
Optimal scheduling of power
systems considering carbon
markets: Based on blockchain
theory and multi-objective
particle swarm optimization
algorithm

Dongfa Wang1, Fei Lan1, Huaqiang Shen1, Minghui Liu1 and
Zhenhua Sun2*
1State Grid Zhejiang Electric Power Co., Ltd., Hangzhou, China, 2School of Economics and
Management, Fuzhou University, Fuzhou, China

In the context of double carbon, it is an inevitable requirement for the low-

carbon power industry to take economic efficiency and low carbon into

consideration. This article introduces the carbon emission constraint into the

economic dispatching of the power system. Then, combined with the

blockchain theories, the methods of particle swarm optimization and multi-

objective particle swarm optimization (MOPSO) are employed to simulate the

economic and environmental scheduling of a power generation system based

on six thermal power units. Research shows that the constraint processing

approach is practical and effective, and it can firmly adhere to equality

requirements, which is superior to other algorithms’ constraint processing

methods; the algorithm is stable, and the global optimal solution can be

determined under different initial solutions. In the process of multi-objective

optimization, the solutions of POF obtained by using the slope method are

evenly distributed.
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1 Introduction

The energy crisis in the 1970s made all countries realize the importance of new

energy development. Under the background of the global energy transition, it is the

general trend to promote the diversified development of efficient and clean energy. On

22 September 2020, at the general debate of the 75th session of the United Nations

General Assembly, Chinese President Xi Jinping officially stated that China aims to

achieve a peak in carbon dioxide emissions by 2030 and achieve carbon neutrality by

2060. Since then, President Xi Jinping has stressed the significance of achieving carbon
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peak and carbon neutrality (referred to as the dual-carbon

target) in many important speeches and held a series of

important discussions on the principles and path for China

to achieve the dual-carbon target. Achieving carbon peak and

carbon neutrality is a broad and profound economic and social

transformation. It is a necessary requirement for ecological

progress and an urgent need for building a community with a

shared future for mankind. The energy industry is the largest

source of carbon emissions. To achieve the dual-carbon goal,

policy forces are needed to guide the energy industry to steadily

achieve low-carbon transformation. The carbon emission

trading market, also known as the carbon market, is an

important policy tool to achieve carbon emission reduction

targets. Since October 2011, China has carried out local pilot

projects for carbon emission trading in Beijing, Tianjin,

Shanghai, Chongqing, Hubei, Guangdong, Shenzhen, and

Fujian. On 16 July 2021, the national carbon market

officially launched trading, and the power generation

industry became the first industry to be included in the

national carbon market. A total of 2,162 key emitters in the

power generation industry were included in the first

implementation cycle, covering annual CO2 emissions of

more than 4.5 billion tons. China’s carbon market has

become the world’s largest in terms of greenhouse gas

emissions. Global experience shows that carbon markets can

promote energy sector optimization and carbon reduction.

Developing a low-carbon economy, accelerating the

adjustment of energy structure, and realizing the cleanness,

high efficiency, and low carbon of energy system have become

the consensus of all countries in the world (Lin et al., 2021).

Of the whole energy activities, the carbon emission of the

power industry accounts for about 41%. As the main force of

energy transformation and the pioneer of realizing the dual-

carbon goal, the power system is facing huge pressure of

emission reduction (Du et al., 2021). China’s coal-dominated

energy structure leads to pollutant emissions accounting for

more than 80% of the country’s total emissions. The coal-

dominated power structure of the power industry leads to its

CO2 emissions accounting for 49.1% of China’s carbon

emissions and 32.1% of the world’s carbon emissions

(Musa et al., 2018). Facing the severe pressure of carbon

emission reduction, realizing the green development of the

power sector is crucial to the green transformation of the

whole energy sector.

