (x,a) = ∫
x

0
e−tta−1 dt a > 0 (30)

To adjust the resolution, the value of a is equally sampled
within [0,1]. For this purpose, the value of at is expressed by
Eq. 31 at each iteration.

at = a0 −
t

Tmax
(31)

where a0 = 1 ensures that the search space is fully covered in the
initial iteration.

Algorithm 1 shows the pseudo-code of the VS algorithm.
The VS algorithm has some features that are beneficial to the
GMPPT process. The VS algorithm ensures convergence by
reducing the search radius. Besides, the VS algorithm is simple
due to its single-solution-based updating mechanism. However,
the integral numerical calculation of incomplete gamma function
is a significant challenge for controllers with limited resources.
In addition, the VS algorithm does not have the “jump out”
mechanism of the current optimal solution. As a result, the
selection of initial voltage set-points is important to theVS-based
GMPPT algorithm.

Algorithm 1: Description of the VS algorithm Özkış and
Babalık (2017).

3.3.3 Variable vortex search
This paper proposes a variable vortex search (VVS), which

balances the exploration and exploitation behaviors by using
deterministic initial points and the variable search steps. Its
search process can be divided into two steps: pre-search and
optimization. The former provide a good estimation of GMPP
locus based on the electrical characteristics of a PV string
under PSCs, while the latter applies a variable step size strategy
to adjust the search radius in exploitative and explorative
search.

The pre-search strategy is developed based on the
observations of Vm −Vs characteristics. Figure 3A indicates the
Vm −Vs characteristics of a PV string comprising four modules.
The voltage of a working module is non-negative, while a shaded
modules obtains a negative voltage. The number of working
modules Np,1 is equal to 1 at the 1st sampling point. Two
additional modules start to work at the 2nd sampling point and
the Np,2 is increased to 3. The number of newly added working
modules at the ith sampling point is denoted by Dp,i. We can get
Np,3 = 4 and Dp,3 = 1 for the 3rd sampling point.
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FIGURE 6
Pacc distribution of the algorithms in the test of three JH-10 modules in series connection with random PSCs: (A) VVS; (B) VS; (C) ABCA; (D) CS;
(E) FAO; (F) FPO; (G) HHO; (H) Jaya; (I) PSO; (J) SFLA; (K) TLBO; (L) WCA.

Algorithm 2 pesents the pseudo-code of the pre-search
strategy. The pre-search strategy starts from the 1st sampling
point, whose voltage is equal to 0.5×Voc,m.The (i+ 1)th sampling
voltage is (Np,i + 0.5) ×Voc,m and this will continue until the Np,i
is equal to the number of series-connected PV modules Nm.
The pre-search strategy provides a good initial search region for
the optimization process. Previous studies show that the MPP
voltage is about 0.8 ×Voc on a PVmodule (Xiao et al., 2007; Patel
and Agarwal, 2008; Tey and Mekhilef, 2014; Başoğlu, 2018).
Therefore, the initial points can be calculated by (Np,i
− Dp,i+0.8×Dp,i) ×Voc,m = (Np,i − 0.2×Dp,i) ×Voc,m. Figure 3B
shows the locations of sampling points and initial points
on the P-V curve. It is observed that these initial
points are close to the GMPP and the LMPPs, but the
errors can be further reduced by the proposed VVS
algorithm.

The pseudo-code of the tracking is shown in Algorithm 3.
The best solution from the pre-search results is selected as the
current circle center C0(s) at the first round of selection. Then, a
number of solutionsCt+1(s) are randomly generated aroundCt(s)
(t represents the iteration index) by using a Gaussian distribution
in the search regions. For the ith vortex, its center will be updated
if the new solution gets a larger power value. The radius of the
search region for the ith vortex is generated according to Eq. 32.

r = f×R−0.5, 0.5 × n×Dp,i ×Voc,m (32)

where f = k× √x
2+x

exp(x)
, x = t

Tmax
, k =
√1/2+1/√2
exp(1/√2)

. k is approximately
equal to 1.85 so that the function f has a maximum value of 1.
n is a constant number within [0, 0.5] according to the electrical
characteristics of PVmodules. n×Dp,i ×Voc,m is the initial radius
of the ith vortex. Figure 3C illustratives the proces.The function
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FIGURE 7
P-V curves and GMPP trajectory under considered PSCs for step
test.

f is a mountain-like curve and determine the effective radii of the
search regions.

