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The increasing penetration of renewable energy introduces more uncertainties and creates
more fluctuations in power systems than ever before, which brings great challenges for
automatic generation control (AGC). It is necessary for grid operators to develop an
advanced AGC strategy to handle fluctuations and uncertainties. AGC dynamic
optimization is a sequential decision problem that can be formulated as a discrete-time
Markov decision process. Therefore, this article proposes a novel framework based on
proximal policy optimization (PPO) reinforcement learning algorithm to optimize power
regulation among each AGC generator in advance. Then, the detailed modeling process of
reward functions and state and action space designing is presented. The application of the
proposed PPO-based AGC dynamic optimization framework is simulated on a modified
IEEE 39-bus system and compared with the classical proportional−integral (PI) control
strategy and other reinforcement learning algorithms. The results of the case study show
that the framework proposed in this article can make the frequency characteristic better
satisfy the control performance standard (CPS) under the scenario of large fluctuations in
power systems.

Keywords: automatic generation control, advanced optimization strategy, deep reinforcement learning, renewable
energy, proximal policy optimization

INTRODUCTION

Automatic generation control (AGC) is applied to ensure frequency deviation and tie-line power
deviation within the allowable range in power systems as a fundamental part of energy management
system (EMS) (Jaleeli et al., 2002). Conventional AGC strategies calculate the total adjustment power
based on the present information collected from Supervisory Control and Data Acquisition
(SCADA) system including frequency deviation, tie-line power deviation, and area control error
(ACE), etc., and then allocates the total adjustment to each AGC unit. The control period is generally
2–8 s. Therefore, the key to conventional AGC strategies is to solve two problems:① how to calculate
the total adjustment power based on the online information; ② how to allocate the total adjusted
power to each AGC unit with the goal of satisfying the control performance standard (CPS) and
minimizing the operation cost. At present, to solve these two problems, scholars have proposedmany
control strategies. For calculating the total adjustment power, proposed strategies include the
classical proportional−integral (PI) control (Concordia and Kirchmayer, 1953),
proportional−integral-derivative (PID) control (Sahu et al., 2015; Dahiya et al., 2016), optimal
control (Bohn andMiniesy, 1972; Yamashita and Taniguchi, 1986; Elgerd and Fosha, 2007), adaptive
control (Talaq and Al-Basri, 1999; Olmos et al., 2004), model predictive control (Atic et al., 2003;
Mcnamara and Milano, 2017), robust control (Khodabakhshian and Edrisi, 2004; Pan and Das,
2016), variable structure control (Erschler et al., 1974; Sun, 2017), and intelligent control

Edited by:
Bo Yang,

Kunming University of Science and
Technology, China

Reviewed by:
Xiaoshun Zhang,

Northeastern University, China
Jiawen Li,

South China University of Technology,
China

*Correspondence:
Zhao Liu

liuzhao1@bjtu.edu.cn
Pei Zhang

2512692577@qq.com

Specialty section:
This article was submitted to

Smart Grids,
a section of the journal

Frontiers in Energy Research

Received: 18 May 2022
Accepted: 07 June 2022
Published: 13 July 2022

Citation:
Liu Z, Li J, Zhang P, Ding Z and Zhao Y
(2022) An AGC Dynamic Optimization

Method Based on Proximal
Policy Optimization.

Front. Energy Res. 10:947532.
doi: 10.3389/fenrg.2022.947532

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 9475321

ORIGINAL RESEARCH
published: 13 July 2022

doi: 10.3389/fenrg.2022.947532

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.947532&domain=pdf&date_stamp=2022-07-13
https://www.frontiersin.org/articles/10.3389/fenrg.2022.947532/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.947532/full
http://creativecommons.org/licenses/by/4.0/
mailto:liuzhao1@bjtu.edu.cn
mailto:2512692577@qq.com

https://doi.org/10.3389/fenrg.2022.947532
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.947532


technologies such as neural network (Beaufays et al., 1994;
Zeynelgil et al., 2002), fuzzy control (Talaq and Al-Basri, 1999;
Feliachi and Rerkpreedapong, 2005), and genetic algorithm
(Abdel-Magid and Dawoud, 1996; Chang et al., 1998). In
terms of allocating total adjustment power to each AGC unit,
a baseline allocation approach is proposed according to the
adjustable capacity ratio and installed capacity ratio of each
unit without considering the differences of dynamic
characteristic among units. Additionally, Yu et al. (2011)
treated the power allocation as a stochastic optimization
problem, which can be discretized and modeled as a discrete-
time Markov decision process. Also, the problem is solved by
utilizing the Q-learning algorithm of reinforcement learning.