The premise of economic dispatching of power systems is to

meet the safety operation of the power grid and provide high-

quality electric energy for users. On this premise, energy and

power generation equipment can be rationally utilized, and the

system operation economy is considered, that is, continuous

power supply for users at the lowest power generation cost

Vansia and Dhodiya, (2021). Power system economic

scheduling is a multi-constrained, nonlinear, non-convex, and

multi-dimensional hybrid optimization problem. The traditional

economic dispatching of a power system needs to consider the

expected output power and constraints of the power system and

use the optimal dispatching strategy to allocate the output power

of the generator set with the goal of minimizing the generation

cost or fuel cost. Due to the particularity of the electric power

system, electric energy production will cause environmental

problems, which in turn bring new challenges to economic

dispatching. Therefore, in the process of power system

operation, both energy and environmental issues should be

considered. It is an important challenge for economic

dispatching to effectively ensure environmental quality while

satisfying economic dispatching, that is, to take environmental

index and economic cost as the dual objectives of optimal

dispatching. How to establish an effective model for the

dynamic nature of environmental economic dispatching,

adopt a reasonable algorithm to solve the model, improve the

convergence speed and operation efficiency of the algorithm, and

get better scheduling optimization results are the key points of

innovation and improvement of dynamic environmental

economic dispatching in power system. The essence of the

power system environmental economic scheduling problem is

to optimize a multi-objective optimization problem that includes

both equality and inequality constraints. In the case of a new

energy grid connection, the optimal environmental economic

scheduling problem becomes more complex, which is manifested

as a multi-objective optimization problem in multi-dimensional

space and multi-variables. It is difficult to obtain the global

optimal solution of a multi-objective optimization model in

the process of optimizing an objective function.

A blockchain, as the name implies, is a chain consisting of

many partitions. Different partitions store different amounts

of information and form a chain according to the

chronological order of information generation. All the

servers available in the system contain all the information

in this chain, and for the blockchain to be secure, just one

server in the entire system needs to be able to function

properly. In the blockchain system, these servers are also

called nodes, and their role is to provide enough memory and

computing power to support the entire blockchain system

run. Two prerequisites must be met to modify the

information contained in the blockchain. First, there

should be more than half of the nodes agreeing to the

modification operation. Second, this modification must

also overwrite the same information in all nodes to

maintain consistency. However, these nodes are generally

controlled and held by different subjects, so it is not an easy

task to tamper with the information in the blockchain. Two

core features of blockchain, namely, that data are not easily

tampered with and that they are decentralized, set it apart

from traditional networks. The information recorded by

blockchain is more reliable, helping to solve the problem

of trust in human interaction.

The main structure of this article is as follows:
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(1) Section 3 sets the problem formulation of the environmental

and economic dispatching and introduces the Pareto optimal

solution of multi-objective optimization.

(2) Section 4 shows the particle swarm algorithm, namely, the

basic particle swarm optimization and multi-objective

particle swarm optimization.

(3) Section 5 uses simulation data to perform economic and

environmental scheduling for the system; the single-

objective PSO and the multi-objective particle swarm

optimization algorithms are utilized, and the Pareto

optimum frontier boundary solutions are obtained,

namely, the solution with the lowest fuel cost and the

lowest pollutant gas emissions.

2 Literature review

It is the key to the sustainable development of the power

industry that how to reasonably consider the constraints of

carbon emission in power generation dispatching and realize

low carbon on the basis of taking into account the economy, and

it is also an important starting point for China to achieve carbon

peak and carbon neutralization (Kwakwa, 2021). Therefore, in

the case of electric energy system scheduling, the economic cost

and environmental impact should be considered at the same time

from the single target economy to the multi-target environment

economy scheduling change.

Environmental and economic dispatching (EED)

optimization problem is a non-convex, nonlinear, high-

dimensional, and multi-objective optimization problem with

multiple constraints (Liu et al., 2018; Cheng and Yao, 2021).

Traditional mathematical methods are slow and prone to

infeasible solutions. On the contrary, an intelligent

optimization algorithm has certain advantages in multi-

objective, nonlinear, and high-dimensional optimization

problems (Farag et al., 1995; Kennedy, 2003) and is widely

used in environmental/economic scheduling problems (Sinha

et al., 2003). Singh et al. (2018) proposed a chaotic differential

evolutionary and Powell’s pattern search (CDEPS) algorithm to

solve the multi-objective thermal power load dispatch (MTPLD)

problem.

