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The penetration of photovoltaic (PV) power into modern power systems

brings enormous economic and environmental benefits due to its cleanness

and inexhaustibility. Therefore, accurate PV power forecasting is a pressing

and rigid demand to reduce the negative impact of its randomness and

intermittency on modern power systems. In this paper, we explore the

application of deep learning based hybrid technologies for ultra-short-term

PV power forecasting consisting of a feature engineering module, a deep

learning-based point prediction module, and an error correction module.

The isolated forest based feature preprocessing module is used to detect the

outliers in the original data. The non-pooling convolutional neural network

(NPCNN), as the deep learning based point prediction module, is developed

and trained using the processed data to identify non-linear features. The

historical forecasting errors between the forecasting and actual PV data are

further constructed and trained to correct the forecasting errors, by using an

error correction module based on a hybrid of wavelet transform (WT) and k-

nearest neighbor (KNN). In the simulations, the proposedmethod is extensively

evaluated on actual PV data in Limburg, Belgium. Experimental results show

that the proposed hybrid model is beneficial for improving the performance

of PV power forecasting compared with the benchmark methods.

KEYWORDS

photovoltaic (PV) power, deep learning, non-pooling convolutional neural network (NPCNN),

error correction, photovoltaic power forecasting

1 Introduction

Recently, photovoltaic (PV) power generation has been rapidly developed worldwide
due to its cleanness and inexhaustibility (Al-Dahidi et al., 2019). However, the typical
uncertainty and high volatility of PV power pose a big challenge to the stable operation
and economic dispatch of the modern power system (Nguyen et al., 2020). Inevitably,
the volatility of PV power directly aggravates the oscillatory instability of power system,

Frontiers in Energy Research 01 frontiersin.org

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.948308
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.948308&domain=pdf&date_stamp=2021-10-15
https://doi.org/10.3389/fenrg.2022.948308
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fenrg.2022.948308/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.948308/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.948308/full
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhang et al. 10.3389/fenrg.2022.948308

thereby increasing the reserve capacity for the auxiliary service
market (Bu et al., 2019). The uncertainty of PV power also
increases the economic dispatch cost of the modern power
system, which deviates from the principle for maximizing the
welfare of market members (Singla et al., 2021). Facing these
challenges, it is imperative to use advanced predictive models to
mitigate these negative impacts of PV power generation access
on the entire power system.

So far, much of the literature about PV power forecasting has
been performed, which can fall into physical methods, statistical
methods, machine learning methods, and hybrid methods
(Wang et al., 2020b). Physical methods are based on numerical
weather prediction and PV cell physical principles, which
simulate the energy conversion process of PV power generation,
usually including Hottel and ASHRAE (Mayer and Gróf, 2021).
Although the physical methods do not require historical PV
power data, but they rely on the accurate physical model
and massive inputs, such as solar radiation intensity, battery
temperature, battery angle, solar incident angle, aging, dust,
inverter efficiency, etc (Perez et al., 2010; Inman et al., 2013).
Since it is difficult for physical methods to obtain sufficient
inputs and identify the principle of PV power generation,
thus resulting in poor interference ability and computational
complexity. Unlike the physical methods, statistical methods do
not require the principle of PV power generation, and have the
advantages of simple model, fast speed and convenience. The
statistical methods aim to establish the mapping relationship
between historical and predicted PV power time series data
by using linear fitting, e.g., autoregressive moving average
(ARMA) (Chang et al., 1984), regression analysis (Cleveland and
Devlin, 1988), Spatio-temporal correlation (Pillow et al., 2008),
and generalized autoregressive conditionally heteroskedastic
(GARCH) (Chen et al., 2019). However, statistical models
often rely on historical data and require strongly correlated
features, making it difficult to fit strong fluctuations and
high-dimensionality of PV power data.

Generally speaking, machine learning methods can be
roughly divided into shallow learning and deep learning
methods. Shallow learning methods are mainly designed
into smaller network structures to extract nonlinear
features by using error minimization principles and
certain optimization algorithms. Due to their remarkable
capacity in learning nonlinear features, shallow learning
methods have been widely used in PV power generation
forecasting compared to physical methods and statistical
methods. Commonly-used shallow learning methods
include decision tree (DT) (Massucco et al., 2019), k-nearest
neighbor (KNN) (Peterson, 2009), multilayer perceptron
(Kumar et al., 2019), back-propagation neural networks (BPNN)
(Mellit et al., 2013), radial basis function neural network
(RBFNN) (Madhiarasan, 2020), support vector regression
(SVR) (De Giorgi et al., 2016), and extreme learning machine