In general, the conventional AGC strategy is designed under
a typical feedback-loop structure with the characteristic of
hysteresis, which regulates the future output of AGC units
based on the present input signal. However, the penetration
of large-scale renewable energy introduces high stochastic
disturbance to modern power grid due to the characteristic
of dramatical fluctuation (Banakar et al., 2008). The
phenomenon has not only increased regulation capacity of
AGC units but also put forward higher requirement for
coordinated control ability of generation units with different
dynamic characteristics (such as thermal and hydroelectric
units). Nevertheless, the fast regulation capacity of units in
power systems is limited. When the load or renewable energy
generations is continuously rising or falling, the units with
second-level regulation performance will approach its upper
or lower regulation limit. At this point, it is hard to ensure the
frequency deviation and tie-line power deviation within an
allowable range if the fast regulation capacities are
insufficient in the system. On the other hand, the adjustment
ratio of different units is different, i.e., to be exact, thermal units
have minute-level regulation performance, while hydroelectric
units have second-level regulation performance. Therefore,
these strategies cannot effectively coordinate units with
different characteristics, which will cause overshoot or under-
adjustment. At present, the goal of AGC strategies is to maintain
the dynamic control performance of system to comply with CPS
established by the North American Electric Reliability Council
(NERC) (Jaleeli and Vanslyck, 1999). CPS pays more attention
to the medium- and long-term performance of system
frequency deviation and tie-line power deviation, while it no
longer requires the ACE to cross zero every 10 min and aims to
smoothly regulate the frequency of power systems.

To address the hysteresis issues of conventional AGC
strategies and make the dynamic performance satisfy CPS,
some scholars put forward the concept of AGC dynamic
optimization (Yan et al., 2012). The basic idea can be
described as the optimization of the regulation power of AGC
units in advance based on ultra-short-term load forecasting and
renewable energy generation forecasting information, different
security constraints, and objective functions. The strategy aims to
optimize the AGC units’ regulation power in the next 15 min, and
the optimization step is 1 min. From the perspective of
dispatching framework formulated by the power grid
dispatching center, the AGC dynamic optimization can be

viewed as a link between real-time economic dispatch
(especially for the next 15 min) and routine AGC (control
period is 2–8 s), which can achieve a smooth transition
between the two dispatch sections. Compared with economic
dispatch, AGC dynamic optimization takes the system’s
frequency deviation, tie-line power deviation, and ACE and
CPS values into account. Compared with conventional AGC
strategies, it introduces load and renewable energy forecasting
information into account which can better handle renewable
energy’s fluctuation. Moreover, the dispatch period is 1 min
which adapts to the thermal AGC units with minute-level
regulation characteristics.

Yan et al. (2012) proposed a mathematic model for AGC
dynamic optimal control. It takes the optimal CPS1 index and
minimizes ancillary service cost as objective function. The system
constraints are considered including system power balance
constraints, AGC units’ regulation characteristics, tie-line
power deviation, and frequency deviation. This model added
ultra-short-term load forecasting information into the power
balance constraints as well as mapping the relationship
between system frequency and tie-line power. Zhao et al.
(2018) expanded the model proposed in Yan et al. (2012),
taking the ultra-short-term wind power forecasting value and
its uncertainties into account and conducted a chance constraint
programming AGC dynamic optimization model with
probability constraints and expected objectives. An optimal
mileage-based AGC dispatch algorithm is proposed in Zhang
et al. (2020). Zhang et al. (2021a) further extended the methods in
Zhang et al. (2020) with adaptive distributed auction to handle
the high participation of renewable energy. A novel random
forest-assisted fast distributed auction-based algorithm is
developed for coordinated control in large PV power plants in
response to the AGC signals (Zhang et al., 2021b). A
decentralized collaborative control framework of autonomous
virtual generation tribe for solving the AGC dynamic dispatch
problem was proposed in Zhang et al. (2016a).

In general, the existing research defined AGC dynamic
optimal control as a multistage nonlinear optimization
problem that includes objective functions and constraint
conditions. To deal with the uncertainties of wind power,
some scholars adopted chance-constrained programming
method based on the probabilistic model of wind power.
However, the accurate probability information of random
variables is difficult to model, which limits the accuracy and
practicality of this method. Moreover, the stochastic
programming model is too complex to solve. Furthermore,
these methods cannot take the future fluctuations of wind
power into account when making decisions.

Artificial intelligence-based methods have been developed in
recent years to address the AGC command dispatch problem,
including the lifelong learning algorithm and the innovative
combination of the consensus transfer of the Q learning
(Zhang et al., 2016b; Zhang et al., 2018). Deep reinforcement
learning (DRL) is a branch of machine learning algorithms and an
important method of stochastic control based on the Markov
decision process, which can better solve sequential decision
problems (Sutton and Barto, 1998). Recently, DRL has been
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successfully implemented on many applications of power
systems, such as optimal power flow (Zhang et al., 2021a),
demand response (Wen et al., 2015), energy management
system for microgrid (Venayagamoorthy et al., 2016),
autonomous voltage control (Zhang et al., 2016b), and AGC
(Zhou et al., 2020; Xi et al., 2021). In AGC problems, as stated
previously, the presented literatures usually focus on the power
allocation problem which still belongs to the conventional AGC
strategy. Different from the previous works, this article focuses on
AGC dynamic optimization and utilizes 1 minute time resolution
wind power and loads forecasting values, which are collected
from and used by real wind farms and grid dispatching centers, to
regulate the power outputs of AGC units. Unlike the existing
optimization model, this article defines AGC dynamic
optimization as a Markov decision process and a stochastic
control problem and takes the various uncertainties and
fluctuations of wind power outputs into account. To better
solve the dynamic optimization and support safe online
operations, the proximal policy optimization (PPO) deep
reinforcement learning algorithm is implemented, with the
clipping mechanism of PPO, which can provide more reliable
outputs (Schulman et al., 2015).