The information security risk of power system economic

dispatching is very serious, and its data security under network

attack is also very important. In order to ensure the data security

of distributed economic scheduling under network attack,

blockchain technology is one of the research directions.

Blockchain is the core supporting technology of digital

cryptocurrency (Liu and Chen, 2021), with five characteristics

of decentralized storage, immutable, traceable, secure, and

programmable (Bao et al., 2020), which contributes to the

establishment of a data protection framework for the

communication network of the power system (Liang et al.,

2019). As an emerging technology, scholars have carried out

relevant studies on various aspects of power systems based on the

characteristics of blockchain technology, such as power

transaction blocking (Su et al., 2022), control of distributed

energy under demand response (Claudia et al., 2018),

distributed energy storage control (Baza et al., 2019), energy

management of virtual power plants, consumer point-to-point

transaction (Paudel et al., 2019), and electric vehicle energy

transaction (Wang et al., 2019). It can be seen that the

application of blockchain technology in power systems mainly

focuses on power transactions, and the application of blockchain

technology in power system economic dispatching data security

has not caused enough attention. However, it is worth noting that

with the rapid development of distributed control systems,

network attacks lead to frequent physical information

accidents. As a distributed, safe, and reliable database,

blockchain technology has better practical significance for the

safe and stable operation of smart grids in the future. Liang et al.

(2019) proposed a management framework that uses the elliptic

curve encryption algorithm in blockchain technology to ensure

the reliability of energy dispatch data, so as to strengthen the

information security of the power system. Claudia et al. (2018)

studied the application of blockchain in distributed energy

consumption for demand response in smart grids. A

distributed ledger based on blockchain collects energy

consumption information from smart devices in a way that is

difficult to tamper with and balances energy demand through

smart contracts. The results show that the distributed demand-

side management system based on blockchain has high tracking

precision for demand response signals. Qu et al. (2021) designed

a data protection framework based on an alliance chain, which

uses distributed storage, traceability, and hard-to-tamper

characteristics of blockchain technology to solve the problem

that artificial intelligence is vulnerable to network attacks and

privacy disclosure, thus increasing the security and credibility of

data. Many practical problems often have multiple nonlinear

objective functions. In the process of objective optimization,

these objective functions need to be processed at the same

time, that is, the solution should satisfy multiple objective

functions at the same time. However, these objective functions

are often in conflict with each other. This kind of problem is

called a multi-objective optimization problem. Multi-objective

optimization problems can be solved by different algorithms.

Vansia and Dhodiya (2021) presented an evolutionary approach-

based solution to solve the multi-objective transportation-p-

facility location problem by using a genetic algorithm (GA),

non-dominated sorting genetic algorithm (NSGA-II and NSGA-

III), and modified self-adaptive multi-population elitism Jaya

algorithm (SAMPE JA). Xu et al. (2021) use a multi-objective

learning backtracking search algorithm (MOLBSA) to solve the

environmental/economic dispatch (EED) problem.

Particle swarm optimization (PSO) algorithm has been used

in reactive power optimization, photoelectric grid connection,

load prediction, and other fields due to its advantages of fewer

Frontiers in Energy Research frontiersin.org03

Wang et al. 10.3389/fenrg.2022.953873

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.953873


parameter settings, fast convergence, and simple implementation

(Kennedy J., 2003; Zhang et al., 2019). On this basis, a cross-

particle swarm algorithm is proposed, which improves the

crossover probability of parameter adaptive control, and its

convergence speed is better than other algorithms (Zhou

et al., 2020). Goudarzi et al. (2020) proposed a hybrid

algorithm grounded on an improved genetic algorithm and an

improved PSO algorithm to solve the optimization problem.