(ELM) (Bouzgou and Gueymard, 2017). In addition, ensemble
learning, as a kind of shallow learning, has received extensive
attention in recent years. Common ensemble learning includes
extreme gradient boosting (XGBoost) (Li et al., 2022), ensemble
trees (Alaraj et al., 2021), random forest (RF) (Kumar and
Thenmozhi, 2006), LGBM (Wang Y et al., 2020), and CatBoost
(Prokhorenkova et al., 2018). In(Li et al., 2022), the authors
propose a prediction model of solar irradiance based on
XGBoost. In (Alaraj et al., 2021), the ensemble trees based
machine learning approach considering various meteorological
parameters is proposed for PV power forecasting. However,
with the development of big data technology and intelligence
optimization theories in recent years, the drawback of shallow
learning models will be prone to the curse of dimensionality
and under-fitting, which makes it difficult to forecast PV power
data in a big data era (Soares et al., 2016). Therefore, one more
effective way is needed to address the drawback in shallow
learning models.

Deep learning, one of the most promising artificial
intelligence techniques, is easier to implement feature
extraction tasks, has been successfully applied in different
fields with powerful learning capabilities compared to
shallow learning models (Bai et al., 2021; Xie et al., 2021).
Common deep learning models usually include deep
neural network (DNN) (Kuremoto et al., 2014), deep belief
network (DBN) (Zhang et al., 2021), recurrent neural network
(RNN) (Li et al., 2019), long short-term memory (LSTM)
(Liu B. et al., 2020), and convolutional neural network
(CNN) (Wang et al., 2017), etc. Experimental results in
(Wang et al., 2017; Chang and Lu, 2018; Li et al., 2019) show
that the forecasting accuracy of deep learning based models
is superior to that of other shallow learning-based methods.
However, PV power forecasting based on deep learningmodels is
not always perfect, because it extremely depends on the selection
of hyperparameters and network structure (Hajirahimi and
Khashei, 2019a). Meanwhile, the improvement for model bias
and variance in a given dataset can also be a challenging task,
since the training results of deep learning may exhibit a small
model bias, which often leads to more significant model variance
(Geman et al., 1992). The deviation between the predicted and
true values for the training model is known as model bias, and
the generalization ability in the training unseen dataset is known
as model variance. To solve these problems, hybrid methods
focus on combining different methods to disassemble different
prediction tasks from the main task for the improvement of
both model bias and variance compared to deep learning models
(de Oliveira et al., 2021).

Hybrid forecasting methods can generally be divided into
three steps: point prediction, bias prediction, and combine
forecast results. Different hybrid methods are widely used in
many applications, such as traffic (Katris and Daskalaki, 2015),
health (Chakraborty et al., 2019), finance (Hajirahimi and
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Khashei, 2019b), and electric energy system forecasting
(Wu and Shahidehpour, 2010). For example, the authors in
(de Mattos Neto et al., 2020) propose a hybrid method based
on a nonlinear combination of the linear and nonlinear
models for monthly wind speed forecasting, and use a data-
driven intelligent model to find the appropriate combination
method, aiming to maximize the forecasting performance.
In (Wu et al., 2014), five types of shallow learning models
to predict the short-time PV power data are developed
as the first step using the historical PV power and NWP
data, and genetic algorithms are used to determine their
combinational models as the second step. Forecasting results
reported in (Wu and Shahidehpour, 2010; Wu et al., 2014;
de Mattos Neto et al., 2020) show the competitive performance
of the hybrid methods is better than shallow learning models
and statistical models. In these literatures, it is common to use
statistical methods or shallow learning models as the first and
second steps. To the authors’ knowledge, deep learning-based
hybrid methods for PV power forecasting in previous studies
have received little attention. As reported in (Zhang et al., 2020;
de Oliveira et al., 2021), the model selection at each step of
the hybrid forecasting method can have a large impact on
forecasting performance. However, the deep learning model
significantly improves the PV power prediction performance
compared to other benchmark models. Thus, the deep learning-
based hybrid forecasting PV power method that takes advantage
of the methodological advantages at each step becomes more
meaningful.

