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To achieve carbon neutrality in electricity, measures such as increasing the share

of renewable energy sources such as wind power and achieving more accurate

and faster wind power forecasting, and low carbon retrofitting of thermal power

units are all important to achieve the goal. Firstly, the GRU prediction algorithm

was used to forecast wind power, which performed well in terms of prediction

accuracy andmodel training speed. Then, we continue to fully utilize the source-

side low-carbon characteristics by installing flue gas bypass systems and liquid

storage in carbon capture plants to form an integrated carbon capture plant

operation, thereby reducing carbon emissions and the proportion of abandoned

wind. Secondly, a three-stage low carbon economic dispatch model is

established to reduce wind abandonment by combining wind power forecasts

on different time scales. Finally, a case study was carried out using a modified

IEEE-39 node system. The results show that the proposed three-stage integrated

dispatching method can make full use of wind energy and achieve the goal of

economic dispatching of the power system.
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1 Introduction

Currently, renewable energy sources such as wind power are gradually replacing

traditional fossil energy sources (Duan et al., 2021). Unlike other renewable energy

sources, wind power generation is random and volatile, and has certain anti-peak

characteristics. The large-scale grid connection of wind power increases the pressure

on the system for peaking, and if necessary, some wind power needs to be abandoned to

ensure system safety. The problem of wasted wind power is no longer negligible. The main

causes of wind power wastage are shifted between generation and load peaks, the low

accuracy of wind power forecasts, and the insufficient adjustment rate of thermal power

units (Huang et al., 2021; Han et al., 2022; Zhu et al., 2022). Highly accurate wind power

forecasting can be achieved through artificial intelligence algorithms. The problem of the

adjusting rate of thermal power units can be solved by introducing integrated carbon
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capture plants. In conclusion, wind power can be absorbed

through a reasonable dispatch control strategy, combined with

multi-timescale wind power forecasting (Cheng et al., 2022; Tian

et al., 2022; Wei et al., 2022).

At present, wind power forecasting focuses on the study of

forecast errors and multi-time scale forecasting, and is used to

improve the utilization-ratio of wind power by matching it with

dispatch schedules on different timescales (Aslam and Albassam,

2022; Chen W et al., 2021). The accuracy of wind power

forecasting improves as the time scale is shortened, and it is

relevant that multi-timescale forecasting can correct deviations

in long time scales. The wind power forecasts currently used in

power system dispatching are mainly long-timescale for day-ahead

dispatching. At the same time, there has been a lot of research on

traditional and artificial intelligence algorithms to effectively deal

with the volatility and randomness of wind power and improve its

accuracy (Li et al., 2021; Sun et al., 2021). Traditional algorithms

include statistical models such as autoregressive integrated moving

average (ARIMA), which uses statistical methods to establish the

relationship between historical and forecast values. However,

traditional algorithms are poor at predicting volatility. Artificial

intelligence algorithms include machine learning algorithms and

neural network algorithms (Sun et al., 2021; Sahra et al., 2022).

Machine learning algorithms such as least squares support vector

machines (LSSVM) and support vector regression (SVR). Neural

network algorithms such as convolutional neural network (CNN),

recurrent neural network (RNN), long short-term memory

(LSTM), and gated recurrent unit (GRU), of which RNN,

LSTM, and GRU are recurrent neural networks, can store

sequence history information and combine it with current

input values, which are calculated and then continued into

subsequent units (Tanveer and Zhang 2022). Recurrent neural

networks are specifically used for time series, which can effectively

improve prediction accuracy and reduce model training time.

Due to its time-series nature, LSTM and GRU have great

advantages in processing wind power data. For power prediction

of multiple wind turbines, CNN can be used to extract the spatial

features of the data first, and then the temporal characteristics of the

power series can be established by LSTM to achieve the power

prediction of wind turbines (Chen et al., 2021a).When the historical

data is few, the pre-trained model can be fine-tuned in the target

domain with small data by transfer learning (TL) to make full use of

the source domain data and improve the performance of the model

on the target domain data. GRU is then used to extract temporal

feature information from wind power and meteorological data

(Chen et al., 2021b). For ultra-short-term wind power prediction,

the key features of the input data can be extracted by CNN and the

dynamic changes of the features proposed by CNN can be learned

by bi-directional modeling using bidirectional gated recurrent unit

(Bi-GRU) network (Meng et al., 2022). In this paper, the GRU is

used to predict wind power as preparatory data for input into a

dispatch model containing carbon capture technology to achieve

integrated economic dispatch of the power system.

After the multi-timescale wind power forecasts have been

made, they are fed into the dispatching model. Wind

abandonment can be improved by considering regulation

devices in the dispatch plan. Typical regulation devices are

storage devices, high energy-carrying devices, pumped storage

plants, etc. Conditioning devices are effective in improving wind

power utilization-ratio, but energy storage devices have

significant energy losses. High energy-carrying devices are

often difficult to create links with wind farms due to the

constraints of where the resource is located (Xiang et al.,

2021; Zhang Z et al., 2022). Carbon capture devices, on the

other hand, are converted from traditional thermal power plants

and do not have geographical restrictions (Gao et al., 2021;

Huang et al., 2022; Xie et al., 2022).

Today, coal is still the dominant fuel, and carbon capture and

storage (CCS) is an important technology to combat global

climate change by allowing the continued use of fossil fuels

and significantly reducing CO2 emissions. However, there are

potential risks associated with carbon storage and CCS is

currently a high investment. CO2 transport and storage

should therefore be given more consideration where coal-fired

power plants have a large installed capacity and are densely

distributed. The investment risk can be solved by using better

capture solvents, better boiler systems, and more efficient

turbines, which can effectively reduce costs and energy losses

(Fan et al., 2018; Fan et al., 2021).

The dispatch mathematical model in this paper is divided

into optimization objectives and constraints. The optimization

objective includes the start-up and shut-down and coal

consumption costs of thermal power units, the cost of wind

abandonment penalties, the cost of carbon trading, the

depreciation cost of carbon capture plants, and the cost of

solvent losses in the carbon capture process. The CCS

technology includes carbon capture, transport, and storage.