Abido (2009) and Niknam and Doagou-Mojarrad (2012)

applied the MOPSO algorithm to schedule power system

environmental and economic elements. The MOPSO method

must redefine the population’s global optimal solution and

individual ideal solution. Different literature studies have

given different definition methods, but there is no unified

definition method at present. Many practical application

problems can be attributed to multi-objective optimization

problems. At present, the research on the algorithm for this

kind of problem is mainly divided into Pareto dominance

relation, decomposition strategy (Liu et al., 2014; Li and

Zhang, 2015; Li et al., 2018a), performance evaluation index

(Schutze et al., 2012; Brockhoff et al., 2015; Díaz-Manríquez

et al., 2016; Li et al., 2018b), reference point (Deb and Jain, 2014;

Cheng et al., 2016; Figueiredo et al., 2016; Liu et al., 2017),

reduction of the number of targets (Bandyopadhyay and

Mukherjee, 2015; Guo et al., 2016; Yuan et al., 2018), and

coevolution strategy (Zhan et al., 2013; Chen et al., 2019; Zhou

et al., 2020). The high-dimensional multi-objective

optimization algorithm based on the Pareto dominance

relation can reduce the Pareto frontier area by combining

preference information in the search process (Li et al.,

2018c; Qi et al., 2018). The selection pressure of the

algorithm can be enhanced through the relaxed Pareto

dominance relation so that the advantages and disadvantages

of some non-dominant individuals can be compared and the

search ability of the algorithm can be enhanced, such as

γ-domination (Singh et al., 2018), ε-domination (Hernandez-

Diaz et al., 2007), α-domination (Yuan et al., 2016), fuzzy

domination (He et al., 2014), and lattice domination (Yang

et al., 2013).

According to the connotation of a low-carbon energy

system, the carbon constraint based on particle swarm

optimization is introduced into the economic dispatching of

the power system in this article, so as to fully explore how to

give consideration to the economy and low carbon of power

systems under the dual-carbon goal and promote the low-

carbon development of energy system. Based on this model,

the power generation system of six thermal power units is

simulated. When solving with the multi-objective algorithm,

the balance between the two objectives is coordinated to make

all objective functions as optimal as possible, and the slope

algorithm is used to find the optimal POF.

3 Problem formulation and the pareto
optimal solution

The economic dispatching of power system is to solve the

dispatching scheme to minimize the cost of power generation or

fuel under the condition of satisfying the balance of power supply

and demand and the upper and lower limits of unit output.

However, in the process of power generation, the thermal

power unit inevitably emits pollution gases such as sulfur oxide,

nitrogen oxide, dioxygen, and carbureted carbon into the

atmosphere. With the enhancement of people’s awareness of

environmental protection, it has become an important goal of the

power system to limit the emission of polluting gases. Power

system from the original single objective economic dispatching to

multi-objective environment/economic dispatching. Compared

with other mitigation measures, EED is favored by researchers

because of its low investment and quick results. Environmental

and economic dispatching is a scheduling technique that

concurrently optimizes the two objective functions of fuel cost

and pollutant gas emission while maintaining power supply and

demand balance and the unit output limit. The mathematical

expression of environmental/economic dispatching is as follows.

3.1 The objective function

3.1.1 Economic dispatch function
Fuel cost is the objective function of the economic

dispatching model. The fuel cost curve for each generator set

is often described as a polynomial function, and the system’s

overall fuel cost can be expressed as follows:

TC(Q) � ∑
N

i�1
(aiQ2

i + biQi + ci), (1)

where N indicates the quantity of thermal power unit and ai, bi,

and ci denote a set of thermal power unit i’s cost coefficients.

Also, the actual total output of the thermal power unit i is

denoted as Qi, and Q denotes the active output vector of the

system thermal power unit, which can be expressed as follows:

Q � [Q1, Q2, . . . , QN]. (2)

3.1.2 Environment dispatch function
The objective function of the environmental scheduling

function is the emission of pollutant gas. Consider power

generation units, which produce a variety of polluting gases

throughout the power generation process, and each polluting

gas’s emission may be individually created to have a functional

relationship with the thermal power unit’s active power output.

However, for the convenience of calculation, we adopted the

comprehensive emission model of pollutant gases, and the total
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emission of pollutant gases in the system is as follows (Peng and

Sun, 2009; Said et al., 2010):

G(Q) � ∑
N

i�1
[10−2(diQ

2
i + eiQi + fi) + gie

riQi , (3)

where di, ei, fi, gi, and ri are a set of polluting-gas-emission

coefficients of the thermal power unit i.