Therefore, a new deep-learning-based hybrid model is
proposed for ultra-short-term PV power forecasting. Compared
with existing literature on similar topics, the main contributions
of this work are as follows:

• In order to accurately predict PV power and its practical
application value, a hybrid model based on a feature
engineeringmodule, a deep learning-based point prediction
module, and an error correction module are proposed for
the first time.
• To exploit the maximum feature training potential of the
point prediction module during feature training, a new
feature engineering module based on isolation forest is
proposed.
• In order to efficiently extract features and minimize the
network structure, the non-pooling convolutional neural
network (NPCNN) based point prediction module, is
originally developed.
• Theresiduals between the predicted and actual PVpower are
initially trained by using an error correction module (ECM)
based on wavelet transform (WT) and KNN, which helps
to reduce the error of the point prediction module while
considering time efficiency.

Ourpreliminary numerical results demonstrate that the

proposed hybrid deep learning based forecasting model is
beneficial to improve the prediction accuracy of PV power. The
rest of this paper is organized as follows. In Section 2, we analysis
the historical data of PV power and describe the proposed hybrid
framework for PV power forecasting. Section 3 introduces each
module of proposed method in detail, i.e., outlier detection
in feature engineering, deep learning based point prediction
model, WT+KNN for error correction. Experiment results are
reported and discussed in Section 4, and we conclude this work
in Section 5.

2 The proposed hybrid framework
for PV power forecasting

2.1 Overview of the hybrid framework

The hybrid model proposed in this paper for PV power
forecasting consists of a feature engineering module, a point
predictionmodule and an error correctionmodule. An overview
of the proposed hybrid framework is described in Figure 1. It is
worth noting that PV power forecasting methods can be divided
into direct prediction and indirect prediction according to the
input properties of the forecasting model (Wang et al., 2017).
In the indirect prediction method, meteorological parameters
such as solar radiation intensity, battery temperature, and wind
speed are associated with the PV power forecasting model
to improve its prediction accuracy. In the direct method,
the input of the PV power prediction model is the historical
power data. The proposed hybrid model for ultra-short-time
in this paper is designed as a direct prediction method. There
are three main reasons for this. 1) The external explanatory
variables (meteorological parameters) for ultra-short-term PV
power forecasting fluctuate less than short-term/long-term
PV power forecasting, so meteorological parameters have less
impact on ultra-short-term PV power forecasting. 2) Ultra-
short-term PV power forecasting has high requirements for
the real-time transmission of meteorological parameters, which
may be difficult to obtain in time and high purchase cost in
practical engineering applications. 3) Since the workload of
feature selection is reduced, the PV power prediction model is
made simpler and more convenient. In addition, to train the
point prediction module and the error correction module, the
raw PV power dataset is grouped into three parts: a training
dataset, a validation dataset, and a testing dataset. First, feature
engineering module is used to process invalid/bad data points
in the raw PV power data, such as outliers or missing values.
Then, the point prediction module uses the data processed
by feature engineering module to further accurately predict
the PV power points. Error results based on point prediction
module are sent to the error correction module for error
prediction. Finally, we reconstruct the forecasting results by
combining the results of the point prediction module and
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FIGURE 1
The proposed hybrid framework for PV power forecasting.

error module. The proposed forecasting framework in this
paper is inspired by conventional hybrid forecasting models
(Wu and Shahidehpour, 2010; de Mattos Neto et al., 2020).
Comparatively, the proposed hybrid framework for PV power
forecasting has at least three advantages. The first is that the
feature engineering module is considered for the proposed
hybrid model to further exploit the potential of the feature
mining of NPCNN. The second advantage is that NPCNN can
effectively extract features of PV power data by reducing the
non-pooling operations of CNN. The last advantage is that the
WT is taken into account in the error correction module of the
prediction framework to better capture the trend of prediction
deviation. Next, we analyze and discuss the role of these modules
in the proposed hybrid model in detail.

2.2 Feature engineering module

Feature engineering aims to construct valuable training
samples to maximize the potential of feature extraction and
facilitate the training of point prediction modules. In general,
raw PV power datasets may have invalid/bad data points due
to PV power generation equipment failures or communication
delays. It is necessary to deal with these outliers to reduce
the overfitting of the feature training model to these values
(Wang et al., 2020a). Figure 2 plots the real-time measured PV
power for a historical day, wherein the black dots represent the
raw PV power data, and the red line represents the corrected PV
power curve. It is obvious that there are somemissing values and
outlier values in the raw PV power compared to the corrected
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FIGURE 2
The real-time measured PV power.

curve. Moreover, if these bad power points cannot be eliminated,
the training of the point prediction module suffers from data
jumps and irregularities, leading to performance degradation
(Wang et al., 2020a).Therefore, the raw PV generation data must
be pre-processed by the feature learningmodule to better achieve
the potential of the point prediction module. In this paper, the
feature engineeringmodule, based on IF and linear interpolation,
is used to detect these outliers andfillmissing values, respectively.
In addition, we perform normalization on the raw PV power
data to ensure parameter optimization of the point prediction
module, as neural network training requires a suitable format for
feature learning.