However, in general, the cost of the carbon capture process is

the largest and changes with the capture method, so this paper

focuses on the cost of carbon capture (Fan et al., 2019).

Constraints include power balance constraints, wind power

output constraints, thermal unit output constraints, thermal

unit climbing constraints, thermal unit start/stop constraints,

and integrated carbon capture plant operation constraints.

The dispatch model in this paper includes an integrated

carbon capture plant. Carbon capture and storage is an

important technology for decarbonization (Qian et al., 2020;

Liu et al., 2022; Nie et al., 2022). While thermal power is still the

dominant energy source, the addition of carbon capture

equipment to conventional thermal power plants can increase

system operational flexibility while achieving low-carbon and

effectively improving wind power utilization (Chen et al., 2021;

Zhang G et al., 2022). Carbon capture plants have the advantage

of regulating peak load curves, making them an ideal source of

power to complement wind power. However, current research

has mainly used split-flow carbon capture plants, where the
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CO2 absorption process is coupled with the CO2 resolution

process, which does not allow for energy time-shifting, resulting

in an increase in carbon capture energy consumption with

increasing thermal power plant output, which is not

conducive to achieving economics. The integrated carbon

capture plant, however, introduces a liquid storage type on

top of the split-flow type, which enables the decoupling of the

CO2 absorption process from the CO2 resolution process and

makes the system more flexible and economical to operate (Jin

et al., 2021; Xing et al., 2021).

This paper first uses LSTMandGRU to forecast wind power in

three dimensions (1h, 15min, and 5min), with GRU performing

better in terms of both prediction accuracy and model training

speed. A three-stage (day-ahead, intra-day, and dynamic)

economic dispatch model for power systems with integrated

carbon capture plants is then constructed, with wind power

forecasts as inputs to the dispatch model, and each time scale

corresponding to the other. The dispatching results show that the

proposed three-stage integrated dispatching model can make full

use of wind energy and achieve the goal of low-carbon economic

dispatch. Section 2 presents the low-carbon mechanism analysis,

Section 3 introduces the principles of the forecasting algorithm and

the construction of the three-stage dispatch model, and Section 4

presents the case study validation and analysis.

The main contributions of this paper are as follows:

1) Combining wind power forecasting with power system

dispatch, more accurate wind power forecasting accuracy

will facilitate optimal system dispatch. This is reflected in

the reduction of wind power waste and the economy of

dispatching costs.

2) A combination of split-flow and liquid storage carbon capture

technology has been constructed, which is based on the

transformation of the original thermal power plant and

does not have geographical restrictions. At the same time,

the addition of liquid storage carbon capture enables the

decoupling of CO2 absorption and extraction processes,

making system operation more flexible.

3) Existing research mostly focuses on day-ahead dispatching.

This paper combines day-ahead, intra-day, and dynamic

stages, to form a three-stage dispatching model, which can

improve the system energy structure and reduce wind

abandonment and load loss.

2 operational mechanisms that take
into account multi-timescale wind
power projections and the low
carbon characteristics of carbon
capture plants

A carbon capture plant is a traditional thermal power plant

with a flue gas bypass system or solution storage to achieve either

split-flow carbon capture or liquid storage carbon capture, while

a combination of the two forms of carbon capture results in an

integrated carbon capture plant.

Carbon capture and storage (CCS) is an important way to

achieve low carbon development in the power industry. It

consists of three components: carbon capture, transport, and

storage, of which the capture process is closely linked to the

power plant. By converting a traditional thermal power plant into

a carbon capture plant, a large amount of CO2 is separated from

the flue gas emitted by the plant and processed through a series of

processes to form a high concentration of CO2, which is

eventually isolated from the atmosphere through geological

storage and deep-sea storage.

CCS, as one of the key measures for CO2 reduction, is

considered to be the most promising technology for

development. Numerous studies have reported that CCS

technology has an important contribution to make to the

global goal of controlling temperature rise. In addition to

this, CCS technology can not only improve the recovery of

conventional energy but also facilitate the development and

utilization ratio of unconventional energy and mineral

resources. Considering the irreversible trend of the global

low-carbon energy transition, accelerating the research and

implementation of CCS technology is an inevitable choice to

support global energy security, which is conducive to the

rational allocation of energy, promoting the efficient use of

resources, and effectively solving the bottleneck problem of

regional development. At the same time, CCS technology can

turn waste into treasure, promote the formation of new

economic points, and inject vitality into the development of

the market economy. Although CCS is an important way to

reduce carbon dioxide emissions in the future, CCS projects

still have problems such as large investment, high energy

consumption and uncertain risks, and some of the key

technologies are still being worked out and solved, making

it difficult to play a large role in a short period. Overall, it is

still at the stage of research and development and

implementation, and there is still a gap between it and

large-scale promotion, which requires continued in-depth

research.

Carbon capture is divided into post-combustion, pre-

combustion and oxygen-enriched combustion carbon capture.

Post-combustion capture is the most mature technology and is

widely used. This paper uses post-combustion carbon capture

technology.

An integrated carbon capture plant can respond to system

demand for active CO2 emissions, but can also transfer carbon

capture consumption from peak load times to valley times, and

absorb carbon capture energy during valley times. This

improves dispatch decision flexibility while relieving

operational pressure at peak load times. An integrated

carbon capture plant can improve wind power utilization-

ratio, but can also achieve a time-shift of carbon capture
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energy consumption, enabling low carbon economic operation

of the system.

The transfer of energy consumption for carbon capture is

achieved by the amount of fluid-rich and fluid-poor storage.

The process is that when the system energy consumption

increases at a certain time, the carbon capture will also be

intensified and the carbon capture energy consumption will

increase. At this point, the carbon capture rich-tank will start

to store CO2 and not resolve it until the load is low. In

summary, a liquid storage carbon capture plant can divert

carbon capture energy from peak loads and increase net

system output.