3.2 The constraint function

3.2.1 Output constraint of thermal power unit

Qimin ≤Qi ≤Qimax, (4)
where Qimin and Qimax represent the lowest and highest active

output levels of the thermal power unit i, respectively.

3.2.2 Power balance constraint

∑
N

i�1
Qi − QD � 0, (5)

Where QD denotes the system’s total load requirements.

3.3 Pareto optimal solution of multi-
objective optimization

Since multi-objective optimization is a multi-objective

optimization problem, the objectives are prone to collision,

making the solution non-unique, that is, no solution can

satisfy all constraints and allow all objectives to reach their

optimal values at the same time. Therefore, in multi-objective

optimization problems, only non-inferior solutions are generally

solved. The efficient or Pareto optimal solution of a multi-

objective optimization problem is also known as the Pareto

optimal solution, and the set containing all Pareto optimal

solutions is called a Pareto optimal boundary (POF).

4 Particle swarm algorithm

4.1 Basic particle swarm optimization

The particle swarm optimization (PSO) algorithm is a

stochastic optimization algorithm based on cluster intelligence,

which was first proposed by Kennedy and Eberhart in the 1990s.

Particle swarm optimization (PSO) is a heuristic method that

mimics bird foraging behavior. It leverages particle collaboration

and competition for intelligent guiding optimization. The idea is

that each solution to the basic optimization problem is called a

particle. A fit function is defined to measure the superiority of

each particle solution. Each particle travels in groups according

to the “flight experience” of itself and other particles, thus

achieving the purpose of searching for the optimal solution

from the whole space. The particle swarm optimization

algorithm is a new evolutionary technology based on swarm

intelligence that shows strong advantages in solving non-

continuous, non-differentiable, nonlinear, ill-conditioned

optimization problems and combinatorial optimization

problems that are difficult to solve by classical optimization

algorithms, resulting in widespread attention from the

international academic and engineering communities.

Assume there are m particles in a population, each with an

n-dimensional variable, accordingly, the location and movement

speed of the particle i in the iteration k are Xk
i �

[xk
i,1, x

k
i,2, . . . , x

k
i,n] and Vk

i � [vki,1, vki,2, . . . , vki,n]. By calculating

the optimum value of the objective function, the best position

of each particle is determined to be Pk
i � [pk

i,1, p
k
i,2, . . . , p

k
i,n], and

the optimal location of the population isGk
i � [gk

i,1, g
k
i,2, . . . , g

k
i,n].

the velocity and position of the particle i in the next iteration will

be determined as follows:

vk+1i,j � ωvki,j + c1r1 · (pk
i,j − xk

i,j) + c2r2 · (gk
i,j − xk

i,j),
xk+1
i,j � xk

i,j + vk+1i,j , j � 1, 2, . . . , n,
(6)

where r1 and r2 are random numbers that obey uniform

distribution in the interval [0,1]. Both c1 and c2 are learning

parameters and are constants. The inertial weight, ω, is employed

to find a balance between the particle’s global and local

optimization capabilities.

The value of ω is calculated as follows:

ω � ωmax − ωmax − ωmin

K
k, (7)

TABLE 1 Data of the six generators.

Thermal power
unit

ai bi ci Qi max Qi min

1 0.05 10 10 150 5

2 0.06 7.5 10 150 5

3 0.02 9 20 150 5

4 0.03 5 10 150 5

5 0.02 9 20 150 5

6 0.05 7.5 10 150 5

Thermal power unit di ei fi gi ri

1 0.003245 −0.2777 20.455 0.001 0.02857

2 0.002819 −0.30235 12.715 0.0025 0.03333

3 0.002293 −0.2547 21.29 0.000005 0.08

4 0.00169 −0.1775 26.63 0.01 0.02

5 0.002293 −0.2547 21.29 0.000005 0.08

6 0.002576 −0.27775 30.655 0.00005 0.06667
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where K is the maximum number of iterations and k is the

current iteration number.

