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Short-term load forecasting (STLF) is an important but a difficult task due to the
uncertainty and complexity of electric power systems. In recent times, an attention-based
model, Informer, has been proposed for efficient feature learning of lone sequences. To
solve the quadratic complexity of traditional method, this model designs what is called
ProbSparse self-attention mechanism. However, this mechanism may neglect daily-
cycle property of load profiles, affecting its performance of STLF. To solve this problem,
this study proposes an improved Informer model for STLF by considering the periodic
property of load profiles. The improved model concatenates the output of Informer, the
periodic load values of input sequences, and outputs forecasting results through a fully
connected layer. This makes the improved model could not only inherit the superior ability
of the traditional model for the feature learning of long sequences, but also extract periodic
features of load profiles. The experimental results on three public data sets showed its
superior performance than the traditional Informer model and others for STLF.

Keywords: short-term load forecasting, improved informer, periodic features, self-attention, fully connected, deep
learning

1 INTRODUCTION

Short-term load forecasting (SLTF) is of significant importance in the operation of electric
power systems Sinha et al. (2021); Zhang et al. (2021). It provides electrical utilities the load
values of the coming hours or days to enable them to draw up cost-efficient electrical plans
Mashlakov et al. (2021). Take an electrical utility of 10,000 MW with the mean absolute percentage
error (MAPE) approximately 4% as an example. If the MAPE was decreased by 1%, its production
cost could be reduced by 0.6–1.6 million USD annually Ma (2021). However, STLF is challenged by
the uncertainty of electric power systems.

Until now, researchers proposed a number of SLTF methodologies to handle this challenge.
These methods can typically be classified into two categories according to what algorithms
they use, namely, the statistical and machine learning methods. Both types of methods exhibit
their advantages. Statistical methods are more interpretable than those using machine learning
algorithms, but they usually need statistical assumptions that make capturing the underlying
stochastic progress of load profiles difficultDumas et al. (2022). Different to statistical ones,machine
learning-based methods transform raw data into feature vectors through carefully designed feature
extractors and proved their superior ability to address hidden nonlinearity in historical data sets
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compared to those using statistical algorithmsPanapakidis (2016);
Zahid et al. (2019); Chicco and Ilie (2009); Wang et al. (2018).

Since 2006, the deep learning (DL) technique has been
developed greatly and witnesses its success in many applications.
DL is a set of end-to-end machine learning methods that allows
a neural network to automatically discover representations
from raw data for the regression or classification task
LeCun et al. (2015). Compared to conventionalmachine learning
methods, DL-based methods show better performance for non-
linear feature learning and are able to model complex non-linear
systems. Therefore, in the area of STLF, many DL-based models
have been proposed.

The recurrent neural network (RNN) or the long short-term
memory neural network (LSTM) is among the most widely used
DL models in this area Kong et al. (2018); Shi et al. (2018). The
reason is that RNNor LSTM is a kind of neural network that takes
sequence data as input and recurs in the direction of the sequence,
and it proved to be superior for non-linear feature learning of
sequence data than other types of neural network. Therefore, a
number of LSTM based STLF models have been developed. For
example, Bedi et al. proposed an LSTMbasedmodel that predicts
the load of coming 15 min by considering season, day, and
interval data Bedi andToshniwal (2019). Next, Shi et al. proposed
a new deep pooling RNN model to perform for STLF at the
household level, which outperforms classical deep RNN model
in terms of RMSE Shi et al. (2018). Zang et al. combined LSTM
and self-attention mechanism for the day-ahead residential load
forecasting Zang et al. (2021). Furthermore, some studies try to
combine RNN or LSTM with a convolutional neural network
(CNN) to increase the precision of load forecasting. In these
models, the CNN is first used to extract local features, the
results of which are then flattened and fed into the LSTM layers.
For example, Sharda et al. proposed an ensemble DL model
that combines CNN and LSTM for the STLF at appliance-level
Sharda et al. (2021). A unified customer level STLF framework
that uses CNN and bidirectional LSTM was developed and
outperforms the model that only uses a single neural network
Unal et al. (2021). Predict results of these models verified that the
CNN layers are able to extract effective features from multiple
variables and, therefore, are able to improve the load forecasting
performance of RNN-based models.

