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The combustion process of boilers under deep peak shaving is a multivariate process which
has complex characteristics such as super multivariability, being nonlinear, and large delay. It is
difficult to handle complex data and calculate appropriate distributed results. To this end, this
study applies the A3C method based on the dynamic weight Dyna structure to the boiler
combustion system. This method trains and optimizes the boiler combustion system by
establishing a data center and designing appropriate states and reward values, and the
simulation results show that thismethod can be used to optimize the boiler combustion system.
It can effectively reduce NOX emissions and improve the boiler combustion efficiency.
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INTRODUCTION

In order to accelerate the completion of China’s carbon emission and carbon neutrality goals and obtain
digital transformation through data center in the energy industry, the National Energy Administration
proposed the implement linkage of three reforms of a coal-fired power unit. Themain technical difficulty is
how to make the large-capacity coal-fired power unit perform deep peak shaving to the ultra-low load
more digitally.

Using the data center to train the combustion system can effectively obtain the maximum amount
of information. The boiler combustion process is a complex process with multi-variables,
nonlinearity, and large delay. In particular, under deep peak shaving operation, the decrease in
the load may lead to instability of boiler combustion, ineffective operation of the denitrification
system, over-temperature of the tube wall of the boiler (Shi et al., 2019), etc. How to effectively ensure
boiler efficiency and NOx emissions is an important research issue for combustion optimization
under deep peak shaving.

The current research on the data application is mainly divided into two aspects. On the one
hand, the boiler combustion process is optimized based on optimization algorithms, and the
optimization is carried out with the goal of boiler combustion efficiency and environmental
protection parameters, such as genetic algorithm (Dal Secco et al., 2015; Pan et al., 2018),
particle swarm algorithm (Fang et al., 2012; Sanaye and Hajabdollahi, 2015; Xu et al., 2019), ant
colony algorithms (Xu et al., 2008). But the speed of optimization is slow and easy to fall into
local optimum. Particularly in deep peak shaving, the boiler combustion situation is more
complicated. On the other hand, it is optimized by training neural networks, according to Li
and Niu (2016) and Han et al. (2022), in which deep reinforcement learning in the data center
has become the focus which has the ability of generalization and decision-making. Bouhamed
et al. (2020) and Zou et al. (2020) proposed a deep deterministic policy gradient (DDPG)
algorithm based on the actor-critic (AC) framework, which was used to update the policy when
solving the DRL problem. Ye et al. (2021) suggested an asynchronous dominant actor-critic
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algorithm (AC), which used the multi-threading function of
CPU to construct multiple agents in parallel and
asynchronously for training at the same time. Therefore, at
any time, due to the different states experienced by the parallel
agents, the purpose of reducing the correlation between
samples in the training process was achieved.

However, sometimes learning through environmental
feedback from the data center may cause low learning
efficiency, the Dyna structure (as shown in Figure 1) can
enable agents to act in a virtual environment and generate
virtual samples for learning, and combine them with learning
experience in the actual environment to improve learning
efficiency. So this study improved the asynchronous deep
reinforcement learning algorithm (A3C) based on the Dyna
structure as an optimization method to find the optimal boiler
efficiency and NOx emission, so as to achieve the optimal
control target. The simulation results show that the boiler
combustion control optimization method based on DW-
DYNA-A3C is an effective optimization method.

ESTABLISHMENT OF THE DW-DYNA-A3C
METHOD

DW-Dyna-A3C Method
The learning efficiency of deep reinforcement learning is the main
factor affecting the application effect. For this reason, this study
considers the use of asynchronous methods to improve the
learning efficiency. The asynchronous method refers to
constructing different environment instances in multiple
threads, and using multiple agents in parallel to interact with
the environment. The asynchronous method enables the
independent exploration in each agent of the thread, and
multiple agents will share the acquired experience after joint
exploration and parallel computing, and A3C is one such
approach.