2.3 Point prediction module

The PV power forecasting based on point prediction module
is shown in Figure 3. The input window of the point prediction
module moves smoothly over the PV power sequence with time
t, e.g., the inputs is {xt−3,xt−2,xt−1,xt}, which corresponds to the
predicted output x̃t+1. As depict in Figure 1, the point prediction
module can be conventional machine learningmodels, ensemble
machine learning models, or deep learning models, such as

FIGURE 3
PV power forecasting based on point prediction module.

DT, KNN, SVR, XGBoost, categorical boosting (CatBoost), light
gradient boosting machine (LGBM), and CNN. In general, to
accurately predict PV power generation, the network structure
of the point prediction module needs to be designed considering
the number of features and nonlinearity of PV power generation
data. Specially, CNNs, as a class of deep learning architectures,
have been applied in the field of time series forecasting and
achieved good performance. Since there are few relevant features
for ultra-short-term PV generation prediction, they are not
sufficient to support the pooling operation of conventional CNN
model. In viewof this,NPCNNwithout pooling operation is used
to further extract features and learn the strong nonlinearity of the
PVdata in this paper. It needs to be noted thatNPCNN is suitable
for processing seasonal time-series data with trends, and can
reduce the negative impact of pooling layers (Liu S. et al., 2020).
Furthermore, The NPCNN-based point prediction module is
trained based on the training dataset, and the input of NPCNN
will be processed by the feature engineering module first.

2.4 Error correction module

Although different advanced forecasting methods have been
proposed to reduce the model bias, they always exist more
significant model variance (Geman et al., 1992). To address this
issue, an error correction module based on WT and KNN is
proposed in this paper to reduce the model variance of the
point prediction module. Here, WT is used to decompose the
raw forecasting error series into sub-frequency sequences with
better contours, while KNN is used to extract the features
of each frequency sequence. There are two main reasons for
this: First, since the original prediction error sequence may
contain nonlinear and spiky dynamic features, WT-based signal
decomposition can be used to reduce their impact on the
prediction performance. Each sub-frequency sequence needs to
be trained by an error correction method, and KNN can quickly
extract the nonlinear features of each sub-frequency sequence
while losing as little prediction as possible (Saâdaoui and
Rabbouch, 2019). Meanwhile, the inputs of the error correction
module (ECM) should also be considered with the validation
dataset errors, except for correlated features obtained from the
point prediction module, as shown in Figure 1.

3 Description of the deep learning
based hybrid model

3.1 Outlier detection in feature
engineering

Isolation forest (IF) in (Liu et al., 2008; Ahmed et al., 2019)
is an efficient unsupervised anomaly detection algorithm.
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Compared with traditional anomaly detection methods, such as
the mean-square error method and quartile method, IF provides
an abnormal probability for each sample instead of judging the
exception directly. IF can be divided into five processes: 1) Several
features randomly from the training dataset are selected as the
feature space; 2) A value is randomly selected in the feature space
as the each node of the tree; 3) Different trees are combined as the
isolated forest; 4) The distance between the root and leaf node of
each tree are calculated as its score; 5) If the score is low, it is an
outlier. The score-based IF can be expressed as below,

S (x,n) = 2
−E (h (x))c (n) (1)

where E(h(x)) denotes the average length of sample x from a set
of isolation trees. c(n) represents the average path length with n
samples obtained from a binary search tree, as below,

c (n) =
{{
{{
{

2H (n− 1) − 2 (n− 1)/n, n > 2
1, n = 2
0, n < 2

(2)

where H(i) = ln(i) + 0.5772156649(Euler′s constant), which is
the harmonic function. Once the scores for each sample x are
solved, lower values (outliers) can manually be excluded based
on the abnormal proportional coefficient ξ.

3.2 Deep learning based point prediction
model

Considering that the features of time-series historical PV
power data are highly uncorrelated, we proposes a two-
dimensional (2D) NPCNN (no pooling layer) model as a point
prediction module for PV power prediction. In this paper, the
NPCNN model consists of one input layer, two conventional
layers, one fully connected layer, and one output layer, as
presented in Figure 4. Each layer are summarized as follows:

FIGURE 4
The structure of NPCNN.