However, the LSTM model proved to be not capable
to keep long-term memory from a time-series perspective
Zhao et al. (2020). This makes it hard to design an RNN or
LSTM based forecasting model that takes long load sequences
as its input and makes capturing long-range dependency from
long sequences of load series data impossible, thus affecting the
performance of load forecasting. In recent times, attention-based
DL models, such as Transformer, showed superior performance
in capturing long-term dependencies than RNN or LSTM model
Vaswani et al. (2017). They utilize the self-attention mechanism
to reduce the maximum length of network signals and avoid
the recurrent structure. But, conversely, the time complexity
and memory usage of the self-attention mechanism are O(L2),
which limits its application to feature learning of long sequences.
To address this, Zhou et al. proposed an efficient Transformer-
based model, named Informer, in Zhou et al. (2021). It reduces

the complexity of the self-attention mechanism to O(LlogL)
by designing a what is called the ProbSparse self-attention
mechanism, in which only a part of the dominant queries
is considered and included in the attention calculation. Since
electrical load consumption data are a kind of periodic series over
a long period of time, the ProbSparse self-attentionmechanismof
Informer may neglect periodic features of load profiles.

To solve this problem, this paper presents an improved
Informer model for STLF by considering the periodic property
of load profiles. First, a historical data set is normalized and
divided into three subsets without overlaps, namely the training,
validation, and testing sets. Then, two input matrices are
constructed from each of the three subsets. After that, the input
representation method of the Informer model is utilized for the
input matrices to capture both global hierarchical and agnostic
time stamps. Then, the results of the input representation are
fed into two sets of CNN networks. To conclude, the improved
Informer model completes the load forecasting. The proposed
STLF model has been tested on three public data sets, and the
experimental results showed more precise load forecasting than
others.

The main contributions of this paper are the following: 1)
the traditional Informer model is improved by considering the
periodic property of load profiles; 2) by the serial connection of
the Informer and CNN networks, the proposed STLF model is
able to extract not only long-range dependency, but also local
features from long sequences of load and meteorological data.

The rest of this paper is organized as follows. Section 2
describes the proposed STLFmodel.The experimental results are
shown in Section 3, and a brief conclusion is given in Section 4.

2 METHODS

In this section, the proposed STLF model will be described in
detail. Figure 1 shows the architecture of the proposed model,
which is encoder-decoder type. First, load and meteorological
sequences of a data set are used to build the input matrices, Xen
and Xde, for the encoder and decoder of the proposed model,
which will then be represented and fed into two sets of CNN
networks, respectively. After that, the Informer model receives
the results of the CNN module, and its output is combined with
the periodic load values of the input load sequence to form a fully
connected layer, which outputs the load value of the moment to
be predicted.

2.1 Construction of Training, Validation,
and Testing Sets
Suppose that a given historical data set H ∈ ℝN×d includes
one load and d–1 meteorological profiles of N days, termed
as L = {l1, l2,…, lN} and M = {m1,m2,…,md−1}, respectively.
mj = {mj1,mj2,…,mjN} is the profile of jth meteorological data.
The load and meteorological profiles of each day are first
normalized by dividing their maximum values as the following:

l∗i =
li

max (li)
, (1)
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FIGURE 1 | Pipeline of the proposed short-term load forecasting model.

and

m∗ji =
mji

max (mji)
. (2)

Then, the normalized data set H∗ = {L∗,M∗} is divided into
three non-overlapping subsets in chronological order, termed as
the training set H∗tr , the validation set H∗va, and the testing set H∗te
respectively, which are represented as the following:

H∗tr = {h
∗
1 ,h
∗
2 ,…,h

∗
Ntr
} , (3)

H∗va = {h∗Ntr+1
,h∗Ntr+2
,…,h∗Ntr+Nva

} , (4)

and

H∗te = {h∗Ntr+Nva+1
,h∗Ntr+Nva+2

,…,h∗N} , (5)

where Ntr and Nva are the numbers of days in the training and
validation sets, respectively, and h∗i = {l

∗
i , t
∗
i } is the i-th tensor of

H∗. The testing set contains the load and temperature profiles of
N−Ntr −Nva days.