Figure 1 shows the internal schematic of an integrated

carbon capture plant. Post-combustion carbon capture in

thermal power plants consists of CO2 separation and

CO2 compression. Firstly, the processed flue gas is fed into

an absorption tower containing monoethanolamine (MEA)

solvent. Under certain operating conditions the MEA

absorbs the CO2 in the flue gas to form a rich liquid

containing CO2, while the rest of the flue gas (mainly

O2 and N2) is discharged directly into the atmosphere

through the top of the tower. The rich liquid is then

pumped into the regeneration tower, where the operating

conditions are changed to achieve CO2 resolution and MEA

solvent regeneration, with the resolved CO2 being compressed

and stored, and the lean liquid from the regeneration tower

being returned to the absorption tower to complete the

recycling of the solution.

The MEA solution has a strong alkaline and is therefore

often used as an absorbent for acidic gases such as CO2 and is

widely used in the absorption of CO2 in coal-fired power plants.

The MEA solution reacts rapidly with CO2 at 20–50°C to

produce a more stable carbamate, which removes CO2 from

the flue gas. The MEA solution hardly reacts with other gases in

the flue gas. When the temperature of the MEA solution is

raised to 105°C or higher, the carbamate can thermally

decompose, thus regenerating the MEA solvent and releasing

the CO2.

The reaction equation of MEA with CO2 is:

H2O +MEAH+#MEA +H3O
+

2H2O#H3O
+ +OH−

HCO−
3 +H2O#H3O

+ + CO2−
3

CO2 +OH− → HCO−
3

HCO−
3 → CO2 +OH−

MEA + CO2 +H2O → MEACOO− +H3O
+

MEACOO− +H3O
+ → MEA +H2O + CO2

(1)

The net output of a carbon capture plant needs to reduce the

carbon capture energy consumption, which is divided into

operational energy and fixed energy consumption. The energy

used to resolve CO2 in the carbon capture process is much

greater than the energy used to absorb it. Thus, the mathematical

FIGURE 1
Internal schematic of an integrated carbon capture plant.
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model of a carbon capture plant, considering only the energy

consumption for resolution and compression, is as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

EGi,t � egiPGi,t

0≤ δi ≤ 1
EtotalCO2i,t � ECGi,t + βδiEGi,t

0≤EtotalCO2i,t ≤ ηβegiPGi,max

PBi,t � λEtotalCO2i,t

PGi,t � PJi,t + PDi + PBi,t

(2)

where PGi,t is the total output of unit i at time t. egi is the carbon

intensity of unit i. EGi,t is the total CO2 emissions of unit i at time

t. δ is the flue gas split ratio of unit i. β is the carbon capture

efficiency. ECGi,t is the amount of CO2 to be captured supplied by

the solution storage of unit i in period t. EtotalCO2i,t is the total

CO2 captured by unit i at time t. η is the maximum operating

factor of the solution regeneration and the compression tower.

PGi,max is the maximum output of unit i at time t. λ is the energy

consumption required to capture each unit of CO2. PBi,t is the

operational energy consumption of carbon capture plant i at time

t. PDi is the fixed energy consumption of carbon capture plant i.

PJi,t is the net output of carbon capture plant i at time t.

From eq. (2), it can be deduced that the net output range for

integrated carbon capture plants and the split-flow carbon

capture plants are:

PGi,min − ληβδimaxegiPGi,max − PDi ≤PJi,t ≤PGi,max − PDi

PGi,min − λβδimaxegiPGi,min − PDi ≤PJi,t ≤PGi,max − PDi
(3)

It can be seen from the equations that the integrated carbon

capture plants have a greater net output range than the split flow

plants, using Figure 2 depicts the net output range of the three

plants.

Compared to conventional thermal power plants, split-flow

carbon capture plants have a lower net bottom output limit. The

time-shifting nature of the carbon capture energy consumption

of a carbon capture plant, based on the addition of a storage tank

to the plant, results in a lower net bottom output limit for an

integrated carbon capture plant. With the same rotating reserve

requirements, the lower net output limit facilitates the absorption

of wind power, resulting in energy savings and emission

reductions. In addition, carbon capture plants can change the

plant operation by changing the flue gas split ratio, whereas

traditional thermal plants require boiler adjustments. Changing

the flue gas split ratio is more time-sensitive and can effectively

address wind abandonment and load loss.

Wind power is a key source for decarbonizing power system

because it is low-cost and zero-carbon. However, unlike other

forms of energy, wind power generation is random and highly

volatile, and exhibits certain anti-peak characteristics. Nowadays,

the large-scale grid connection of wind power puts greater

pressure on system peaking, and sometimes some of the wind

energy has to be abandoned to ensure system safety. Shortening

the forecast scale can effectively improve the accuracy of wind

power forecast, while the lack of efficiency of thermal regulation

can be solved by fast regulation devices (carbon capture plants). If

the two are combined, more wind energy can be absorbed. At the

same time, low wind power forecasting accuracy requires

flexibility in the dispatch. Therefore, improving the accuracy

of wind power forecasting, promoting the absorption of wind

power and reducing the level of system carbon emissions remain

topical issues.

There are two ways to improve the accuracy of wind power

forecasting, one is to shorten the time scale and the other is to use

forecasting algorithms that conform to the pattern of wind power

generation.

The accuracy of wind power forecasting improves with the

shortening of the time scale. The results of wind power

forecasting on different time scales are sent to the dispatching

model, which helps to correct the deviation between the long-

time scale pre-dispatching plan and the short time scale working

conditions. At present, the economic dispatch of power systems

containing wind power is mostly concentrated in the long-time

scale dispatch phase, so it is of practical significance to study the

combination of wind power prediction and dispatch on multiple

time scales.