• Input layer provides the input parameters of NPCNN.
The historical PV power data and time attributes are
combined to generate a one-dimensional time series vector,
which is transformed into a two-dimensional correlation
featurematrix through correlation analysis and dimensional
transformation (Zhang et al., 2020).
• Convolutional layer contains several convolution kernels to
generate new feature maps, which convolves the network
weight with the receptive field of the feature map of
the previous layer, and uses the activation function to
form the feature map of the next convolutional layer
(Yamashita et al., 2018).
• Fully connected layer is often used for high-level inference,
whichmaps the features processed by the convolution layers
to the output layer (Desai and Makwana, 2021).
• Output layer is the final outputs of the NPCNN.

The network parameters of NPCNN, such as weights and
biases, are trained and optimized in mini-batch form using
the gradient descent method based on the backpropagation
algorithm to improve the forecasting performance of PV
power. Meanwhile, the root-mean-square-propagation method
(RMSProp) is introduced to optimize the error function of
NPCNN due to its faster convergence and high accuracy
(Zhang et al., 2020). Here, the mean squared error between the
predicted value and the actual value is used as the loss function
Loss, as follows,

Loss = 1
M
∑
m∈M
∑
d∈D
(rmd − p

m
d )

2 (3)

whereM andD denote the mini-batch size and the output vector
size for a training sample. rmd and pmd represent the actual value
and the predicted value for the dth output vector of the mth
sample in mini-batch.

3.3 WT+KNN for error correction

The raw PV power forecast error data may contain peak
characteristics and nonlinearities in the form of fluctuations,
which can affect the PV power forecast accuracy. Both high-
frequency and low-frequency signals are included in PV forecast
error data (Ahmed et al., 2019). The former is due to changes in
the uncertainty of the input data, and the latter is due to model
over-fitting. The WT can be used to decompose the behavior
of these frequencies for prediction. Therefore, the raw forecast
error series based on wavelet decomposition can be described as
follows,

Wavelet (p,q) = 2−(p/2)
T−1

∑
t=0

g (t)ϕ[(t− q2p)/2p] (4)
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FIGURE 5
The MAPE results of IF in different outlier ratios.

FIGURE 6
The MAPE results for different outlier detection methods.

where p and q are a scaling variable and a translation variable,
respectively. g(t) denotes the signal decomposed by the wavelet.
Daubechies function is used as the mother wavelet function ϕ(⋅)
in this paper.

After the prediction error sequence is decomposed by WT,
the KNN algorithm is designed to quickly extract forecast error

features of different frequencies due to the ability to solve fast
predictions. Each frequency error prediction based on KNN can
be divided into three steps: 1) Euclidean distance is used to
measure the similarity of all features in the validation and test
dataset in the forecasting error sequence for each frequency; 2)
Choose the k value based on the prediction error of the validation
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TABLE 1 Statistical results of daily MAPE result for the effect of ECM in
various seasons.

Season Methods Min Max Average Variance (E)

  Spring ECM 0.0172 0.0414 0.0280 7.63–5
Without ECM 0.0172 0.0512 0.0304 1.39–4

  Summer ECM 0.0070 0.0317 0.0158 9.54–5
Without ECM 0.0070 0.0364 0.0189 1.24–4

  Fall ECM 0.0231 0.0546 0.0337 1.57–4
Without ECM 0.0212 0.0555 0.0354 1.84–4

  Winter ECM 0.0200 0.0766 0.0354 4.32–4
Without ECM 0.0202 0.0844 0.0370 5.36–4

dataset; 3) A moving average value is performed by combining
the k-nearest Euclidean distance values of the training and test
sets.

3.4 Data normalization and performance
criterion

In the feature learning process, due to the different
dimensions of the collected data, the non-standardized features
may affect the parameter optimization of the model. Therefore,
data normalization is required to be performed out on these
features, as follows,

x̂t =
xt − xmin

xmax − xmin
(5)

where xt is the original PV power data, and xmax and xmin are the
maximum and minimum values of the PV power data.

Three metrics, including mean absolute percentage
error (MAPE), mean absolute error (MAE), and root mean
square error (RMSE), are typically employed to evaluate the
performance of forecasting models (Wang et al., 2017), as
follows,

MAE = 1
T
∑
t∈T
|rt − pt| (6)

RMSE = √ 1T
∑
t∈T
(rt − pt)

2 (7)

MAPE = 1
T
∑
t∈T

|rt − pt|
rt
× 100% (8)

wherein T is the number of the predicted value, rt is the real
value at the moment of t, and pt is the predicted value at the
moment of t. It is worth noting that the forecasting model has
higher accuracy when MAE, RMSE, and MAPE are smaller.