The key contributions of this article are summarized as
follows: ① by formulating the AGC dynamic optimization
problem as the Markov decision process with appropriate
power grid simulation environment, reasonable state space,
action space, and reward functions, the PPO-DRL agent can
be trained to learn how to determine the regulation power of
AGC units without violating the operation constraints; ② by
adopting the state-of-the-art PPO algorithm (Wang et al., 2020),
the well-trained PPO-DRL agent could consider the uncertainties
of wind power fluctuations in the future when making decisions
at the current moment.

The remaining parts of this article are organized as follows:
Introduction provides the advanced AGC dynamic optimization
model considering wind power integration and the details of how
to transform advanced AGC dynamic optimization into a
multistage decision problem. Introduction introduces the
principles of reinforcement learning, PPO algorithm, and the
procedures of the proposed methodology. In Introduction, the
IEEE 39-bus system is utilized to demonstrate the effectiveness of
the proposed method. Finally, some conclusions are given in
Introduction.

ADVANCED AGCDYNAMICOPTIMIZATION
MATHEMATICAL MODEL AND
MULTISTAGE DECISION PROBLEM
The essential strategy of AGC dynamic optimization is an
advanced control strategy, which aims to optimize the
adjustment power of each AGC unit per minute in the next
15 min according to the ultra-short-term load and wind
generation forecasting information as well as the current
operation condition of each unit, system frequency, and tie-
line power. The objective function is to minimize the total
adjustment cost, while the system dynamic performance

(i.e., frequency, tie-line power deviation, and ACE) is to
comply with CPS and satisfy the security constraints.
Specifically, the constraints include system power balance,
CPS1 and CPS2 indicators, frequency deviation, tie-line power
deviation limit, and AGC unit regulation characteristics. The
mathematical model of AGC dynamic optimization is formulated
as follows:

minfAGC � ∑15
t�1

∑NAGC

i�1 [k1(Pmax
Gi

− Pmin
Gi

) + k2
∣∣∣∣PGi,t − PGi,t−1

∣∣∣∣]Δt,
(1)

whereNAGC is the number of AGC units in the system, k1 and k2
are the cost coefficients, Pmax

Gi
and Pmin

Gi
are the maximum and

minimum output of the AGC unit i, L,̥ PGi,t, and PGi,t−1 are output
of AGC unit i at time t and t − 1, and Δt is the time interval, that
is, 1 min.

1) Power balance constraints:

∑N
i�1
PG,i,t + Pw,t − PL,t − PT,t − ΔPT,t − Ploss,t � 0, (2)

where Pw,t and PL,t are, respectively, the predicted power of wind
power and load, PT,t is scheduled power of tie-line, ΔPT,t is
forecast deviation of tie-line power, and Ploss,t is the
transmission loss.

2) CPS1 constraints:

Kcps1 ≤Kcps1 ≤ �Kcps1, (3)
where Kcps1 is the CPS1 index of the system and Kcps1 and �Kcps1

are, respectively, the lower and upper limits of the CPS index.
Kcps1 is derived by the following equation:

Kcps1 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣2 −

∑T
t�1
eACE,tΔft

−150Bε21min

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 100%, (4)

where eACE,t is the area control error at time t, Δft is frequency
deviation at time t, B is the equivalent frequency regulation
constant for the control area (in MW/0.1Hz), and ε1min is the
frequency control target and it is usually taken as annual statistic
of the root mean square deviation of the interconnection power
grid over 1 min period.

3) CPS2 constraints:

|EACE−15min|≤ 1.65ε15min

������
100BBs

√
, (5)

where EACE−15min is the average ACE over the 15 min period,
ε15min is the annual statistic of the root mean square deviation of
the interconnection power grid over 15 min period, and B and Bs

are, respectively, the equivalent frequency regulation constants
for the control area and the whole interconnection power grid.

4) Power output constraints of units:

PAG,i ≤PAG,i,t ≤ �PAG,i, (6)
where PAG,i,t is output power of unit i at time t and PAG,i and �PAG,i

are the lower and upper limits of output power.
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5) Ramp power constraints of units:

RAG,i ≤RAG,i,t ≤ �RAG,i, (7)
where RAG,i,t is the ramp power of unit i at time t and RAG,i and
�RAG,i are, respectively, the lower and upper limits of ramp power.

6) Tie-line power deviation constraints:

ΔPT ≤ΔPT,t ≤Δ�PT, (8)
whereΔPT,t is tie-line power deviation at time t and ΔPT and Δ�PT

are, respectively, the lower and upper limits of tie-line power
deviation.