2.2 Architecture of the Proposed Model
Theproposed STLFmodel is a total encoder-decoder architecture
and is made up of four separate parts: the construction of input
matrices, a representation module, a CNN module, and the
improved Informer model.

2.2.1 Input Matrices
For every of the three subsets, two input matrices are first
constructed, termed Xen and Xde, for the encoder and decoder of

the proposed STLFmodel, respectively. Time-series forecasting is
used to predict future series at a specific time by using the series
before this time. In this paper, the input of the encoder at time t
includes load and temperature series before it:

xten = {h∗t−Len+1,…,h
∗
t−1,h
∗
t } ∈ ℝLen×m,

t = Len,Len + 1,…,N∗ × 24− 1
(6)

where Len is the input length and represents how many historical
values will be used for forecasting, m is the dimension of the
historical data set and is set to 2 in this article, andN∗ represents
the size of the training, validation, or testing sets. In this paper, if
a data set exhibits hourly resolution, historical data from 1 week
before a moment are utilized to forecast the load of this moment.
Therefore, in this paper, the value of Len is set to 168.

The input of the decoder is a little more complicated.
According to the traditional Informer model Zhou et al. (2021),
the input of the decoder at time t is a concatenation of two parts
as the following:

xtde = Concat (x
t
token,x

t
0) ∈ ℝ

(Ltoken+Ly)×m, (7)

where xttoken ∈ ℝ
Ltoken×m is the start token of length Ltoken, and it is

defined as the following:

xttoken = {h
∗
t−Ltoken+1
,…,h∗t−1,h

∗
t } , (8)

Token is a term of NLP and represents smaller units of a piece
of a text. In this paper, Ltoken is set to be 120, so xttoken includes data
of 5 days prior to the moment t. xt0 = {0} ∈ ℝ

Ly×m is a placeholder
with lengthLy for the target sequences and is set as 0.The length of
input sequences for the decoder is the sum of the lengths of xtoken
and x0, Lde = Ltoken + Ly. In this paper, Ly will be set to 1 for the
hour-ahead forecasting and to 24 for the day-ahead forecasting.

Frontiers in Energy Research | www.frontiersin.org 3 August 2022 | Volume 10 | Article 950912

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Liu et al. STLF by Improved Informer

2.2.2 Input Representation
The input representation method of the Informer model is
utilized. It is designed to obtain both the global hierarchical time
stamps (such as week, month, and year) and the agnostic time
stamps (such as holidays and others), which are necessary to
capture long-range independence for the long-sequence time-
series forecasting. The input representation is the sum of three
separate parts, a scalar projection, and embeddings of the local
and global time stamps.

For the value of an input sequence at time t, xti , the
representation method first projects it into a dmodel-dim vector ut

i
through dmodel 1-D convolutional filters with the kernel size to be
3 and the stride to be 1, where dmodel is the dimension of the input
representation.

Then, a fixed position embedding at time t is utilized to
preserve the local context as the following:

PE(pos, j)t =

{{{{{{{
{{{{{{{
{

sin(pos/(2Lx)
j

dmodel), if j is even

css(pos/(2Lx)
j

dmodel), otherwise

(9)

where pos = 1,2,…,Lx and j = 1,2,…,dmodel. Lx is the length of the
input sequence, and Lx = Len or Lde for the inputs of the encoder
or decoder of the proposed model, respectively.