3.5 Main prediction steps of the
proposed hybrid model

Due to the chaotic nature of the weather system, PV power
data always exhibits volatility, variability and randomness. These
characteristics will affect the prediction accuracy of PV power,
which is greatly detrimental to the economic optimization and
stable operation of themodern power system.Therefore, in order
to mitigate the impact of these characteristics on prediction
accuracy, this paper presents a new hybridmodel for ultra-short-
term PV power forecasting consisting of a feature engineering
module, a deep learning-based point prediction module, and an
error correction module. The main steps of the proposed hybrid
model are presented as follows: 1) Historical PV power data are
collected and divided into training datasets, validation datasets
and test datasets according to different seasons. 2) IF method are
applied to detect outliers in training and testing datasets. Then,
these outliers are removed from the corresponding datasets,
and these vacancies are filled by applying linear interpolation.
3) Convert all data to values between 0 and 1 using the data
normalization method. 4) The loss function of NPCNN is
constructed, and the model parameters are trained using the
training dataset and the RMSProp back-propagation method.
5) The NPCNN error results of the validation set are sent to
the error correction module, and these errors are decomposed
into high and low frequency signals through wavelet transform,
while the error trend of each signal is quickly learned using
KNN. 6) The error correction prediction results are obtained
by wavelet reconstruction, and its results are combined with
the prediction results of the NPCNN model to obtain the final
PV power prediction data. 7) Calculate the prediction metrics
of the proposed hybrid model using the prediction results
from the test datasets. The main steps of the proposed hybrid
model for PV power forecasting are graphically presented in
Figure 1.

4 Numerical results and analysis

4.1 Experimental settings

The proposed PV power prediction model based on IF,
NPCNN and ECM is evaluated using historical PV power data
from Limburg, Belgium. This data range from June 2019 to May
2021 at a resolution of 15 min, and can be freely obtained from
the website (Elia, 2021). The PV power data is divided into a
training dataset, a validation dataset, and a testing dataset, and
each dataset corresponds to four parts: spring, summer, fall and
winter, because the solar irradiance and the physical information
of PV cell power generation vary greatly in different seasons
(Wang et al., 2020a). For these data sets, the monitored capacity
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FIGURE 7
15-minutes-ahead forecasting results in spring.

FIGURE 8
15-minutes-ahead forecasting results in summer.

FIGURE 9
15-minutes-ahead forecasting results in fall.

FIGURE 10
15-minutes-ahead forecasting results in winter.

is 4037.14 MW, and the minimum output power is 0 MW. The
NPCNN forecasting model using the training dataset is well-
trained to extract the nonlinear features, and the error correction
model using the validation dataset is well-trained to reduce
the forecasting error between predicted and actual PV power
data. The testing dataset is adopted to evaluate the forecasting

performance of the PV power prediction model. In addition,
CatBoost (Prokhorenkova et al., 2018), KNN (Peterson, 2009),
DT (Massucco et al., 2019), SVR (De Giorgi et al., 2016),
XGBoost (Zheng et al., 2017), and LGBM (Wang Y et al., 2020)
are used as the benchmark methods, which are simulated on the
Python platform.
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TABLE 2 The seasonal 15-min ahead forecasting results for various contrast models.

Season Error Proposed CatBoost SVR DT KNN LGBM XGBoost

  Spring MAE 11.54 20.24 70.28 21.40 45.85 19.12 19.17
RMSE 23.69 40.52 125.37 44.86 87.12 37.29 38.26
MAPE 0.0280 0.0446 0.2533 0.0559 0.0818 0.0449 0.0427

  Summer MAE 9.82 17.55 93.46 22.29 61.75 44.04 18.47
RMSE 22.99 31.73 146.36 39.39 110.14 72.72 33.37
MAPE 0.0158 0.0256 0.0659 0.0343 0.0537 0.0369 0.0340

  Fall MAE 21.74 25.99 58.18 32.99 59.31 25.58 25.43
RMSE 42.01 50.62 102.82 60.70 108.09 49.27 49.39
MAPE 0.0337 0.0364 0.1009 0.0502 0.0767 0.0369 0.0365