7) Frequency deviation constraints:

Δf ≤Δft ≤Δ�f, (9)
where Δft is the frequency deviation at time t and Δf and Δ�f
are, respectively, the lower and upper limits of frequency
deviation.

PROXIMAL POLICY OPTIMIZATION
ALGORITHM

The Framework of Reinforcement Learning
A reinforcement learning framework includes an agent and an
environment, as illustrated in Figure 1, which aims at
maximizing a long-term reward through abundant interactions
between the agent and the environment. At each step t, the agent
observes states st and executes action at; based on its observation
and policy, the environment receives action at, then emits states
st+1, and issues a reward rt+1 to the agent. Compared with
supervised learning, the actions of RL are not labeled, that is,
the agent does not knowwhat the correct action is during training
and can only be trained through the trial and error approach to
explore the environment and maximize its reward.

The interaction between the agent and environment can be
modeled by a Markov decision process, which is a standard
mathematical formalism of sequential decision problems. A
typical Markov decision is denoted by a tuple < S, A, P, R, γ> ,
where S is the state space, and it is the complete description of the

environment which is represented by a real-valued vector, matrix,
or higher-order tensor. A is often called the action space that is
also represented by a real-valued vector matrix or higher-order
tensor, whereas different environments allow different kinds of
actions, that is, discrete and continuous action spaces. P is the
transition probability function, and P(s′|s, a) is the probability of
transitioning into state s′ by taking action a on state s. R is the
reward function, and R(s, a, r) is the probability of receiving a
reward r from action a and state s. γ ∈ [0, 1] is the reward
discount factor. The agent learns to find a policy to maximize
the total discounted reward as presented in (11), and T is the
number of time steps in each episode.

Gt � Rt+1 + γRt+2 +/ + γT−t−1Rt+T. (10)
The policy is a rule used by an agent to decide what actions to

take, whichmaps the action from a given state. A stochastic policy
is usually expressed as πθ(at|st), in which parameter θ denotes the
weights and biases of the neural network in deep reinforcement
learning algorithms.

The state value functions Vπ(s) is the expected return starting
from state s following a certain policy as defined in (12), which is
used to evaluate the state:

Vπ(s) � Ε(Gt|st � s). (11)
The action-value function Qπ(s, a) is the expected return

starting from state s, taking action a, and then following
policy π, denoted as (13), which is utilized to evaluate the action:

Qπ(s, a) � Ε(Gt|st � s, at � a). (12)
The advantage function Aπ(s, a) corresponding to policy π

measures the importance of each action in this state, which is
mathematically defined as shown in (14):

Aπ(s, a) � Qπ(s, a) − Vπ(s). (13)

Proximal Policy Optimization Algorithm
With Importance Sampling and Clipping
Mechanism
In general, the DRL algorithms can be divided into the value-
based, the policy-based, and the actor-to-critic (A2C) framework.
The proximal policy optimization (PPO) algorithm follows the
A2C framework with an actor network and a critic network.

The main advantage of applying PPO algorithm to the AGC
optimization problem is that the new control action decision
updates from the policy network does not change too much from
the previous policy and can be restrained within the feasible
region by the clipping mechanism. During the off-line training
process, the PPO also converges faster than other DRL
algorithms. Also, during the on-line operations, the PPO
generates smoother, less variance, and more
predictable sequential decisions, which is desired for the AGC
optimization.

The overall structure of the PPO algorithm is presented in
Figure 2, including an actor network and a critic network. The
AGC training environment sends the experience tuples

FIGURE 1 | Environment–DRL agent interaction loop of reinforcement
learning.
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< st, at, rt+1, st+1 > to the trajectory memory pool to form finite
mini-batches of samples and returns to the PPO algorithm.

The actor network and the critic network are realized by deep
neural networks (DNNs) with the following equations:

Oi � f(WiIi + bi), i � 2, . . . , nlayer + 1, (14)
OD � Onlayer( . . .O2(O1(st))), (15)

where Ii and Oi represent the input array and output array of the
ith layer of the DNN. The layers are connected as (16),
Ii+1 � Oi, and I1 � st. nlayer is the number of total layers and
Wi and bi are the weights and bias matrices of the ith layer. The
ReLU functions are used as the activation function f(·).

The actor network contains the policy model πθ with network
parameters <Wθ, bθ > . It is responsible for the sequential
decisions of AGC optimizations. The rewards are taken in by
the critic network Vμ with parameters <Wμ, bμ > , which is a
value function and maps the state st to the expected future
cumulative rewards.

The conventional policy gradient-based DRL optimizes the
following objective function (Wang et al., 2020):

LP(θ) � Ê[logπθ(at|st)Ât], (16)
where Ê[·] is the empirical average over a finite mini-batch of
samples, πθ is a stochastic policy, and Ât is an estimator of the
advantage function at time t. In this work, a generalized
advantage estimator (GAE) is used to compute the advantage
function, which is the discounted sum of temporal difference
errors (Schulman et al., 2017).