Four types of global time stamps, namely the hour, weekday,
day and month, are selected in this paper. Each type of stamp,
SE(pos)p, is obtained by a learnable stamp embedding. The
function in pytorch named nn. Embedding is utilized here.

To conclude, the result of the input representation for an input
sequence is the following:

xtfeed[i] = 𝔽(x
t
i ) = αui + PE (Lx × (t − 1) + i,)

+
4

∑
p=1

SE(Lx × (t − 1) + i)p, i = 1,2,…,Lx
(10)

where𝔽(⋅) is the function of the input representation, and α is the
projection coefficient and is set to 1 in this paper.

2.2.3 Convolutional Neural Network Module
The CNN module of the proposed model contains two sets of
CNN for the encoder and decoder, respectively. Each set of CNN
includes three 1-D convolutional layers with kernel sizes of 7,
5, and 3, respectively. The procedure forwards from the j-th
convolutional layer into the (j+ 1)-th one, as follows:

X t
j+1 = Padding (ReLU (Conv1d (X

t
j ))) , (11)

where Conv1d(⋅) performs a 1D convolutional filter in time
dimension with the activation function of ReLU(⋅). To maintain
the length of the input sequences, the zero-padding technique is
used in each convolutional layer. According to the kernel sizes,
the padding sizes of the three convolutional layers are 3, 2, and 1,
respectively.

2.2.4 Informer Model
Then, the outputs of the CNN module are fed into the Informer
model, which is also an encoder-decoder architecture.

The encoder of the Informer model is designed to capture
long-range dependency from long time-series sequences, and
it consists of one layer of multi-head self-attention and one
layer of what is called self-attention distilling. One of the
main contributions of the Informer model is that it proposed
what is called the ProbSparse self-attention mechanism, which
achieves less time complexity and memory usage as compared
to the traditional canonical self-attention. It has been verified
that the distribution of self-attention probability of a query
exhibits potential sparsity, and the sparsity score forms a long
tail distribution Zhou et al. (2021). Therefore, the query whose
attention distribution is away from the uniform distribution is
treated as the dominant query. This can be measured by the KL
divergence between them:

KL (a ∥ b) = ln
NK

∑
j=1

e

qik
⊤
j

√𝜎 − 1
LK

NK

∑
j=1

qik
⊤
j

√𝜎
− lnNK (12)

where qi is the i-th query, kj is the j-th key, NK is the number of
keys, a = p(kj|qi) =

k(qi,kj)

∑lk(qi,kl)
represents the attention distribution

of query qi and k(qi,kj) = e
qik
⊤
j
√𝜎 , and b = 1/Nk is the uniform

distribution. Dropping the constant of the Eq. (12), a sparsity
metric is designed to measure the significance of a query, which
is defined as the following:

M (qi,K) = ln
NK

∑
j=1

e

qik
⊤
j

√𝜎 − 1
LK

NK

∑
j=1

qik
⊤
j

√𝜎
(13)

The first term of theEq. (14) is the Log-Sum-Exp of the
division results of the dot products of qi with all keys and the
kernel parameter of d, and the second one is the arithmetic mean
of the division results. Next, the higher value ofM(qi,K) indicates
that the probability of the attention of qi demonstrates a higher
chance of containing the dominant pairs of dots in the header
field of the long tail self-attention distribution.

However, the complexity of the sparsitymetric is still quadratic
because it needs to calculate the dot product of every query and
every key. For this, the traditional Informer designs an alternative
measure that is defined as the following:

M (qi,K) =max
j

qik
⊤
j

√𝜎
− 1
LK

NK

∑
j=1

qik
⊤
j

√𝜎
(14)

Under the long tail distribution, it needs to only randomly
select LKln LK dot product pairs to calculate the M(qi,K), i.e.
filling other pairs with zero. At last, only the s dominate queries
with the highest M values are selected to perform self-attention
to each key:

A (Q,K ,V) = softmax(
QK⊤

√d
)V (15)
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whereQ contains the s dominate queries and |Q| = s. By assigning
a specific value to s, the time complexity and space complexity
of self-attention can be reduced by the ProbSparse self-attention
mechanism from N2 to N× s.