  Winter MAE 7.33 9.13 58.82 11.66 52.67 9.89 8.94
RMSE 17.65 21.07 109.67 27.79 79.67 22.53 20.51
MAPE 0.0351 0.0417 0.594 0.0566 0.1056 0.0552 0.0477

  Average MAE 12.61 18.23 70.19 22.09 54.90 24.66 18.00
RMSE 26.59 35.99 121.06 43.19 96.26 45.45 35.38
MAPE 0.028 0.037 0.254 0.049 0.079 0.043 0.040

4.2 IF based outlier detection

In order to verify the feasibility and effectiveness of IF based
anomaly detection in feature engineering module, we evaluate
the impact of IF on the forecasting performance of the proposed
model. IF based outlier detection method is executed and
analyzed using the testing dataset of 15-min ahead forecasting
scenario. Three comparison algorithms, namely mean square
error method (MSE), the interquartile range method (IQR),
and K-means clustering method (K-means), are considered to
verify the validity of outlier detection based on IF. For a fair
comparison, other prediction procedures are consistent with
the proposed model except for the IF based outlier detection
method. The 15-min-ahead MAPE results of IF based anomaly
detection method under different outlier ratios are shown in
Figure 5. The mark points on the line in Figure 5 indicate the
minimum values in the MAPE results with various outlier ratios

in different seasons. It can be seen from Figure 5 that the optimal
predicted performance in the four different seasons corresponds
to the optimal anomaly ratios at 0.04, 0.03, 0.03, and 0.14,
respectively. The optimal anomaly ratios in four seasons are all
greater than 0, which means that IF is effective for improving
forecast accuracy in different seasons. In addition, the outlier
ratio corresponding to the smallest MAPE values in summer and
autumn is smaller than in spring and winter. This is because
the fluctuation of solar irradiance in summer and autumn is
stronger than that in winter and spring, the original features
during model training need to be preserved to reduce under-
fitting.

In Figure 6, we present the MAPE statistical results of
different outlier detection methods in different seasons. For
IF method, the MAPE values in the four seasons are 0.028,
0.0159, 0.0337, and 0.0354, respectively, with an average of
0.0452. Compared with the MSE, IQR, and K-means methods,

FIGURE 11
The MAE statistics for different forecasting horizons in summer.
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FIGURE 12
The RMSE statistics for different forecasting horizons in summer.

FIGURE 13
The MAPE statistics for different forecasting horizons in summer.

the average MAPE results of IF are reduced by 2.84,2.50, and
1.40%, respectively. From these results, IF method exhibits
high forecasting capability in different seasons compared with
the three benchmarks. This is because IF without making
any prior assumptions can efficiently process high-dimensional
continuous data.

4.3 ECM based post-prediction
correction

To further illustrate the advantages of ECM, we evaluate the
impact of ECM-based prediction post-correction on forecasting
performance. The proposed model with/without ECM is also
executed and analyzed using the testing dataset of 15-min ahead
forecasting scenario. The MAPE results in different seasons are
statistically presented in Table 1. It can be seen that the MAPE
results of the proposed model with ECM in spring vary from
a minimum value of 0.0172 to a maximum of 0.0414 with an
average of 0.0280 and a variance of 7.63E−5. While, the MAPE
results of the proposed model without ECM in spring vary
from a minimum value of 0.0172 to a maximum of 0.0512 with
an average of 0.0304 and a variance of 1.39E−4. Compared to
the benchmark method without ECM, the mean and variance
of the MAPE results for the proposed model in spring have

been reduced by 8.5 and 81.6%, respectively. Similarly, compared
with the benchmark method without ECM, the mean of the
MAPE results for the proposed model in the other three seasons
have been reduced by 19.2,5.0, and 4.6%, respectively. The
variance of the MAPE results for the proposed model in the
other three seasons have been reduced by 30.2,9.2, and 24.0%,
respectively. Apparently, these statistical results demonstrate that
the proposed model with ECM in various seasons shows better
forecasting performance and more stability.