Because of the stochastic and highly volatile nature of wind

power, the use of forecasting algorithms that match its

characteristics has a crucial impact on the results. Traditional

statistical model-based forecasting algorithms establish a

mapping relationship between input and output quantities

FIGURE 2
Net output range for conventional thermal power plants,
split-flow carbon capture plants and integrated carbon capture
plants.
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and do not focus on the influence of the stochastic component,

nor do they take into account the decaying nature of the

stochastic component over time. In the paper, GRU is used to

forecast wind power. As a variant of the RNN, GRU is suitable for

processing time series data and can effectively extract the

correlation information between each time sub-series.

Compared with the LSTM, GRU has fewer parameters and is

more computationally efficient.

Due to the large-scale wind power grid connection, the

traditional day-ahead dispatching strategy is no longer

sufficient to meet the requirements of system safety and

economy. Combining multi-time-scale wind power forecasting

with multi-time-scale dispatching enables the system to have a

deeper regulation range and a faster regulation rate, based on the

energy transfer characteristics of carbon capture plants. The

deeper regulation range allows for the absorption of wind

abandonment during the day-ahead and intra-day dispatch

stages. The faster regulation rate allows the system to

participate in the dynamic dispatch stage.

The three-stage dispatching strategy is: the day-ahead stage

sets the next day’s 24 h unit start-up and shutdown and output

plan, the intra-day stage can correct the unit output according to

the 15min short-term wind power forecast, and the dynamic

stage can adjust the net output of the carbon capture plant

according to the 5-min ultra-short-term wind power forecast.

The carbon capture plant can increase or decrease the energy

consumption of the carbon capture equipment at any time in

response to system requirements, changing the net output and

increasing the speed of output regulation of the thermal plant. At

the same time, due to the presence of carbon capture

consumption, the net output of the carbon capture plant is

lower and the regulation range is deeper. The specific

mechanisms for eliminating wind abandonment are as follows.

For the same standby requirements, carbon capture plants

have a lower net output threshold, thus enabling less wind to be

abandoned. On the one hand, carbon capture plants can provide

more up-rotating reserves. When more up-rotation reserve is

required, conventional thermal plants can only turn on

additional units, resulting in wind abandonment. Carbon

capture plants, do not need to restart units with the required

up-rotation reserve, which effectively reduces wind abandonment.

On the other hand, carbon capture equipment can change the

net output of a carbon capture plant by adjusting the shunt ratio,

essentially regulating the rate of steam extraction, which is faster.

Compared to conventional thermal power plants, which require

5–10 min for standby response, carbon capture plants can

respond to standby requirements in less than 5 min. As a

result, conventional thermal plants are unable to respond

quickly to a 5-min wind forecast during the dynamic stage,

whereas carbon capture plants have limited regulation but can

effectively reduce wind abandonment.

3 Multi-timescale low carbon
economic dispatch model

3.1 Predictive model

3.1.1 Pre-processing
Exponential weighted moving average (EWMA) is often used

to describe trends of time series. It considers the high weight of

recent data, at the same time, gradually reduces the weight of

recent data to compensate overall trend. This feature can describe

future trends in wind power and further enrich the dataset.

The process of constructing the EWMA feature is as follows.

For wind power, n is the total number of time points.

⎧⎪⎨⎪⎩
ei � l0, i � 0, 1

ei � (1 − α)ei−1 + αli−1, i � 2, 3 . . . n
ei � (1 − α)en + αln, i> n

(4)

Where, α is the smoothing parameter. The value range of α is

(0, 1], and differential evolution method is used to minimize the

objective function to obtain the optimal α value. The calculated

objective is as follows.

α � argmin⎛⎝∑N
i�1

							
(li − ei)2

√ ⎞⎠ (5)

Simple moving average (SMA) is an unweighted arithmetic

average of the n values preceding a given variable. For example, a

96-point simple moving average of a 15-min wind power forecast

refers to the average of the previous day’s wind power. If the

power at each point is p1 to pn, and when calculating successive

values, a new point is added while an old point is dropped out, the

SMA is calculated as.

SMAt1,n � SMAt0,n − p1

n
+ pn+1

n
(6)

Figure 3 shows the wind power (15 min) and its EWMA and

SMA features for Belgium in July 2021. The red line in the figure

is the EWMA, which reflects the trend of wind power in the short

term and provides reference information for wind power

forecasting. The blue line in the figure is the SMA. SMA is

the wind power average over the first N points and is a simple

extraction of the wind power trend. EWMA can extract the trend

while eliminating the effect of complex noise and enriching the

dataset.

Curve features include average, minimum, maximum, and

average difference values, respectively used to describe average

trend and extreme value of time series data and changes of time

series data on different days. For time-series data of impact

quantity V, Vi
w means impact quantity within time-window w,

point i changes from 1 to 4. Equations show calculation of Vmean

and Vmean−diff . The time-window w is set as four for insight into

hourly changes in wind power.
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Vmean � ∑w
i�1
viw/w (7)

Vmean−diff � ∑w
i�2
(viw − vi−1w )/(w − 1) (8)

Figure 4 shows the curve characteristics of wind power.

Constructing curve features for wind power can maximize the

use of data trends and help the model learn. Using average,

extreme and average difference values, wind power prediction

models will be more sensitive. Data that is only one-dimensional

FIGURE 3
EWMA and SMA features of wind power from Belgium July 2021.

FIGURE 4
Curve features for wind power from Belgium in July 2021.
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is extended to four dimensions. As the amount of data increases,

the model can also get better prediction results.

3.1.2 LSTM
Long short-term memory network (LSTM) solves the

gradient disappearance of recurrent neural network (RNN)

during remote transmission. LSTM currently has an excellent

performance in natural language processing and time series

prediction. The basic unit structure diagram is shown in

Figure 5 (Farah, Aneela and Muhammad., 2021).