Then, the results of the multi-head ProbSparse self-attention
are passed through a distilling operation to privilege the dominate
ones and to reduce the feature dimension. This is performed
by a 1-D convolutional layer with the ELU activation function,
followed by a maxpool layer with a stride of 2. Therefore, by
utilizing the distilling operation, the dimension of the feature
map of every head ProbSparse self-attention will be reduced to
half of its original dimension. To conclude, all the outputs will
be concatenated as a hidden representation of the encoder of the
Informer model.

The decoder of the Informer model consists of a layer of
ProbSparsemulti-head self-attention, a layer of full self-attention,
and a fully connected layer. Similar to the Transformermodel, the
masked self-attention is utilized in the ProbSparse self-attention
by setting masked dot products directly to −∞. Next, the outputs
of the layer of multi-head self-attention are concatenated with the
results of the encoder and then feed into a fully connected layer,
the output of which will be fully connected with the periodic load
values.

Those who are interested to the Informer model can go to the
reference Zhou et al. (2021) for detail descriptions of it.

2.2.5 Fully Connected Layers
To conclude, two fully connected layers exist to output the
forecasting result in time t. The first layer contains seven neurons
that receive the seven periodic load values at the same moment
in every day of the past week prior to time t, as showed by the red
line in Figure 1. The output of this layer is concatenated with that
of the Informer model to form the second fully connected layer,
which produces the final forecasting result of time t. The ReLU
activation function is utilized in the two fully connected layers.

2.2.6 Optimization of the Proposed Model
The MSE loss function between the predicted and the real load
profiles is selected to optimize the proposed STLF model, which
is defined as the following:

MSE = 1
Ly

Ly

∑
j=1
(l∗ij − ̂l

∗
ij)

2 (16)

where l∗ij and ̂l∗ij are the real and predicted load values of the jth
moment in the ith input, Ly = 24 for the day-ahead forecasting
and Ly = 1 for the hour-ahead forecasting. Also, the loss is

TABLE 1 | Forecast results for the testing set of the GEFCom2014 data set.

Models Average MAPE (%)

LSTM 4.20
Informer 2.96
Informer + CNN 2.17
Proposed 1.63

The bold values are the best results as compared to the others.

TABLE 2 | Forecast results for the testing set of the North-American Utility
data set.

Models Average MAPE (%)

Informer 2.50
ESN 2.37
LSTM 2.18
WT-NN 2.04
SSA-SVR 1.99
WT-ELM-MABC 1.87
CLPSO-MA-SVR 1.80
WT-ELM-LM 1.67
ResNetPlus 1.56
Informer + CNN 1.49
Proposed 1.15

The bold values are the best results as compared to the others.

propagated back from the outputs of the proposed STLF model
across the entire model.

The validation set is used to evaluate the proposed model
during the training process. The validation error is computed at
the end of every training epoch, and it is compared with the error
of the last epoch. If the validation error decreases, the minimum
error is updated by the validation error of the current epoch.
On the contrary, if the validation error of the current epoch is
greater than that of the last epoch, a constant, whose initial value
is 0, is summed by 1. If the constant reaches 10, meaning that
the validation errors of the last 10 epochs are all greater than
the minimum error, the training process will be stopped and
the result with the minimum error will be obtained as the final
model.

3 RESULTS

Three public data sets are utilized to test the predictive
performance of the proposed STLF model. The first is from the
Global Energy Forecasting Competition 2014 (GEFCom 2014)
Hong et al. (2016), which contains hourly load and temperature
values from January 2005 to September 2010, a total of
69 months. The training set contains load and temperature
profiles from 2005 to 2008. The validation set includes the data
for 2009, and the rest of the data are used to test the proposed
model.