4.4 15-minutes ahead prediction
performance

Then, the 15-min ahead forecast results for different
seasons are graphically displayed to demonstrate the forecasting
capability of the proposed model. To comprehensively test the
forecasting performance of the proposed model based on IF,
NPCNN and ECM, CatBoost, SVR, DT, KNN, LGBM and
XGBoost are selected as benchmark methods for performance
comparison. Figures 7–10 shows the forecasting results of the
six benchmarks and the proposed model in different seasons.
In Figures 7–10, the predicted power of the proposed model
and actual power curves are red and black lines, respectively,
and the predicted power curves of other benchmarks are dashed
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lines. It can be seen that the power curves have obvious seasonal
variation, which is mainly caused by ambient air temperature
and solar radiation. Figure 8 has a higher PV power, and the
curve will be relatively smoother compared with Figure 10.
Likewise, the PV power curves in Figure 7 and Figure 9 also
show better characteristics than those in Figure 10 (Winter).
From Figures 7–10, the proposed model has strong prediction
capabilities and outperforms other benchmarks, and its predicted
value is basically consistent with actual PV power. Furthermore,
CatBoost, LGBM, and XGBoost perform better than SVR, DT,
and KNN models because the ensemble learning network is
easier to handle nonlinear relationships than commonly-used
shallow learning models.

Table 2 shows the MAE, RMSE, and MAPE metrics in 15-
min ahead. It can be seen from Table 2 that the MAPE value
of the proposed model varies from 0.0158 to 0.0337, with an
average of 0.0282. While the average MAPE values of other
six benchmarks are 0.0371, 0.2535, 0.0493, 0.0794, 0.0435, and
0.0402, respectively. Compared with CatBoost, SVR, DT, KNN,
LGBM, and XGBoost, the average MAPE value of the proposed
model is decreased by 0.009, 0.226, 0.021, 0.051, 0.015, and 0.012,
respectively. Similarly, compared with CatBoost, SVR, DT, KNN,
LGBM, and XGBoost, the average MAE value of the proposed
model is reduced by 5.62, 57.58, 9.48, 42.29, 12.05, and 5.39,
respectively. And compared with CatBoost, SVR, DT, KNN,
LGBM, and XGBoost, the average RMSE value of the proposed
model is reduced by 9.40, 94.47, 16.60, 69.67, 18.86, and 8.79,
respectively. Apparently, these results show that the results of
the proposed model perform best in terms of the MAPE, MAE,
and RMSE, followed by XGBoost, CatBoost, LGBM, DT, KNN,
and SVR. This means that the predicted value of the proposed
model is closer to the actual value than other comparative
models. The reason may be that the proposed model, apart from
outlier detection and error correction methods, uses NPCNN
to identify changing trends and non-linear relationship of PV
data. The poor performance of the SVR model is mainly caused
by the abnormal distribution of the kernel and worsened by
the low feature extraction ability. Therefore, we can conclude
from these analysis results that the proposed model has the best
forecasting performance on 15-min ahead forecasting tasks in
different seasons.

4.5 Multi-step ahead prediction
performance

Furthermore, to fully verify the comprehensive prediction
performance of the proposed model, simulation experiments are
performed under different forecasting horizons in summer. The
forecasting horizons range from 30 min ahead to 2 h ahead with
15-min intervals. The training/validation/test dataset in each
forecasting horizons is acquired by time interval sampling of

the original PV power data series. The average MAE, RMSE,
andMAPE results over different forecasting horizons in summer
are presented in Figures 11–13, respectively. It can be seen that
the MAE, RMSE and MAPE indexes of the proposed model
usually increase with the longer prediction horizon. This is
because the lower feature correlation reduced by the longer
forecasting horizon will increase the uncertainty of PV power
forecasting. Obviously, at all prediction horizons, the proposed
model has the smallest MAE, RMSE, and MAPE metrics,
which outperforms other benchmarks and can provide excellent
forecasting performance. From these results, the proposedmodel
has more stable and robust performance compared to the
benchmark methods. It is appropriate to conclude that the
proposed hybrid model exhibits good generalization properties
for PV power forecasting.

5 Conclusion

In this paper, a new hybrid model based on a feature
engineering module, a point prediction module, and an error
correction module is firstly proposed for the ultra-short-term
PV power forecasting. In the proposed model, IF is used to
detect outliers for PV power data, NPCNN is used to extract the
nonlinear features of processed PV power data, andWT+KNN is
used to reduce the model variance. The proposed hybrid model
has been verified on actual PV power data from the PV plant
in Limberg. It has been demonstrated in the case studies that
the IF-based anomaly detection and ECM-based post-prediction
correction methods are significantly helpful in practical PV
power forecasting. Moreover, the proposed hybrid model has
been compared with six benchmarkmethods based onCatBoost,
KNN, DT, SVR, XGBoost, and LGBM in different seasons and
forecasting horizons. Experimental results have also proved that
the proposedmodel has a more stable and excellent performance
than the benchmark methods. Therefore, the proposed hybrid
model for PV power forecasting has a high potential for future
application in electric energy systems.
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