In Figure 5, Xt and ht are the input and output of the basic

unit at time t, it and ft are the output of the input gate and forget

gate at time t respectively, and Ot is the output of the outputting-

gate at time t, and gt is the unit state at time t. The specific

calculation equations are as follows:

1) Input status

gt � tanh(Wigxt + big +Whcht−1 + bhg) (9)

2) Gating status

it � sigmoid(Wijxt + bii +Whiht−1 + bhi) (10)
ft � sigmoid(Wifxt + bif +Whfht−1 + bhf) (11)
Ot � sigmoid(Wioxt + bio +Whoht−1 + bho) (12)

3) Memory status

Ct � ft × Ct−1 + it × gt (13)

4) Output status

ht � ot × tanh(Ct) (14)
where: tanh is the hyperbolic tangent function; W is the weight

vector; b is the bias.

It can be seen from Eqs (10)–(12) that LSTM fully considers

the correlation between various data while making predictions,

and gives sufficient space for important information. Therefore,

it can usually obtain more desirable results when performing

time-series data prediction.

3.1.3 GRU
Traditional convolutional networks do not have the

computational ability to take into account time propagation,

and the current moment output value of a recurrent neural

network (RNN) is influenced by the input values of previous

moments. For the wind power prediction problem, there is a

time-dependent characteristic, that is, there is some correlation

in the time dimension of wind power. RNN has an advantage

over linear prediction models in dealing with non-linear

relationships between variables. At the same time, although

RNN solves the problem of long-term dependence of the

prediction target, there is the problem of gradient

disappearance or explosion when the network is back-

propagated for calculation. The long short-term memory

(LSTM) network only updates the internal states of the cells

through linear transformations, allowing the information to be

smoothly propagated backward across the entire time axis, thus

increasing the information propagation distance, but the

complex network structure of the LSTM often takes more

time to train. The gated recurrent unit (GRU) simplifies the

LSTM cell, which not only retains the strong time-series

dependent capture capability but also effectively reduces the

model training time (Niu et al., 2020).

To fully exploit the temporal characteristics of wind power to

improve prediction accuracy, this section introduces a deep

learning algorithm, Gated Recurrent Unit (GRU), with

temporal memory capability. The deep learning framework

used is TensorFlow and Keras, based on which the prediction

model and structural parameters of GRU are designed to forecast

FIGURE 5
Schematic diagram of the basic unit structure of LSTM. FIGURE 6

Schematic diagram of the basic unit structure of GRU.
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on three time-scales to match the economic dispatch on each

time scale for wind power.

3.1.3.1 Principle of prediction algorithm

GRU is a variant of the LSTM that simplifies the gating

structure of the LSTM, thus effectively reducing the training time

of the network. While the LSTM consists of three gating

mechanisms, GRU unifies the forgetting and updating gates of

the LSTM into a new updating gate, and thus contains only two

gating mechanisms. The update gate allows adaptive control of

the information flowing through the hidden unit, combining it

with new inflow content for information update. The reset gate

allows the contents of the memory cell to be reset. The GRU

schematic is shown in Figure 6.

Where xt and ht are unit input and output variables. ht−1 and
ht are internal state variables at twomoments before and after the

hidden layer. g is a non-linear operator. In the schematic diagram

+, -, 1- are linear operators. The GRU concrete state update

equation is as follows.

Resetting gate

rt � σ(Wrxt + Rrht−1 + br) (15)

Candidate Status:

h′t � g(Wzxt + Rz(rt ⊙ ht−1) + bz) (16)

Update Gate:

ut � σ(Wuxt + Ruht−1 + bu) (17)

New Status:

ht � ut ⊙ h′t + (1 − ut) ⊙ ht−1 (18)

where xt is the input vector at moment t.Wr,Wz andWu are the

weight matrices associated with the input status. Rr, Rz and Ru

are the weight matrices associated with the recurrent state. br, bz
and bu are the bias vectors. σ is the activation function: Sigmoid.

g is the activation function tanh. ⊙ is the dot product. rt, ut take

values in the range [0,1], if both take 1, the GRU is equivalent to

an RNN. the smaller the value of ut, the smaller the update of the

state information of the GRU, more for the previously saved

information.

The incremental cross-validation model is shown in Figure 7.

Cross-validation is commonly used in the process of building

predictive models and selecting model parameters. Specifically,

the dataset is sliced in different ways and then various

combinations of training and validation sets are fed into the

model, where the training set is used for model training and the

validation set is used to verify the model. With different slicing

methods, data that was last used as the training set may become

samples in the test set in the next iteration, thus enabling cross-

validation. For time series data, incremental window cross-

validation or fixed window cross-validation can be used to

ensure time integrity and also to prevent future data leakage.

Grid search is an automated method of adjusting parameters by

continuously searching through a given range of parameter to

find the best parameters. This method is evenmore advantageous

when applied to small dataset and the sklearn provides a function

GridSearchCV specifically. Applying cross validation to small

dataset maximizes sample information. Also, by using models

with different parameters, overfitting can be reduced to a certain

extent, thus improving the robustness of the model. After grid

adjustment of the parameters, the prediction accuracy and time

lapse of the model are optimized.

A comparison of the predictions before and after cross-

validation using incremental cross-validation is shown in

Figure 8, which includes the wind power prediction targets

(measured and upscaled) and the GRU predictions before and

after cross-validation. As can be seen from the graph, the GRU

forecasts are superior in terms of prediction accuracy and time

delay when using incremental cross-validation.

FIGURE 7
Flow chart of the prediction algorithm.
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3.2 Low-carbon dispatch modeling
considering multi-time-scale wind power
forecasting and integrated carbon capture
power plants

3.2.1 Multi-timescale low carbon dispatch
framework

Multi-timescale wind power forecasting combined with

integrated carbon capture plants can exploit the low carbon

potential of the system. Firstly, the time-shifted nature of

integrated carbon capture energy can both reduce the system’s

lower net output limit and respond positively to the system’s need

to emit CO2. Secondly, multi-timescale wind power predictions

reduce wind power prediction errors and enable more accurate

system dispatch plans to be made. This enables the full utilization

of wind power, reduces the output of high carbon units and

optimizes the low carbon and economic performance of the

system. Thirdly, liquid storage carbon capture plants have a

certain effect in the dynamic dispatch stage. Errors are reduced

through highly accurate wind power predictions. The flue gas

diversion ratio is then set in both the day-ahead and within-day

phases, thus improving system dispatch flexibility, maximizing

carbon capture and exploring low-carbon potential. In summary,

multi-timescale wind power load predictions together with

integrated carbon capture plants work together in the three

stages of dispatch to optimize the system energy structure,

resource allocation, reduce wind abandonment and load loss

situations, and thus achieve low carbon economic dispatch.