θa is the network parameter of critics shared globally, θv is the
network parameter of the actors, θ′a and θ′v are the network

parameter of critics and actors of a single thread, and then the
gradient accumulation formula of the actors is:

dθa ← dθa + ∇θ′a
log π(ai∣∣∣∣∣si; θ′a)(R − V(si; θ′v)), (1)

where π is the strategy which refers to the state-to-action
mapping, ai is the action determined by the current strategy
(π), and R is the cumulative reward. The critic network
cumulative gradient is.

dθv ← dθv + z(R − V(si; θ′v))2/zθ′v. (2)

Although the asynchronous strategy can improve the training speed,
the learning process is still very slow if the number of samples obtained
is insufficient. Therefore, consider putting the agent in a virtual
environment, generating virtual samples for learning, and combining
it with the learning experience in the actual environment (Liu et al.,
2021). Therefore, it is proposed to add a Dyna structure to each thread
in A3C to reduce the interaction with the real environment as well as
improve the utilization of the virtual environment.

However, since there is a certain gap between the virtual
environment model and real environment, if the learning results
in the virtual environment are always dominant, it may cause wrong
learning results. Therefore, the dynamic weight method is used to
tackle the problem. When meeting the higher cumulative reward of
the agent interacting with the real environment or the larger number
of global updates, the learning result of the agent in the virtual
environment will have less impact.

When updating the network parameters of actors and critics,
dynamic weights μ is introduced to the virtual environment
model in addition to its own learning rate, which is expressed as

θ′a ← θ′a + μεadθ
′
a, θ

′
v ← θ′v + μεvdθ

′
v, (3)

μ � (1 − T

Tmax
)e− Rm(j+1)rmax . (4)

In formula (4), Rm is the cumulative reward in the virtual
environment model. When Rm<0, Rm is set to zero to prevent the
cumulative reward from being less than zero, which will cause the
weight to be overlarge and fail to converge. rm is the maximum
reward given by the virtual environment for each step. j is the
number of repeated executions in the virtual environment. μ
decreases with the increase of global parameter updates’ number
and the cumulative reward. T is the global shared count.

FIGURE 1 | Schematic diagram of the Dyna structure (Tong et al., 2018).

FIGURE 2 | Input and output variables of the boiler combustion system.
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METHOD FLOW

The improved algorithm is as follows:

εa and εv are the learning rates of the actor and critic networks, R
is the cumulative reward, T is the number of global updates, and the
subscript m is the parameters of the algorithm in the virtual model.

The DW-Dyna-A3C algorithm adds an evaluation mechanism
for the results of each thread on the basis of the original push
mechanism in order to avoid pushing the results of poor
operation in a thread to the global and thus affecting the
speed and accuracy of convergence. If the cumulative reward
of thread running is lower than the average of the cumulative
reward of other threads in the last running, this update is only
copied from the global parameters to the thread, and the update is
not pushed to the global.

DESIGN OF THE COMBUSTION
OPTIMIZATION SYSTEM BASED ON
DW-DYNA-A3C
Analysis of the Combustion System
In the process of load lifting and lowering, the coordinated
control system can calculate the total amount of coal and air
required under different loads, after that, it was distributed to
the burners and the air of each layer. The distribution method
will directly affect the combustion efficiency of the boiler and
the emission of NOx in the gas (Wang et al., 2018). At present,
the coal of burners in each layer is usually distributed equally,
and the air is allocated empirically, which is obviously not the
optimal solution.

The boiler efficiency is generally calculated by the reverse
balance method (Cheng et al., 2018), in which q2 is expressed
as exhaust heat loss, %. In addition, it is the largest in boiler
heat loss and is closely related to temperature of exhaust gas
(Te). q3 is the loss of the inadequacy burning, %, which is
observed on-site by measuring the CO concentration in the
exhaust gas while none of the other losses can be measured in
real-time (Adams et al., 2021), Therefore, the boiler efficiency
is mainly represented by the exhaust gas temperature and the
CO concentration in the exhaust gas in this study.

Under deep peak shaving, the wall temperature of the heating
surface is the key factor restricting the adjustment. Due to the
reduction of the working fluid, the heat transfer of the
hydrodynamic cycle is deteriorated, resulting in the over-
temperature.

The main objectives of the boiler combustion optimization
control system are to (as shown in Figure 2): 1) reduce the
amount of CO in the exhaust gas (CO); 2)reduce the NOx content
at the SCR inlet(NOx); 3) ensure that temperature of waterwall
(Tp) is not overheated; 4) minimize q2.