The velocity of the particle i in all dimensions should satisfy

−vjmax ≤ vi,j ≤ vjmax, and vjmax is the maximum flight speed of

the particle i in dimension space j. Generally, v takes 10%–20% of

the j-dimensional variable search space (Goldberg, 1989;

Hemamalini and Simon, 2008).

One of the most important aspects of using the PSO

algorithm to address constraint optimization problems is how

to cope with the constraints. The PSO algorithm’s approaches for

coping with restrictions can be classified into two categories,

namely, the penalty function method and design-specific

constraint correction factors (Zhang et al., 2019; Zhang and

Lu, 2019; Xin-gang et al., 2020).

4.2 Multi-objective particle swarm
optimization

4.2.1 Basic principle of multi-objective particle
swarm optimization

The multi-objective particle swarm optimization algorithm

can solve the problem of multiple conflicting objectives of

granularity distribution, and then obtain a set of Pareto

optimal solutions. In order to continuously update the Pareto

optimal solutions generated in the iteration, this study uses

archiving technology to set the previous Pareto optimum

solution and the global Pareto optimal solution set in the

iteration process. Pareto solutions that are globally optimal are

supposed to contain all Pareto optimal solutions created during

the current iteration.

4.2.2 Main algorithm
The following is the MOPSO algorithm.

1 Set up the population POP:

(a) for i � 0 to MAX (MAX represent the number of particles*)

(b) initialize POP[i].

2 Set each particle’s initial speed:

(a) for i � 0 to MAX

(b) VEL[i] � 0.

3 Calculate the value of each particle in POP.

4 Keep track of where non-dominant vector particles are in the

repository REP.

5 Create hypercubes from the previously searched search space

and arrange the particles into coordinate systems, with each

particle’s coordinates defined by the goal function’s value.

6 Initialize the memory of each particle:

(a) for i � 0 to MAX

(b) PBESTS[i] � POP[i].
7 While the maximum number of cycles has not yet been

attained, we take the following steps.

(a)Calculate the speed of each particle:

VEL[i] � W × VEL[i] + R1 × (PBESTS[i] − POP[i])
+ R2 × (REP[h] − POP[i]), (8)

where W equals 0.4; R1 and R2 are random numbers from 0 to

1; REP[h] is a value retrieved from the repository; PBESTS[i]
represents the particle i’s optimal position; REP[h] is a value
retrieved from the repository. The index h is chosen based on

the following: we give hypercubes with more than one particle

a fitness, which is obtained by dividing any number x> 1 by

the number of particles they contain. We then use these fitness

values to apply a roulette wheel selection to select the

corresponding particle for the hypercube. Then, a random

hypercube particle after selecting the hypercube. POP[i] is the
current value of the particle i.

(b) Calculate the new particle positions by adding the speed

from the previous step:

POP[i] � POP[i] + VEL[i]. (9)

(c) Keep particles within the search space and prevent them from

escaping (avoid generating solution space that is not based on a

valid search). When a decision variable exceeds its bounds, we

TABLE 2 Economic and environmental scheduling results with single-objective PSO algorithm.

Thermal power
unit

Economic dispatch Environmental dispatch

Q* Fuel cost Pollutant emission Q* Fuel cost Pollutant emission

1 10.88 124.72 0.18 40.51 497.15 0.15

2 29.77 286.45 0.07 45.70 478.06 0.06

3 52.28 545.18 0.14 53.67 560.64 0.14

4 102.04 832.56 0.34 38.73 248.65 0.24

5 52.79 550.85 0.14 54.09 565.32 0.14

6 36.24 347.47 0.24 51.29 526.21 0.23

Summation 284.00 2,687.23 1.11 283.99 2,876.03 0.97
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force it to take its corresponding value bounds (upper or lower

bounds) and velocity times (−1) in the other direction.

(d) Count each particle in POP.

(e) In terms of particle positions in the hypercube, update the

contents of REP. All current non-dominant locations will be

inserted into the repository as part of this release. In this

process, every dominant position in the repository is

eliminated. Because the memory’s size is limited, we use a

previously prepared second criterion. Since the size of

memory is finite, when memory is filled, we use the

second rule we have prepared previously, that is, particles

in the target space’s less populous areas take precedence over

particles in the more inhabited places (Coello et al., 2004).