Figure 9 shows the multi-timescale low carbon economic

dispatch framework. The dispatch plan is developed 24 h in

advance and the time unit is 1 h. The dispatch quantities to be

determined are the unit start/stop plan and the unit output plan,

which are brought into the within-day dispatch model as the

determined quantities. The within-day scheduling plan is a 4 h

plan with a 15min interval. Within-day scheduling is a good way

of correcting the deviations between the day-ahead scheduling

plan and the actual working conditions during the day. What

needs to be determined in the intra-day stage is the unit output

plan for the next 4 h and the results are brought into the dynamic

dispatch model. The dynamic dispatch plan is advanced every

5 min to develop a post 15 min plan, to combine a highly accurate

wind power forecast with the dispatch plan to adjust the carbon

capture energy consumption. The amount of carbon capture

energy needs to be determined during the dynamic stage.

Wind power forecasting on multiple time scales can improve

the accuracy and combine it with the dispatching of carbon

capture plants to develop more accurate dispatching plans to

effectively deal with load loss and wind abandonment while

maximizing the low carbon performance of the system and

reducing system costs.

3.2.2 Day-ahead dispatching model
3.2.2.1 Optimization objective

The objective function for the day-ahead dispatch stage is:

C1 � min(CK + CH + CQ + CT + CZ + CR) (19)

FIGURE 8
GRU predicted wind power before and after incremental cross-validation.
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1) CK is the start-up and shutdown cost of the thermal unit,

CH is the coal consumption cost of the thermal unit, CQ is the

penalty cost of wind abandonment, CT is the cost of carbon

trading, CZ is the depreciation cost of the carbon capture plant,

and CR is the cost of solvent loss in the carbon capture process.

CK � ∑24
t�1
∑N
i�1
(Ui,t(1 − Ui,t−1) + Ui,t−1(1 − Ui,t))Ci (20)

where N is the number of thermal power units. Ui,t is the start-

stop state of unit i at time t. Ci is the start-stop cost of unit i.

2) Coal consumption costs for thermal power units.

CH � ∑24
t�1
∑N
i�1
Ui,t(aiP2

Gi,t + biPGi,t + ci) (21)

Where ai, bi and ci is the coal consumption cost factors for unit i.

PGi,t is the total unit output of unit i at time t.

3) Cost of wind abandonment.

CQ � ∑24
t�1
Kq(Ppre,1

w,t − Pw,t) (22)

Kq is the wind abandonment cost factor. Pw,t is the wind power

online in period t. Ppre,1
w,t is the predicted day-ahead wind power in

period t.

4) Cost of carbon capture.

CT � KT
⎛⎝Ec −∑N

i�1
∑24
t�1
(δhPGi,t)⎞⎠ (23)

KT is the carbon trading price. Ec is the total amount of

CO2 produced by thermal power units. δh is the carbon

emission allowance factor.

5) Depreciation costs of carbon capture equipment.

FIGURE 9
Low carbon economic dispatch framework for systems considering multi-time scale wind power predictions.
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Cz � CFL(1 + r)NZJr

365((1 + r)NZJ − 1) + PRYVRY(1 + r)NRYr

365((1 + r)NRY − 1) (24)

CFL is the total cost of the carbon capture equipment. NZJ is the

depreciable year of the carbon capture equipment. r is the

discount rate for the carbon capture plant project. PRY is the

cost per unit volume of solution storage. VRY is the volume of

solution storage. NRJ is the depreciable year of the solution

storage.

6) The cost of solvent loss during carbon capture.

CR � ∑24
t�1
∑N
i�1
KRφEtotalCO2i,t (25)

KR is the ethanolamine solution cost factor. φ is the solvent loss

factor. EtotalCO2i,t is the mass of CO2 captured by unit i at time t.

3.2.2.2 Constraints

1) Power balance constraint.

P1.t � Pw,t +∑N
i�1
PJi,t (26)

Where P1.t is the load. PJi,t is the net output of unit i in period t.

Pw,t is the online wind power at period t.

2) Wind power output constraints.

0≤Pw,t ≤Ppre,1
w,t (27)

3) Thermal power unit output constraints.

{PGi,min ≤PGi,t ≤PGi,max Ui,t � 1
PGi,t � 0 Ui,t � 0

(28)

PGi,min is the minimum technical output of unit i. PGi,max is the

maximum output of unit i.

4) Thermal power unit climbing constraints.

{ PGi,t − PGi,t−1 ≤Ui,tR
u
i

PGi,t−1 − PGi,t ≤Ui,t−1Rd
i

(29)

Ru
i is the uphill climb rate of unit i and Rd

i is the downhill climb

rate of thermal unit i.

5) Start/stop constraints for thermal power units.

⎧⎨⎩ (Ton
i,t−1 − Ton

i,min)(Ui,t−1 − Ui,t)≥ 0(Toff
i,t−1 − Toff

i,min)(Ui,t − Ui,t−1)≥ 0
(30)

where, Ton
i,min is the minimum start-up time of unit i. Toff

i,min is the

minimum shutdown time of unit i. Ton
i,t−1 is the time that unit i has

been on continuously up to period t. Toff
i,t−1 is the time that unit i

has been continuously shut down to period t. The start/stop

constraint for thermal power units is intended to govern. The

start/stop time must not be less than a fixed value to avoid

affecting the safety of the unit.

6) Operational constraints on integrated carbon capture plants.

Carbon capture power plants add a flue gas bypass and

storage tank based on a conventional thermal power plant, so

their unit output constraints, creep constraints and start-stop

constraints are the same as those of a conventional thermal

power plant. A split-flow carbon capture plant will limit the flue

gas split ratio, thus limiting the carbon capture energy

consumption. Integrated carbon capture plants directly limit

the amount of total CO2 resolved.