Ât � δt + (γλ)δVt+1 + (γλ)2δVt+2 + . . . + (γλ)U−t+1δVU−1, (17)
δt � rt + γVμ(st+1) − Vμ(st), (18)

where γ ∈ [0, 1] is the discount factor, λ ∈ [0, 1] is the GAE
parameter, U is the length of the sampled batch, and rt is the
reward at time t. The objective function LV(·) can be
formulated as:

LV(μ) � Ê[LV
t (μ)] � Ê[∣∣∣∣∣V̂target

μ (st) − Vμ(st)
∣∣∣∣∣], (19)

V̂
target

μ (st) � rt+1 + γVμ(st+1), (20)
where V̂

target
μ (·) is the target value of time-difference (TD) error.

The parameters of the critic network Vμ can be updated by the
stochastic gradient descent algorithm in Duan et al. (2020)
according to the gradient ∇LV(μ) with a learning rate η.

The input of the actor network is the observation state st,
and the outputs are the normal distribution mean value and
standard deviation of the actions, that is, the strategy
distribution πθ(at|st). The importance sampling is used to
obtain the expectation of samples gathered from an old policy
πθold(at|st) under the new policy πθ(at|st). This process
converts the PPO algorithm from an on-policy method to
an off-policy method, which means that the actor network is
updated asynchronously to further stabilize the performance
of AGC actions. The following surrogate object function is
being maximized:

LCPI(θ) � Ê[(πθ(at|st)/πθold(at|st))Ât]
� Ê[rt(θ)Ât], (21)

s.t. Ê[KL[πθold(·|st), πθ(·|st)]]≤ ξ, (22)
where KL[·] is the Kullback–Leibler (KL) divergence, rt(θ) �
πθ(at|st)/πθold(at|st) denotes the ratio of the probability of
action at under the new and old policies, and ξ is a small
number. In order to simplify the penalty by the KL divergence
to a first-order algorithm and attain the data efficiency and
robustness, a clipping mechanism, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât, is
introduced to modify the surrogate objective by clipping rt(θ).
It removes the incentive of moving rt outside of the interval
(1 − ϵ, 1 + ϵ). The objective function with the clip(·) function
is defined as,

LCLIP(θ) � Ê[LCLIP
t (μ)]

� Ê[min(rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât)]. (23)

FIGURE 2 | Structure of PPO algorithm.
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The importance sampling and clipping function help the
PPO DRL algorithm achieve better stability and reliability for
AGC online operations, better data efficiency and
computation efficiency, and better overall performance.

AGC OPTIMIZATION STRATEGY BASED
ON REINFORCEMENT LEARNING

If the regulation power of each AGC unit is regarded as the
action of the agent and the real power system is regarded as
the environment of the agent, then the AGC dynamic
optimization model considering the uncertainty of wind
power can be transformed into a typical random sequential
decision problem. Combining the description of the
aforementioned AGC dynamic optimization
mathematical model, the 15-min control cycle can be
divided into a 15-stage Markov process. The framework is
shown in Figure 3.

The agent can be trained offline through historical data and
massive simulations and then applied online in the real power
grid. This section mainly focuses on the efficient offline training
process of such agent, which introduces the design of several
important components.

State and Action Spaces
State space S: the setting of the state space should consider the
factors that may affect the decision as much as possible. In
this work, the state space is determined as a vector of system
information representing the current system condition at
time t and prediction system information at time t + 1.
Specifically, the former includes the real power output of
all units (AGC and non-AGC unit) Pr

G,t, the frequency
deviation Δfr

t , the power deviation of the tie-line ΔPr
T,t,

and the area control error ACEr
t . The latter includes the

prediction system information of load Pf
l,t+1, wind

power Pf
w,t+1, frequency deviation Δff

t+1, power deviation of
tie-line ΔPf

T,t+1, and area control error ACEf
t+1. It is set as

follows:

S: {Pr
G,t,Δfr

t ,ΔPr
T,t, ACE

r
t , P

f
l,t+1,

Pf
w,t+1,Δff

t+1,ΔPf
T,t+1, ACE

f
t+1

}. (24)

Action space A: action space is the decision variable in the
optimization model, including the ramp direction and ramp
power. In this article, to avoid the lack of generality, the
action is defined as power increments of AGC units ΔPa

AG,t at
each optimization time, which are subjected to the ramp power
limits of corresponding AGC units. A is set as

A: {ΔPa
AG,t}. (25)

Reward Function Design
The design of reward function is crucial in DRL. It generates
reward rt at time t in each decision cycle, which evaluates the
agent’s actions based on the AGC control performance under the
impacts of uncertainties in the system variables. In this work, the
values of load, wind generations, frequency deviations, the tie-line
power deviations, and ACE are used to formulate the reward
function, which consists of cost terms, punishment terms, and
performance terms. The reward rt is calculated by the formula:

rt � Fcost + rpenel + fcps, (26)
where the cost term Fcost represents the total cost of the

system. It includes AGC adjustment ancillary service cost and
the load shedding cost, which are calculated as follows:

Fcost � −c1fAGC − c1P
2
c,t, (27)

where c1 and c2 are the corresponding cost coefficients. The load
shedding Pc, t must be set reasonably as follows:

Pc,t � { 0,
∣∣∣∣Δf∣∣∣∣≤ 0.2,(∣∣∣∣Δf∣∣∣∣ − 0.1) · ΔPt,
∣∣∣∣Δf∣∣∣∣> 0.2. (28)

Here, the real power deviations ΔPt are utilized to reflect the
stochastic process caused by the load and wind power
fluctuations. At time t, the power deviations in the system are
calculated as follows:

FIGURE 3 | Framework of grid environment interacting with an agent.
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ΔPt � ∑N

i�1PG,i,t + Pr
w,t − Pr

L,t − Pr
T,t − Pr

loss,t, (29)
whereN is the total number of thermal power units in the system,
including AGC and non-AGC units, PG,i,t is the power output of
thermal power unit i at t period, and Pr

w,t, P
r
L,t, and Pr

T,t are the
power output of wind power, load, and tie-line power. Note that
the power flowing out of the system is taken to be positive. Pr

loss,t is
the system loss at time t.

The power output of any unit (AGC or non-AGC unit) relates
to the frequency deviation, tie-line power deviation, and ACE.
Taking an interconnection power grid of two areas as an example,
the system contains regionA and region B. The control strategy of
the two areas is the tie-line bias frequency control. It is assumed
that ΔPLA,t and ΔPLB,t, and ΔPGA,t and ΔPGB,t are the change of
load and the change of power output of units in region A and
region B at time t, respectively, and KA and KA are the frequency
regulation constants of region A and region B. We define ΔPA,t

and ΔPB,t as power imbalance of the two areas which can be
calculated as follows:

ΔPA,t � ΔPLA,t − ΔPGA,t, (30)
ΔPB,t � ΔPLB,t − ΔPGB,t. (31)

Frequency deviation, tie-line power deviation, and area
control error can be calculated as follows:

Δft � −ΔPA,t + ΔPB,t

KA + KB
, (32)

ΔPT,t � KA · ΔPB,t −KB · ΔPA,t

KA +KB
, (33)

eACE,t � ΔPT,t − 10B · Δft, (34)
where B is the equivalent frequency regulation constant for the
control area in MW/0.1Hz and the value is negative.

The punishment term rpenel formulates the operation and
control limits in AGC dynamic optimization, including
generation unit power output limits, CPS1, frequency
deviation limits, and tie-line power deviation limits and
given as:

rpenel � r1 + r2 + r3 + r4. (35)
The AGC units participate in both primary and secondary

frequency control; thus, the outputs of AGC units at time t + 1 are
calculated as

PAG,i,t+1′ � PAG, i, t + 1 + ΔPa
AG,t − KGi(Δfr

t+1 − Δfr
t), (36)

where ΔPa
AG,t is the regulated power of AGC unit i at time t, that

is, the power increment of secondary frequency control; and
KGi(Δfr

t+1 − Δfr
t ) is the primary frequency control power of

AGC unit i, whereKGi is the frequency regulation constant of unit
i, and Δfr

t+1 and Δfr
t are system frequency deviations at time

t + 1 and t, respectively.
Accordingly, the power outputs of non-AGC units at time t +

1 are calculated as

PNG,i,t+1′ � PNG,i,t −KGi(Δfr
t+1 − Δfr

t). (37)
The outputs of AGC and non-AGC units are subjected to the

corresponding maximum and minimum power limits:

PAG,i,t+1 �
⎧⎪⎪⎨⎪⎪⎩

PG,i,min, PG,i,t+1′ <PG,i,min,
PG,i,max, PG,i,t+1′ >PG,i,max,
PG,i,t+1′, else,

(38)

r1 � { 0, PAG,i,min <PG,i,t <PAG,i,max,
k1, else,

(39)

where k1 is the punishment coefficient. The CPS1-related
punishment term is formulated as,

r2 �
⎧⎪⎨⎪⎩

0, Kcps1 ≥ 200%,
−k2

∣∣∣∣eACE − epACE
∣∣∣∣, 100%≤Kcps1 ≤ 200%,

−k3
∣∣∣∣∣Kcps1 −Kp

cps1

∣∣∣∣∣, Kcps1 < 100%,
(40)

where k2 and k3 are the punishment coefficients of ACE and
CPS1 and epACE and Kp

cps1 are, respectively, ideal values of ACE
and CPS1. In this article, the ideal values of ACE and CPS1 are
0 and 200%.

FIGURE 4 | AGC dynamic optimization problem based on the PPO
algorithm.
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The following two functions denote the frequency deviation
and tie-line power transfer deviation punishments, respectively:

r3 � { 0, Δfmin ≤Δf≤Δfmax,
k4, else,

(41)

r4 � { 0, ΔPTmin ≤ΔPT,t ≤ΔPTmax,
k5, else,

(42)

where k4 and k5 are the corresponding punishment coefficients.
In this article, we added an additional performance evaluation

term fcps with a coefficent c3 to the reward function which makes
the PPO-based DRL algorithm has the capability of further
improving the long-term AGC performance:

fcps � −c3(2 −Kcps1)2. (43)

Other Parameter Setting
State transition probability P: in this work, the reinforcement
learning algorithm based on the model-free method is utilized,
so the state of the agent at the next time and rewards can be
obtained by the interaction with the environment, and they

make up state transition probability P including environmental
stochasticity.