The proposed VVS algorithm uses prior knowledge to
equilibrate the exploration and exploitation efficiently. At the
first step of the search, the initial points of the system are
determined according to the PSCs. In the second step, the
radii of the search regions are varying over iterations. The
VVS uses small search radii to conduct exploitation and
followed by large radii to conduct exploration. After such
a search process with a variable radius, the approximate
location of the GMPP will be determined. Then the radii of
the VVS shrink to a small value again to locate the GMPP
precisely.

Algorithm 2: Determination of initial points.

Algorithm 3: Description of the VVS-based GMPPT algorithm.

4 Simulation and experimental
analysis

4.1 Metrics of tracking performance

Six performancemetrics, namely, tracking accuracy of power
Pacc, tracking efficiency of power Peff, minimum tracking time
Tmin, mean squared error of voltage VMAE, root mean square
error of voltage VRMSE, and normalized tracking error of the
voltage Verr were used in the tracking performance evaluation.
Pacc,Peff,Tmin,VMAE,VRMSE andVerr are expressed byEqs 33–38.

Pacc =
Pest

PGMPP
(33)

Peff =
Nstep

∑
i=1

Pi
PGMPP

(34)

Tmin =
Nbest

Nstep
(35)

VMAE =
1
m

m

∑
i=1
|VGMPP,m −Vest,m| (36)

VRMSE =
√∑

m
i=1
(VGMPP,m −Vest,m)

2

m
(37)

Verr =
∑m

i=1
|VGMPP,m −Vest,m|/Voc, string,m

m
(38)

where Pest is the estimated power value, PGMPP is the global
maximum power value, Pi is the output power of PV string in
step i, Nbest is the iteration index when the output power reaches
95%ofPest,m is the number of test sets,VGMPP,m is the realGMPP
voltage in themth scene,Voc, string, m is the open-circuit voltage of
the PV string in the mth scene, and Vest,m is the estimated MPP
voltage in themth scene. InMamarelis et al. (2014), the accuracy
of GMPPT Pacc is also called steady-state MPPT efficiency. Peff
is used in Chaieb and Sakly (2018) to represent the efficiency
of the tracking process. In da Rocha et al. (2020), the Peff is also
called the tracking factor (TF). Tmin is proposed in this paper to
evaluate the prematurity. If Pacc and Tmin are small at the same
time, it indicates that the GMPPT algorithm has fallen into the
local optimum.

4.2 Software simulation

Simulation studies were conducted in Matlab/Simulink to
perform a comprehensive evaluation. The PV string’s load is
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FIGURE 8
Average and best power curves under considered PSC test of a PV string with 3 PV modules: (A) Average tracking power curve and variation
area; (B) P-V and I-V curve of the tested PSC; (C) The PV string topology.

FIGURE 9
Average and best power curves under considered PSC test of a PV array with 3*2 PV modules connected in TCT topology: (A) Average tracking
power curve and variation area; (B) P-V and I-V curve of the tested PSC; (C) The PV array topology.

considered as a controllable voltage source. Different PV strings
(monocrystalline, polycrystalline, and thin-film) with 3, 5, 7
series-connected modules are used in the simulation. Table 1
Table 2 shows the specifications of the PV modules. Each data-
set contains 100 random PSCs (G = [100, 1100]W/m2, T =
25°C).

To make a fair comparison, the maximum sampling number
for all the GMPPT algorithms is set to 20.The average test results
of each data-set are shown in Table 3. Each experiment was
conducted 100 times, and then the average value was taken as the
final result. The proposed VVS-based GMPPT method obtains
the highest accuracy according to theVMAE andVRMSE. Although
VS, PSO and WCA show a competitive Peff with the VVS-based
GMPPTmethods, they fall into the LMPPs because their tracking
accuracy is relatively low. In addition, the Verr and Pacc test
results of each data-set are shown in Figure 4 where the vertical
axis represents Peff and the horizontal axis represents Pacc. The
superiority of the proposed algorithm can be seen intuitively.The

VVS owns the smallest Verr in all cases among all algorithms.
In the PSC3, PSC6, and PSC9, the Jaya, TLBO, and WCA show
a competitive Pacc with the VVS-based GMPPT methods. The
Jaya, TLBO, and WCA fell into the LMPPs due to the lack of
exploration. To further illustrate the prematurity phenomenon,
the VGMPP and Vest distributions of the VVS, Jaya, TLBO, and
WCA in the test of seven HIT-N225A01, KC175GT, and JH-10
modules in series connection with random PSCs are shown in
Figure 5. The distribution of the Vest from the VVS test results
is more concentrated around the grey line (Vest = VGMPP) than
that of the other algorithms. It indicates that the VVS made a
good balance between the explorative and exploitative searching
behavior.