(1 − δxz)≤ δi ≤ δxz (31)

{(1 − δxz)λβegiPGi,t ≤PBi,t

PBi,t ≤ ηλβegiPGi,max − (1 − δxz)λβegiPGi,t
(32)

where, δxz is the flue gas split ratio limit. λ is the energy required

to capture a unit of CO2. β is the carbon capture efficiency. egi is

the carbon emission intensity. PBi,t is the energy consumption to

operate the carbon capture unit i at time t. η is the maximum

operating factor of the solution regeneration tower and the

compression tower.

Reservoir carbon capture is an important component of

integrated carbon capture. A storage solution is CO2 in the

form of a compound in an alcoholic amine solution. The mass of

CO2 captured using a solution volume equivalent transformation

is as follows.

VCAi,t � ECGi,tMMEA

MCO2θCRρR
(33)

Where VCAi,t is the volume of solution required to release

CO2 from the solution reservoir installed in the carbon

capture plant i at time t. MMEA is the molar mass of MEA.

MCO2 is the molar mass of CO2. θ is the amount of CO2 resolved

in regeneration towers. CR is the concentration of alcoholic

amine solution. ρR is the density of the alcohol-amine solution.

The solution storage constraints mainly include the reservoir

volume constraint and the reservoir volume variation constraint,

as in the following equation.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

VFYi,t � VFYi,t−1 − VCAi,t

VPYi,t � VPYi,t−1 + VCAi,t

0≤VFYi,t ≤VCRi

0≤VPYi,t ≤VCRi

VFYi,0 � VFYi,24

VPYi,0 � VPYi,24

(34)

VFYi,t is the volume of solution in the liquid-rich storage of unit i

at time t. VCAi,t is the volume of solution required to release

CO2 from the solution storage installed at carbon capture plant i

at time t. VPYi,t is the volume of solution in the depleted solution

storage of unit i at time t. VCRi is the solution storage capacity of

unit i. VFYi,0 is the volume of solution in unit i’s liquid-rich tank
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at time 0.VFYi,24 is the volume of solution in the rich tank of unit i

at time 24.VPYi,0 is the volume of solution in the liquid-poor tank

of unit i at time 0. VPYi,24 is the volume of solution in the poor

tank of unit i at time 24.

7) Rotating standby constraints.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑N
i�1
min[Ru

i , (Ui,tPGJi,max − PGJi,t)]≥ rup,tsys

∑N
i�1
min[Rd

i , (PGJi,t − Ui,tPGJi,min)]≥ rdown,tsys

(35)

Where rup,tsys is the required upper rotating reserve for the system

at time t. rdown,tsys is the required lower rotation reserve of the

system at time t. PGJi,max is the upper net output limit of unit i.

PGJi,min is the lower net output limit of unit i.

8) flow constraints.

3.2.2.3 Power balance constraint

∑
i∈CG,j

Pi,t− ∑
(h,j)∈CF,j

fhj,t+ ∑
(h,j)∈CE,j

fhj,t −Dj,t � 0 (36)

Where, CG,j is the set of units (thermal units, wind turbines)

connected to node j.fhj,t is the power flow of line (h, j).CF,j is the

set of lines starting at node j.CE,j is the set of lines ending at node

j. Dj,t is the load demand of node j.

Line transmission capacity and node voltage constraints.

Flow analysis using DC flow.

fhj,t � θh,t − θj,t
xhj

−fhj
max#fhj,t#fhj

max

−θj max#θj,t#θj
max

θref ,t � 0

(37)

Where, θh,t is the phase angle of the voltage at node h. θj,t is the

voltage phase angle at node j. xhj is the reactance of line (h, j).

fhj
max is the maximum value of the transmission capacity of line

(h, j). θj max is the maximum voltage phase angle. θref ,t is the

voltage phase angle of the balance node.

3.2.3 Intraday dispatching model
3.2.3.1 Optimization objective

The intra-day dispatch stage, compared to the day-ahead

dispatch, is the stage where the change in the predicted wind

power causes a change in the cost of wind abandonment. In

addition, the cost of loss of load needs to be taken into account

during this stage.

C2 � min(CH + CQ + CT + CZ + CR + CS) (38)

CQ � ∑ΔT
t�1

Kq(Ppre,2
w,t − Pw,t) (39)

CS � ∑ΔT
t�1

KSPS,t (40)

Where Ppre,2
w,t is the intra-day wind power forecast in 15min CS is

the cost of the lost load.KS is the penalty cost per unit of lost load.

PS,t is the lost load power of the system at time t.

3.2.3.2 Constraints
The parts of the intraday dispatch model that change are the

thermal unit climbing constraint and the rotating reserve

constraint. Unit start-up and shutdown are not considered in

the intraday dispatch stage, and therefore unit start-up and

shutdown constraints are not considered. The unit output

constraints and carbon capture operation constraints are

similar to those of the day-ahead dispatch model.

1) Load balance constraint.

P2.t � Pw,t +∑N
i�1
PJi,t + PS,t (41)

Where: P2.t is the predicted load within the day. Pw,t is the grid

power of wind power at time t. PJi,t is the net output of unit i in

period t. PS,t is the lost load of the system in period t.

2) Thermal power unit climbing constraints.

{PGi,t − PGi,t−1 ≤Ui,tR
u
i /4 + PGi,max(1 − Ui,t−1)

PGi,t−1 − PGi,t ≤Ui,tR
d
i /4 + PGi,max(1 − Ui,t) (42)

3) Rotating alternate restraint.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑N
i�1
min[Ru

i /4, (Ui,tPGJi,max − PGJi,t)]≥ rup,tsys

∑N
i�1
min[Rd

i /4, (PGJi,t − Ui,tPGJj,min)]≥ rdown,tsys

(43)

3.2.4 Dynamic dispatching model
The dynamic dispatch stage focuses on adjusting wind power

output and correcting carbon capture energy consumption. The

wind power data is forecasted over a very short period of 5 min.