Next, the second data set is from a North-American Utility,
which is termed NAU in this paper and is available at https://
class.ece.uw.edu/555/el-sharkawi/index_files/Page3404.htm.
This data set contains load and temperature values with hourly
resolution from1 January 1985 to 12October 1992. Samewith the
existing studies, the data of the last 2 years is used as the testing
set. The training set contains load and temperature values from
1985 to 1989, and the last data of 10 months is as the validation
set.

Then, the last data set is called ISO-NE, which contains hourly
load and temperature values of the region of New England from 1
March 2003 to 31 December 2014. The training set contains load
and temperature values from 1March 2003 to 31December 2005,
totaling 34 months. The data of 2007 is used as the validation
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TABLE 3 | Forecast results for the ISO-NE data set in the year 2006 (%).

Month SIWNN WT-ELM-PLSR WT-ELM-MABC ResNetPlus Informer Informer + CNN Proposed

Jan 1.60 — 1.52 1.62 3.16 1.57 1.10
Feb 1.43 — 1.28 1.31 3.01 1.49 1.05
Mar 1.47 — 1.37 1.17 3.01 1.67 0.97
Apr 1.26 — 1.05 1.34 2.87 1.62 1.01
May 1.61 — 1.23 1.32 2.83 1.57 0.97
Jun 1.79 — 1.54 1.41 3.08 1.82 1.13
Jul 2.70 — 2.07 1.96 3.09 1.99 1.41
Aug 2.62 — 2.06 1.55 3.34 2.21 1.59
Sep 1.48 — 1.41 1.40 3.21 1.97 1.21
Oct 1.38 — 1.23 1.29 3.11 1.80 1.07
Nov 1.39 — 1.33 1.51 3.11 1.87 1.47
Dec 1.75 — 1.65 1.47 2.94 1.48 1.14
Average 1.75 1.49 1.48 1.45 3.06 1.76 1.18

The bold values are the best results as compared to the others.

TABLE 4 | Forecast results for the ISO-NE data set in 2010 and 2011 (%).

Models 2010 2011 Δ

RBFN-ErrCorr 1.80 2.02 0.22
Improved RBFN-ErrCorr 1.75 1.98 0.23
WT-ELM-PLSR 1.50 1.80 0.30
ResNetPlus 1.50 1.64 0.14
Informer 2.97 2.99 0.02
Informer + CNN 1.80 2.00 0.20
Proposed 1.26 1.27 0.01

The bold values are the best results as compared to the others.

TABLE 5 | Forecast results of the GEFCom2014 data set using real and noisy
temperature data (%).

Models Real temperature Noisy temperature Δ

LSTM 4.20 4.52 0.32
Informer 2.96 2.62 −0.34
Informer + CNN 2.17 2.22 0.05
Proposed 1.63 2.05 0.42

The bold values are the best results as compared to the others.

TABLE 6 | Forecast results of the North-American Utility data set using real
and noisy temperature data (%).

Models Real temperature Noisy temperature Δ

LSTM 2.18 3.77 1.59
Informer 2.50 1.72 −0.78
Informer + CNN 1.49 1.48 −0.01
Proposed 1.15 1.41 0.26

The bold values are the best results as compared to the others.

set. Same to the existing studies, two testing sets were used to
test the proposed model. The first one contains data of 2006,
and the other one is the data of 2010 and 2011. The ISO-NE
data set is available at https://www.iso-ne.com/isoexpress/web/
reports/load-anddemand.

TABLE 7 | Forecast results of the ISO-NE data set using real and noisy
temperature data (%).

Models 2006 2010 2011

LSTM
Real temperature 2.51 2.50 2.57
Noisy temperature 2.85 2.82 2.78
Δ 0.34 0.32 0.21

Informer
Real temperature 3.06 2.97 2.99
Noisy temperature 2.98 3.41 3.38
Δ −0.08 0.44 0.39

Informer + CNN
Real temperature 1.76 1.89 1.91
Noisy temperature 1.90 1.90 1.92
Δ 0.14 0.01 0.01

Proposed
Real temperature 1.18 1.26 1.27
Noisy temperature 1.26 1.32 1.32
Δ 0.08 0.06 0.05

The bold values are the best results as compared to the others.