The probability distributions were collected in order to
describe the impact of random factors. Each algorithm was
tested 1000 times with the data-set created from a 3-series-
connected JH-10 PV string under 100 randomly generated PSCs.
The Pacc distributions of each algorithm are shown in Figure 6.
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FIGURE 10
The power and voltage tracking trajectories of the 12 different algorithms in the step test: (A) VVS; (B) VS; (C) ABCA; (D) CS; (E) FAO; (F) FPO; (G)
HHO; (H) Jaya; (I) PSO; (J) SFLA; (K) TLBO; (L) WCA.

Among all the algorithms, the VVS-based GMPPT method
produced the Pacc results with the highest average of 0.997 and
the smallest variance of 3.10e-7. Compared to the VS algorithm,
the proposed VVS improved the Pacc by nearly 4% according to
Figures 6A,B.

All methods were tested under highly fluctuating
atmospheric conditions for their dynamic performance test.
The shading patterns (SPs) and the corresponding P-V
curves are listed in and Figure 7, respectively. The location
of the GMPP varies from GMPP1 to GMPP3, then ends in
GMPP1.

A PV string with 3 modules, and a PV array with 3*2 total
cross tied configuration (TCT) modules are used to test the
static performance of the proposed algorithm. The test results
are shown in Figures 8, 9, separately. The proposed algorithm
was run 10 times and the test results were averaged to eliminate
the influence of random factors on system performance. The red
area presented in Figures 8A, 9A denotes the variation area of
power during the tracking process. From this, we can see that
with the increase in the number of iterations, the VVS algorithm
proposed in this paper gradually converges the search radius
until the GMPP is determined.
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FIGURE 11
Distribution of the voltage sampling points for the algorithms in the test of three JH-10 modules in series connection with random PSCs: (A)
VVS; (B) VS; (C) ABCA; (D) CS; (E) FAO; (F) FPO; (G) HHO; (H) Jaya; (I) PSO; (J) SFLA; (K) TLBO; (L) WCA.

The simulation results from the VVS-based GMPPT is
depicted in Figure 10A and it shows that the VVS has tracked
the GMPP on every pattern. Figure 10B reveals that the
VS algorithm was tracked in a LMPP in the first SP1. The
performance evaluation results of the other methods are shown
in Figure 10. It can be seen that the priority of exploration is
higher than exploitation in the ABCA and CS-based GMPPT.
The HHO, Jaya, WCA, and SFLA cannot track the real GMPP
under the SP1, where two different LMPPs with similar power
values appeared. Based on the aforementioned Pacc distribution
analysis, it can be concluded that the key to improve GMPPT
performance lies in the balance of exploitative and explorative
search capabilities.

Figure 11 shows the probability density estimation of the
voltage sampling points during the MPPT process. For each
algorithm under the PSC1-3 shown in Table 1, the data contains
1000 (runs) × 20 (steps) voltage sampling points. It can be
observed that the distributions of the voltage sampling points
from proposed VVS-based methods agree with the distribution
of LMPPs. Besides, the VVS-based GMPPT method obtains
a relatively narrow distribution compared with the VS-based
GMPPT method. The test results show that the variable
step size and the deterministic starting points can result in
a multi-modal distribution that is the same as the LMPPs
distributionwhen the PVmodules receive different levels of solar
irradiance.
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FIGURE 12
Test results with different algorithms under PSC: (A) Best fitness value during the tracking process; (B) Polynomial curve fitted best fitness value
(solid line) and average fitness value (dash line) during the tracking process; (C) I-V and P-V characteristics.

FIGURE 13
Overview of experimental setup.

Figure 12 shows the test results obtained from different
algorithms under the specified PSC. Figure 12A shows the
average best fitness value (maximum power) of different
algorithms during the tracking process of 20 steps.The proposed
VVS-based algorithm successfully tracked the GMPP. The SFLA
and WCA based algorithms trapped in the LMPP with 320W.
The CS and FAO based algorithms trapped in the LMPP with
340W. Figure 12B shows the polynomial curve fitted best fitness

value (solid line) and average fitness value (dash line) during
the tracking process. There is almost same continuous growth
trend for the proposed VVS-based algorithm, which explains the
robustness and stability of the algorithm. Figure 12C shows the
I-V and P-V characteristics of this PSC.

4.3 Hardware evaluation and
implementation

The experimental hardware system is shown in Figure 13. A
solar PV string emulator (Chroma 62020H) was used to generate
the required P-V and I-V characteristics. A micro-controller
unit (STM32F103), was opted for the processor of the system.
The oscilloscope (GW Instek GDS-2202A) was used to collect
signals (Ppv, Ipv,Vpv) from the sensor board. The programmable
load (SOUSIM 300W) adjusted the operating voltage of the PV
emulator in constant voltage mode.