Discount factor γ (γϵ[0, 1]) determines the importance of
rewards in future to current reward. When γ � 0, it means
that the impact of current decisions on the future system
operating status is not considered, and only the operating cost
of the current control period is optimized; when γ � 1, it means
that the impact of current decisions on the operating status of the
system at every moment in the future is equally considered. For
AGC dynamic optimization control, the decision at the current
moment will have an important impact on the future operating
state of the system, and the closer the distance to the current
decision period, the greater the impact.

Detailed PPO Training Algorithm in Solving
the AGC Dynamic Optimization Problem
Based on the aforementioned analysis, this article transforms
the AGC dynamic optimization problem into a sequential
decision issue and utilizes the PPO deep reinforcement
learning algorithm to solve the proposed problem. The

FIGURE 5 | Modified IEEE 39 bus system.

TABLE 1 | Information of AGC units.

Symbol Quantity Unit 1 Unit 2 Unit 3

nAG,i Bus number 31 38 39
�PN,i , MW Rated power 800 860 1,100

RAG,i and �RAG,i , MW/min Limits of lower and upper ramp power -30 and 30 -45 and 45 -60 and 60

kAG,i , ¥/(MW min) Cost coefficient of frequency regulation 0.5 0.5 0.25
KAG,i (per unit) Frequency regulation constant of unit 25 25 25
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FIGURE 6 | Results of CPS1 index in the training process using 10,000 episodes.

FIGURE 7 | Curve of load with wind power fluctuations.

TABLE 2 | Information of the test system.

Symbol Quantity Value

fN/Hz Nominal frequency 50
f0/Hz Initial frequency 50
PT,N/MW Nominal power of tie-line 100
PT,0/MW Initial power of tie-line 100
ε1 and ε15 Target bound for the 12-month RMS value of the 1-/15-minute average frequency error, in Hz 0.04 and 0.021
B and Bs Target bound for the 12-month RMS value of the 1-/15-min average frequency error, in MW/0.1 Hz −38 and 50

Δ f and Δ�f , Hz Limits of frequency deviation −0.05 and 0.05

ΔPT and Δ�PT , MW Limits of transmission power deviation of tie-line −20 and 10
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AGC dynamic optimization problem based on the PPO
algorithm is shown in Figure 4. The specific process is
described as follows:

1) Initialize the weight and bias of the neural network, actor and
critic neural network learning rate, reward discount factor γ,
and hyperparameters ε and other parameters. Set the number
of episode M and decision cycle N.

2) Initialize the initial observation value at the first moment from
the power system environment.

3) Input state observation s into the actor neural network and get
the distribution of action a. Then, sample the distribution to
get action a by importance sampling.

4) Implement action a to the environment, then calculate the
reward r, and update the environment to get the state s′ at the
next moment, and save the current sample (s, a, r, s′). Update
the current observation s to the new observation s′.

5) Input s′ into the critic network, and get the corresponding
state value function V(st). Then, calculate the discount
cumulative reward Q(st, at ) at each moment based on (35),

Q(st, at) � rt + γrt+1 +/ + γT−t−1rT−1 + γT−tV(sT). (44)

6) Update the actor and critic neural network models according
to st, at, V(st), and Q(st, at ) at each moment.

7) Repeat steps 2–6 until the number of training episodes is equal
to the set number M.

8) Save the parameters of actor and critic neural networks.
Utilize the trained agent on the test data.

CASE STUDY

Test System and Data
In this article, the PPO agent for AGC dynamic optimization
control is tested on the modified IEEE 39 bus systemmodel which
includes three AGC units and seven non-AGC units. The tie-line
is connected to bus 29, and a wind farm with 130 MW

FIGURE 8 | Results of the optimization method and PPO algorithm.

FIGURE 9 | Results of AGC regulation curves.
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installations is connected to bus 39. A single-line diagram of the
system is shown in Figure 5.

The forecasting and actual data of load and wind power come
from New England power grid1. The basic parameters of three
AGC units and test system are shown in Tables 1, 2. The control
period is set at 15 min, and it is assumed that the deviation of
frequency and tie-line transmission power at the initial time
are 0.

The action space refers to the regulation power of AGC units
at each optimization moment, which is determined by ramp
power limits of each AGC unit. The per unit action space of the
three AGC units is set as follows:

A1 � {−0.3, 0.3},
A2 � {−0.45, 0.45},
A3 � {−0.6, 0.6}.