This study uses theMAPE to evaluate the predict performance.
MAPE is a commonly used criteria of STLF and is defined as the
following:

MAPE = 1
Ly

Ly

∑
j=1

|

|

̂l∗ij − l
∗
ij

l∗ij
|

|
(17)

3.1 Results of the GEFCom2014 Data Set
Table 1 lists the average MAPE values of LSTM, Informer,
Informer +CNNand the proposedmodel for the testing set of the
GEFCom2014 data set. The observation exists that the proposed
forecasting model achieves the best performance than others, the
average MAPE value of which is 2.57%, 1.33%, and 0.54% lower
than that of LSTM, Informer and Informer + CNN respectively.

3.2 Results of the North-American Utility
Data Set
The proposed predictive model was performed on the testing
set of the NAU data set. Its performance was compared
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FIGURE 2 | Comparative box plots of the proposed and other models in the GEFCom2014 data set using (A) real and (B) noisy temperatures.

FIGURE 3 | Comparative box plots of the proposed and other models in the NA data set using (A) real and (B) noisy temperatures.

FIGURE 4 | Comparative box plots of the proposed and other models in 2006 of the ISO-NE data set using (A) real and (B) noisy temperatures.

with several models, including WT- NN Amjady and
Keynia (2009), ESN Deihimi and Showkati (2012), SSA-SVR
Ceperic et al. (2013), WT-ELM-MABC Li et al. (2015), CLPSO-
MA-SVR Hu et al. (2014), WT-ELM-LM Li et al. (2016b), and
ResNetPlus Chen et al. (2019). The results of these models are
listed in Table 2. These comparative models have been proposed
in the recent 10 years and cover feature selection, hyper-
parameter optimization, DL, and other algorithms. Among these
comparative models, the most recent proposed one, ResNetPlus,

achieves an average MAPE value of 1.56%. Due to the advantages
of learning long-sequence features and periodic load values, the
proposedmodel achieves an averageMAPEvalue of 1.15%,which
is 1.35% and 0.34% lower than that of the traditional Informer
and Informer + CNN models, respectively.

3.3 Results of the ISO-NE Data Set
Two sets of prediction experiments were conducted for the
ISO-NE data set. First, the proposed model was used to
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FIGURE 5 | Comparative box plots of the proposed and other models in 2010 and 2011 of the ISO-NE data set using (A) real and (B) noisy temperatures.

FIGURE 6 | Predict results of the ablation of the proposed model on the
three data sets.

predict load profiles in 2006 and was compared with SIWNN
Chen et al. (2010), WT-ELM-MABC Li et al. (2015), ResNetPlus
Chen et al. (2019), and the traditional Informer models. Their
results are showed in Table 3. The average MAPE value of every
month is calculated respectively. The observation exists that the
proposedmodel achieves lower average values than other models
over 10 months, except for August and November. The overall
average MAPE value of the proposed model is 0.57%, and it is
0.31%, 0.30%, 0.27%, and 1.88% lower than that of SIWNN, WT-
ELM-MABC, ResNetPlus, and the traditional Informer models,
respectively.

The generalization capability of the proposed model was
further tested on the data from 2010 and 2011. Table 4 reports
the performance of the proposed model and five comparative
models mentioned in Yu et al. (2014); Cecati et al. (2015);
Li et al. (2016a); Chen et al. (2019). The observation exists that
the proposedmodel achieves the best results as compared to other
models. Compared to the traditional Informer and ResNetPlus
models, the proposed model achieves lower mean MAPE values
of 1.71% and 0.24% in 2010 and of 1.72% and 0.31% in 2011,
respectively. It is worth noting that all of these models perform
better in the year 2010 than in the year 2011. However, the

traditional and the improved Informer models operate much
more stable than others, as their difference values between the
results of 2010 and 2011 are only 0.02% and 0.01%, respectively.