(f) When the particle’s current location is better than the one

stored in memory, the particle’s location is updated.

PBESTS[i] � POP[i]. (10)

Pareto dominance is applied to formulate the standard, which

determines what position to keep frommemory. This means that if

the current location is controlled by a location in memory, that

location will remain in memory. Otherwise, the present location

takes the place of thememory location. Also, if any two of them are

unaffected by each other, we will pick one at random.

(g) Increment cycle counter.

8 End while.

5 Case analysis

The simulation is done in MATLAB, and network loss in the

electric energy balancing constraint is not taken into account.

There are six generating sets. The system’s overall load is

284 MW. Table 1 provides the power maximum and lower

limitations, fuel cost coefficient, and pollutant emission

coefficient for each generator set.

5.1 Single-objective optimization

In order to carry out economic and environmental

scheduling of the system, the single-objective PSO

algorithm was adopted to obtain two Pareto optimal

boundary solutions, namely, the solution with the lowest

fuel cost and the solution with the lowest pollution gas

emissions, so as to judge whether the MOPSO algorithm

has excellent distribution characteristics for POF solutions

(Zhang et al., 2019).

The population POP is set to 60 in the single-objective PSO,

and the learning elements c1 and c2 are both equal to 2. The

maximum number of iterations is 100. Table 2 shows the best

solution.

By comparing the economic and environmental scheduling

results in Table 2, there is little difference between the optimal

fuel cost and pollutant emissions, and there is almost no network

damage, which proves that the algorithm proposed in this article

has good global search ability.

5.2 Multi-objective optimal scheduling

The multi-objective optimization uses 60 particles per

generation, 1,000 iterations, and 30 solutions on the Pareto

optimal front. The case was optimized with MOPSO to obtain

30 populations. The slope method is used to obtain the boundary

solution of POF as shown in Table 3. The two boundary points of

POF correspond to the optimal values of economic and

environmental scheduling, respectively.

By comparing the results in Table 3 with the single-objective

optimization results in Table 2, it can be seen that there is little

difference, indicating that the multi-objective algorithm

proposed in this article can find better boundary solutions

under various conditions, and the obtained POF has a wide

distribution range.

TABLE 3 Boundary solution of POF.

Thermal power unit Economic dispatch Environmental dispatch

1 11.1649 41.1786

2 30.2682 46.4108

3 52.0618 53.4319

4 101.7981 38.6051

5 53.2231 48.4839

6 35.4839 50.9397

Fuel costs 2,687.25 2,879.261

Pollutant emission 1.110992 0.97101
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6 Conclusion

This article introduces multi-objective particle swarm

optimization and applies it to environmental economic power

system scheduling. Using MATLAB software, the MOPSO

algorithm was used to simulate the economic and

environmental scheduling difficulties of a thermal power

system, and the following results were obtained.

(1) The constraint processing approach is practicable and

effective, and it can adhere to stringent equality

restrictions, which is superior to other constraint

processing methods.

(2) The method has good stability and can identify the global

optimal solution under a certain range of start-up

conditions. In the process of multi-objective optimization,

the POF solutions generated by the slope method are evenly

distributed.

(3) The Pareto optimal frontier can be quantitatively analyzed,

and the algorithm can be applied to solve a series of complex

grid-connected power system environmental and economic

scheduling problems.

(4) By comparing the economic and environmental

scheduling results, there is little difference in the

optimal fuel costs and the pollutant emission, and there

is almost no network damage, which shows the good

global search capability of the algorithm proposed in

this article.

In the process of power system dispatching, there may be

some practical combination problems such as standby load

and unit maintenance, which will greatly increase the

difficulty of solving the model. Therefore, exploring a more

effective and accurate algorithm is an important problem that

needs to be solved further. In addition, another measure to

achieve energy conservation and emission reduction is to

vigorously develop clean energy. In view of this, the

dynamic emission economic dispatch model considering

the grid connection of renewable energy such as

hydropower, wind power, and solar power is also a

potential important research direction in the future.
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