State Design
The state of the agent can best reflect the optimization goal and
the optimization system. Therefore, the state quantity of the
combustion optimization system should be composed of the
target set value, the actual value, the adjustment value, and the
deviation. The set values include the amount of carbon monoxide
COsp, the exhaust gas temperature Te,sp, and the set value of NOx
concentration NOx,sp. The total amount of air DAIR, i-th layer
primary air opening Vs,j, j-th layer secondary air opening Vs,j,
k-layer overburning air opening Vc,k, and burner swing angle Af;
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eCx, eTe, eNOx are CO deviation, Te deviation, and NOx deviation,
respectively. In the optimization process, considering the safety
and economy of boiler, the safety margin ΔTP between the actual
maximum wall of TP and the over-temperature value should be
added to the state (Dzikuć et al., 2020). Therefore, the system at
time t has a state St.

St � {Te,sp,NOx,sp, COsp, DAIR, DB,n, Vf,i, Vs,jVc,k, Af, CO,

Te,NOx, eco, eTe, eNOx,ΔTp}. (5)

Reward Design
Rewards should be able to promote deep reinforcement
learning to the optimal strategy. In the reward design, the
agent should continue to be rewarded when it learns the
optimal strategy, and at the same time, the agent should
meet various constraints of the system, such as the rapidity
of adjustment, the stability, and the rate of change of the
control quantity, so the reward design for the coordinated
control system is divided into the following aspects.

Continuing Reward Items
The continuous reward should ensure that the reward
increases with the decrease of the deviation in the
optimization process, and the reward value reaches the
maximum and remains unchanged when the system reaches
the optimal value. Since there are three optimization objectives
of the combustion optimization system, it is necessary to carry
out weighted processing for the deviation of each optimized
variable.

et � [|eTe|, |eNOx|, |eco|]⎡⎢⎢⎢⎢⎢⎣ λ1λ2
λ3

⎤⎥⎥⎥⎥⎥⎦. (6)

In Formula (6), [λ1, λ2, λ3]T is the deviation weight matrix,
whose proportion can be modified according to the regulating
target of the combustion system. Take the weighted deviation et at
time t as an important reference for the continuous reward.

r1 � 10
e2t + 1

. (7)

Limit Term of the Change Rate of the Control Quantity
In the optimization process, considering that the fast change rate of
pipe wall temperature will produce thermal stress and reduce its
service life and the adjustment rate of each actuator also has certain
limits, it is necessary to limit the change rate of control quantity. The
output of the actor network is the increment of each regulation
quantity, so it only needs to judge the upper and lower limits of the
actor network output, and then reward and punish the reward value.

Suppose that the sampling period of the algorithm is Ts, and
the output of the actor network at time t is
ΔDAIR,ΔVf,i,ΔVs,j,ΔVc,k,ΔAf, so the limiting term of the
control variable rate of change is

r2 �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
0, if

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ΔDAIR/Ts ∈ [dAIRmin, dAIRmax],
ΔVf,i/Ts ∈ [vfmin, vfmax],
ΔVs,j/Ts ∈ [vsmin, vsmax],
ΔVc,k/Ts ∈ [vcmin, vcmax],
ΔAf/Ts ∈ [afmin, afmax].

−20, else

(8)

In Formula (8), dAIRmin, dAIRmax, dAIRminanddAIRmax are the
lower limit and upper limit of the coal quantity adjustment rate;
vsmin, vsmax, vfmin, vfmax, vcmin, andvcmax are the lower limit and
upper limit of the adjusting rate of primary damper opening,
secondary damper opening, and burnt out damper opening;
afminandafmax are the lower limit and upper limit of the
burner swing angle adjustment rate, when the three conditions
are met at the same time, no punishment is given.

Auxiliary Tasks
The ultimate goal of combustion system optimization should improve
boiler operation efficiency as much as possible and meet
environmental protection requirements. Because combustion
system optimization is a complex problem of multi-objective
optimization, auxiliary tasks are added through weighted
deviations, and when the optimization structure begins to
gradually become better, and continuously increases the reward
value. At the same time, when the maximum value of the boiler
inner wall temperature is close to the over-temperature value, that is,
when the safety margin ΔTP is small, a penalty should be given to
avoid this situation as much as possible, so the auxiliary task reward is

FIGURE 3 | Input and output variables of the boiler combustion system.