3.4 Robustness Analysis
The robustness of the proposed model to measuring errors was
also tested. Same to some existing models, a set of normal
Gaussian noise was added to the normalized temperature values.
Tables 5–7 list the forecasting results of the three data sets
by utilizing the normal and noisy data. Affected by the noisy
data, the observation exists that the forecast performance of
LSTM, Informer, and the proposed model decreases in all the
three data sets. By using noisy data, the average MAPE values
of the proposed model increase by 0.42% and 0.26% in the
GEFCom2014 and NAU data sets, respectively. In 2006, 2010,
and 2011 of the ISO-NE data set, the average MAPE values
of the proposed model increase by 0.08%, 0.06%, and 0.05%
respectively. Next, the Informer + CNN model is less affected by
noisy data compared to LSTM and the proposed model. Take the
GEFCom2014 data set as an example. The average MAPE value
of the Informer + CNN model only increases by 0.05%, while
the values of LSTM and the proposed model increase by 0.32%
and 0.42%, respectively. It is worth noting that the traditional
Informer model is not affected by the noisy data in some cases.
For example, the averageMAPEvalues of the traditional Informer
model decrease by 0.34% and 0.78% in the GEFCom2014 and
NAU data sets, respectively.

Compared with the traditional Informer model, the proposed
model shows varying robustness to noisy temperature values
on different data sets. The traditional Informer model is more
robust to noisy temperatures than the proposed model on the
GEFCom2014 and NAU data sets. On the contrary, the proposed
model is better in 2010 and 2011 of the ISO-NE data set.
Affected by noisy data, the averageMAPEvalues of the traditional
Informer model increase by 0.44% and 0.39%, respectively, while
the average MAPE values of the proposed model increase only by
0.06% and 0.05%, respectively.
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TABLE 8 | Running time of the proposed model on the three data sets (s).

Data sets GEFCom2014 NAU ISO-NE

Training Testing Training Testing Training Testing

Informer 0.00309 0.00108 0.00318 0.00108 0.00315 0.00103
Proposed 0.00317 0.00114 0.00338 0.00113 0.00317 0.00113
Increased percentage 2.31% 5.44% 4.75% 10.15% 0.53% 9.51%

Figures 2–5 show the comparative box plots of LSTM,
Informer, Informer + CNN, and the proposed model by real and
noisy temperatures. Although the proposed model is affected by
noisy data to some extent, it is still the best forecasting model in
both cases.

3.5 Ablation Study
Additional experiments were also conducted on the three data
sets with ablation consideration. All the experiments on the
same data set were performed with the same hyper-parameters.
Figure 6 shows the ablation results of the periodic values and
CNN on the three data sets. It can be proved that the CNN
module and the periodic load values demonstrate the ability to
improve the predict performance in terms of MAPE.

3.6 Running Time
The Informer and the proposed model were performed on a Dell
workstation with GPU installed. Table 8 lists the running times
of every sequence during the training and the testing process.The
results indicate several conclusions of interest. First, the training
process consumes about three times as long as the testing process,
which can be explained by the back-propagation of the training
process. Second, the proposed model increases the complexity
of the traditional Informer, and the increased percentages of
running times in the testing process are greater than that in the
training process.

4 CONCLUSION

This paper proposes an improved Informer model for STLF. The
traditional Informer model is improved by considering periodic
load values of input load sequences. The performance of the

proposed model was tested on three public data sets, and their
results showed the superior forecasting ability of the proposed
model as compared to not only the traditional Informer model
but also other deep leaning based models.

Time-series forecasting has long been a research hotspot.
The success of attention-based DL techniques promoted the
development of this area. However, the performance of STLF
needs further improvement. In our future work, we will try
to improve the prediction accuracy by integrating some other
techniques, such as clustering and ensemble strategy.
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