The tracking waveform of the VVS-based GMPPT is
shown in Figure 14A. The proposed VVS algorithm has a
faster convergence speed than other algorithms. It is worthy
pointing out that the 100 sampling points is enough for
almost all the tested algorithms. The VVS-based GMPPT
methods takes 1.3s, achieved the best result in the test
bench.

Experiments were carried out in a rooftop PV system as
shown in Figure 15 to further confirm the validation of the
proposed technique. The PV string was connected to a DC
electronic load (in constant voltage mode). A host PC was used
to control the electronic load. An oscilloscope was used to
collect the Ipv and Vpv signal from the current probe and the
voltage probe. Figure 16 shows the typical tracking waveforms.
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FIGURE 14
Voltage, current, and power tracking trajectories of the methods under PSC: (A) VVS; (B) VS; (C) ABCA; (D) CS.

FIGURE 15
Hardware evaluation platform.

FIGURE 16
Tracking waveforms.

It shows the proposed algorithm consisting of three particles.
The decrease in the search radius makes the tracking algorithm
converge to the GMPP point with Vpv = 42.821V, Ipv = 0.387A
and Ppv = 16.575W.

Random number generation is an important part of the
heuristic algorithms (Darwish, 2018). In the hardware test, the
micro-controller uses an analog-to-digital (AD) pin to collect
the last 4 bits of power supply noise as the seed to generate the
random numbers. The uniformly distributed numbers within
the range of [0,1] or [−1,1] are needed for the PSO, SFLA,
ABCA, WCA, Jaya, HHO, and TLBO. This can be achieved
by rand function in C code. In the VS and VVS, the normal
distribution is needed. The CS, FAO and FPO apply Lévy
flight, which requires two random number within the normal
distribution. Each random method was conducted 1000 times
in the STM32F103RCT6 micro-controller at 72 Mhz core clock
frequency to evaluate the computational cost of the uniform
distribution, normal distribution, and Lévy flight. The time
cost for a 100 uniformly distributed number was 0.166 ms.
As for the normal distribution, Box–Muller method takes
23.04 ms. 12.20, 18.68 and 31.64 ms were needed for 25, 50
and 100 sampling numbers when the micro-controller used
the law of large numbers (Yao and Gao, 2015) to generate
normal distribution. The Marsaglia method was used for
normally-distributed numbers, and it costs 17.24 ms. Due to
the complexity of floating-point arithmetic, the Lévy flight
takes 94.08 ms, which was a longer time than the generation
of same quantities of random numbers in uniform or normal
distribution.

5 Conclusion

In this paper, the challenges in twelve heuristic-optimization-
based GMPPT techniques, especially the exploitative and
explorative search capabilities, have been analyzed by a
comprehensive study. A novel VVS-based GMPPT method,
which is capable of improving the performance of GMPPT

Frontiers in Energy Research 18 frontiersin.org

https://doi.org/10.3389/fenrg.2022.946864
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Wang et al. 10.3389/fenrg.2022.946864

by using variable step size and deterministic starting points,
is proposed in this paper. In the simulation and hardware
tests, the tracking accuracy of the proposed VVS-based
GMPPT is more than 99% and its tracking efficiency is the
best among all tested methods. Moreover, it reduces the
computational burden and is easy to implement. The discussion
and analysis of the most important and current heuristic
optimization methods developed in the literature, as well as
the newly suggested VVS-based GMPPT approach, will allow
researchers to choose the best method for their preferences and
priorities.
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Nomenclature

Vset voltage set-point

Voc open-circuit voltage

Isc short-circuit current

L Lévy flight

Tmax maximum number of iterations

Ipv photo-generated current

Is reverse saturation current of the diode

Ns number of PV cells connected in series

Nm number of PV modules connected in series

q electron charge constant

k Boltzmann constant

Rs series resistance

Rp shunt resistance

T temperature of the PN junction in Kelvin

k Boltzmann constant

Isat, bp reverse bias saturation current of the bypass diode

vti The ith particle’s speed

n1,n2 learning constants

pi individual best of ith particle

pg global best of particles

Pw The worst frog

Pb The best frog

F power value

β attractiveness

I brightness

rij The Euclidean distance between the i and j fireflies

TF Teacher factor

Vs terminal voltage of a PV string

Pest The estimated power value

PGMPP The global maximum power value

Nbest The iteration index when the output power reaches 95%
Pest

R0, 1 Random number within [0, 1]

R−1, 1 Random number within [−1, 1]

R−0.5, 0.5 Random number within [−0.5, 0.5]

t The iteration index
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