(45)

In addition, the state space dimension is 35 according to the
preceding description, which includes information on
19 forecasting loads at time t+1, actual output power of
10 units at time t, and actual and forecasting values of system
frequency deviation, transmission power deviation, and ACE
separately at time t and t+1. The dimensions of state space
and action space, respectively, correspond to the neural
numbers of input and output layers. Therefore, this work sets
up three hidden layers both in actor and critic neural networks,
and the number of neurons in each layer is 64, 128, and 32,
respectively. The activation function in each hidden layer is the
ReLU function. A larger learning rate α accelerates the
convergence of the algorithm, while a smaller α tends to
enhance the stability. In this article, learning rate α both in
actor and critic networks is set to 0.0001.

Evaluation of the Test Results
Based on the preceding model and significant parameters, the
PPO agent is coded using the TensorFlow framework with
Python 3.7. The results of CPS1 index are shown in Figure 6.

The x-axis represents the number of episodes being trained,
while the y-axis represents the value of CPS1 index in each
episode. It can be observed that the CPS1 values of the first
few hundreds of episodes are relatively low and unstable. As
training episodes increase, CPS1 values are kept within a stable
range around 191.3%, which fits CPS. In comparison, the deep
Q learning (DQL) algorithm and the duel deep Q learning
(DDQL) algorithm are also implemented. The average
CPS1 values are 187.4 and 184.5%. This shows that the PPO
architecture for AGC unit dynamic optimization proposed in
this article can effectively learn the growing uncertainties in
the power system. Once the agent is trained, it can make proper
decisions based on its trained strategy combined with
environmental observation data feedback. Specifically, the
agent trained in this work receives data from the power
system, including actual information of unit output power,
frequency, tie-line transmission power, ACE, and forecasting
information of load, wind power, frequency, tie-line
transmission power, and ACE as its observation, and then
makes decisions for the regulation power of AGC units at time
t, that is, advanced control of AGC units, in order to reduce the
frequency deviation at time t+1.

In addition, taking a typical control period of the system as an
example, Figure 7 shows the actual load, the wind power
generations, and the net load by subtracting the wind
generations from the actual load. The load at each bus is
allotted in proportion to the load of the original IEEE-39 node
system.

Using PI hysteresis control and PPO algorithm for frequency
control in this period, the results of system frequency deviation,
transmission power deviation of tie-line, and ACE are
represented in Figures 8A–C, respectively.

It is observed in Figure 8A that the outputs of both the PPO
agent and optimization method can meet the requirements of
frequency deviation (i.e., ±0.05 Hz). Moreover, maximum
frequency deviation of the system controlled by the PPO agent
is 0.0175 Hz, which is superior to -0.044 Hz that is controlled by
the optimization method. This demonstrated that the dynamic
optimization strategy of AGC units based on PPO algorithm is
able to mitigate the frequency fluctuation of the system efficiently
by advanced control of AGC units.

FIGURE 10 | Performance of the PPO agent in the training process using 10,000 episodes.

1https://www.iso-ne.com/isoexpress/web/reports.
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Figure 8B shows the transmission power deviation of tie-line.
The power deviation under the optimization method is relatively
large, which contains three times the off-limit conditions owing
to the AGC resources in the system that are insufficient. While
under PPO agent controller, the power deviation fluctuation is
smaller without over-limit time. It proves that the system
operation is more stable when using the PPO agent controller
optimization method. In addition, as shown in Figure 8C, the
agent performs much better than the optimization method when
calculating the values of ACE. Figure 9 shows the AGC power
regulation curve of all AGC units.

Convergence of Algorithm
In the training process, the cumulative reward of each episode is
recorded. Then, the results and the filtered curve are shown
in Figure 10.

Due to the loads and wind power fluctuations being different in
each episode, the needs of frequency regulation in each episode are
also different. Therefore, it is normal that there exists slight oscillation
of cumulative rewards for each episode. As the training process
continues, the cumulative rewards tend to converge as shown in Fig.

CONCLUSION AND FUTURE WORKS

To effectively mitigate frequency control issues under growing
uncertainties, this article presents a novel solution, the PPO
architecture for AGC dynamic optimization, which
transformed the traditional optimization problem into a
Markov decision process and utilized deep reinforcement
learning algorithm for frequency control.

Through the design of state, action, and reward functions, the
continuous multiple time step control can be implemented with
the goal of maximizing cumulative rewards. The model utilized
the way of interaction between the agent and the environment to
improve the parameters, which is adaptive to the uncertainties
in the environment and avoids the modeling of uncertain
variables. The model proposed in this article is tested on the
modified IEEE 39 bus system. The results demonstrate that the

PPO architecture for AGC dynamic optimization can achieve
the goal of frequency control with satisfactory performance
compared to other methods. It is verified that the method
proposed in this article can effectively solve the stochastic
disturbance problem caused by large-scale integration of
renewable energy into power grid and ensure the safety and
stability of system frequency.

From the lessons learned in this work, the directions of future
works are discussed here. First, the deep learning-based algorithms
suffered from poor interpretability, which is undesired for control
engineering problems. With the developments of explainable
artificial intelligence, future works are needed on this direction.
Second, better exploration mechanisms for DRL algorithms need
to be developed to further improving the training efficiency and
avoiding the local optimal solutions.
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