TABLE 1 | Parameters of the actor network and critic network.

Description Value

Maximum number of global updates 1200
Maximum number of updates for a thread 8000
Actor network learning rate 0.00001
Critic network learning rate 0.00001
Virtual environment model repeats 100
Thread rewards update discount factor 0.99
Global update frequency 5
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r3 �

50, if(|et|< 5),
5

e2t + 1
, if(|et|< 10),

−10, if(ΔTp < 5),
0, else.

(9)

So the final reward value for the boiler combustion system is.

r � r1 + r2 + r3. (10)

Simulation Experiment Research
Training Process
Taking the model of a 1000MW boiler combustion system as an
example, there are six layers of burners, six layers of primary air, 24
layers of secondary air, and eight layers of exhaust air, so n = 6, i = 6, j =
24, and k = 8, the rest of the set value and the range of the adjustment
amount are set according to the boiler design manual. In the neural
network structure, both the actor network and the critic network in the
algorithm are designed as a 9-layer fully connected neural network
structure. A total of 120 nodeswere present, the output layer contains 1
node, the input layer of the actor network contains state information,
and the output of the critic network, a total of 17 nodes were present,
the middle hidden layer is the same as the critic network, the output
layer has five nodes, and the output control amount is incremented.
The rest of the relevant training parameters are shown in the Table 1.

Figure 3 shows the changing trend of the algorithm learning
total reward value and each sub-item reward value, where r1 is the
continuous reward item, r2 is the control amount change rate
limit item, and r3 is the auxiliary task item. As the number of
learning increases, the total reward value of the system begins to
increase rapidly after 200 episodes, and the algorithm basically
converges around 600 episodes.

Simulation Experiment Under Deep Peak
Shaving Conditions
After the training is completed, the trained algorithm is used to
simulate the model under the condition of deep peak regulation.
The load variation range is 350–650 MW, and the steady-state
values of various indicators before and after training are observed.

As shown in Figure 4 that after the optimization, the
exhaust gas temperature of the boiler has decreased, and

FIGURE 4 | Change in optimized variables from 350 to 650 MW (“*”
represents effects before applying the method; “Δ” represents effects after
applying the method.).

TABLE 2 | Comparison of the boiler efficiency before and after optimization.

Power range/MW Boiler efficiency (before) Boiler
efficiency (after) (%)

300–400 91.55 91.89
400–500 92.32 92.44
500–600 92.45 92.76
600–700 92.88 92.92
700–800 93.12 93.22
800–1000 93.56 93.67
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the main steam temperature has increased compared with that
before the optimization, which indicates that the boiler
efficiency has been improved throughout the load range of
the simulation experiment, mainly because the adjustment
after optimization, the air distribution method reduces the
temperature of the inner wall of the furnace, which is about
15K lower than the maximum value of the optimized front
wall temperature, leaving a sufficient safety margin for
increasing the temperature of the main steam. The ratio of
heat absorption is more reasonable. At the same time, the
concentrations of CO and NOx have also decreased,
indicating that the combustion in the furnace is more
sufficient after optimization (Yang et al., 2019), and the
NOx concentration is reduced by means of staged air
distribution and oxygen-enriched combustion, which not
only improves the economy of the boiler combustion
system, but also improves the environmental performance.

As presented in Table 2, obviously the boiler efficiency after
optimization is larger than before. Considering the pollutant
emission constraints, the average efficiency of boiler is
increased by increasing the temperature of main steam and
reheat steam by improving the combustion quality.

CONCLUSION

This article studies the combustion optimization system under
deep peak shaving. Because the boiler combustion system has
complex characteristics such as nonlinearity and multi-
variables, this study proposed the DW-Dyna-A3C method

to study, train, and simulate the combustion system. The
DW-Dyna-A3C method is a reward evaluation system that
takes into account both the control and the controlled state so
that it can meet the requirements of multivariable nonlinear
system control.

The simulation results show that this method can effectively
improve the boiler efficiency, reduce pollutant emissions, and
obtain a better ratio effect under the working conditions of deep
peak regulation.
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