The accurate forecasts help the system to adjust the net output of

the carbon capture plant, thus increasing the wind power

utilization and reducing the loss of load.

3.2.4.1 Optimization objective

The adjustment target for the Dynamic dispatch stage is the

carbon capture energy consumption within the carbon capture

plant. The dynamic dispatch stage has a short cycle time and the

start-up and shutdown of the units and the total output are

already determined in the day-ahead and intra-day dispatch
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stages. The dynamic phase adjusts the system’s CO2 emissions,

wind abandonment, and load loss by adjusting the variables

within the carbon capture plant.

C3 � min(CQ + CT + CZ + CR + CS) (44)

CQ � ∑ΔT
t�1

Kq(Ppre,3
w,t − Pw,t) (45)

where: Ppre,3
w,t is the dynamic predicted wind power.

3.2.4.2 Constraints

The dynamic dispatch phase does not take into account the

thermal unit output plan as it is already established in the

intraday dispatch phase. The remaining constraints such as

individual unit output and carbon capture plant constraints

are similar to the previous two stages.

1) Load balance constraint.

P3.t � Pw,t +∑N
i�1
PJ,t + PS,t (46)

Where: P3.t is the dynamic forecast power of the load. Pw,t is the

grid power of wind power at time t. PJi,t is the net output of unit i

in period t. PS,t is the lost load power of the system in period t.

2) Carbon capture power regulation constraint.

The dynamic stage focuses on the adjustment of the carbon

capture energy consumption, which is mainly borne by the

solution storage.

⎧⎪⎨⎪⎩
ΔPBSi,t � PBi,t

ΔPBXi,t � PBimax − PBi,t

PBimax � ληβegiPGi,max

(47)

where: ΔPBSi,t is the maximum net output adjustment for carbon

capture unit i at time t. ΔPBXi,t is the minimum net output

adjustment value for carbon capture unit i at time t. PBimax is the

maximum operating energy consumption of the regeneration

and compression towers, in other words, the carbon capture

energy consumption. λ is the energy required to capture a unit of

CO2. η is the maximum operating factor of the regenerative and

compression towers of the solution. β is the carbon capture

efficiency. egi is the carbon emission intensity. PGi,max is the

maximum output of unit i.

Liquid storage carbon capture enables energy time-shifting,

but at the same time, the net output regulation of the carbon

capture unit should be kept within the regulation range.

−∑n
i�1
ΔPBXi,t ≤∑n

i�1
ΔPJi,t ≤∑n

i�1
ΔPBSi,t (48)

where ΔPJi,t is the net output adjustment of carbon capture unit i

at time t.

4 Case study and analysis

4.1 Case settings

The wind power in this paper uses data from the Belgian grid

in July 2021. Various forecasting algorithms were first used to

forecast wind power on three time-scales, with the GRU

algorithm performing well in terms of training speed and

accuracy. Figure 10 shows the 15min wind power forecast

results, Measured and upscaled is the raw Belgian wind power

data, most recent forecast is the forecast for wind power from the

Belgian grid, the SVR forecast is the result of the SVR model

forecast, the LSTM forecast uses the model LSTM, and the model

used in this paper is GRU, which is the GRU forecast with cross-

validation labeled in the figure. The wind power is scaled to

match the system of 488.3 MW(Li et al., 2021).

This paper is validated with a modified IEEE-39 nodal system

containing 10 thermal power units. Wind farms of 198.5, 191.5,

and 98.3 MW are introduced at nodes 9, 19, and 22 respectively.

If the system adopts carbon capture technology, G1 and G2 are

converted into carbon capture power plants, if the system does

not adopt it, G1 and G2 are conventional thermal power plants.

Figure 11 shows the system. Table 1 shows the relevant

parameters for the thermal plant and Table 2 shows the

remaining parameters to be set. The dispatch quantities are

solved using the CPLEX.

Comparison cases are set depending on whether the GRU

wind power forecasts or from the Belgian grid are used.

Case 1: Consider the day-ahead dispatch of the Belgian grid

with its wind power forecast (Most recent forecast) or GRU wind

power forecast with carbon capture equipment.

Case 2: Consider the Belgian grid’s own wind power forecasts

(Most recent forecast) or GRU wind power forecasts, with the

intra-day dispatch of carbon capture equipment.

Case 3: Dynamic dispatch using the Belgian grid’s own wind

power forecasts (Most recent forecast) or GRU wind power

forecasts with carbon capture equipment.

4.2 Results and analysis

Figure 12 shows the results of the day-ahead dispatch with

and without carbon capture devices. A shows thermal units 1 and

two without carbon capture devices and B shows thermal units

1 and 2 with integrated carbon capture devices. The graphs show

that after the retrofitting of carbon capture devices, there is a

significant reduction in wind abandonment and a visible increase

in the utilization of wind power. The analysis of the columns

without carbon capture devices and the Belgian wind forecast

column (with carbon capture devices) in Table 3 shows that the

cost of the wind abandonment penalty is reduced by 69.032%

with the installation of carbon capture devices. At the same time,
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the cost of carbon trading is reduced by 24.211%, and carbon

emissions are reduced by 41.694% after the installation of carbon

capture devices. Although the cost of running thermal power

plants is higher with the addition of carbon capture devices, the

total cost is reduced by 30.788%. This shows that carbon capture

can reduce carbon emissions and at the same time satisfy the

economy, helping to achieve low carbon economic dispatch of

the power system.

FIGURE 10
Wind power forecasting results (raw wind data\Irish grid forecasts\SVR, LSTM and GRU forecasts).

FIGURE 11
IEEE-39 node system.
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As the load is supplied by the net thermal output and the grid

power of wind power, it is only necessary to compare the net

thermal output to analyze the system’s wind abandonment

situation. The net output of thermal units is shown in

Figure 13. As can be seen from the graph, the different times

of net thermal output are concentrated between 1:00 to 12:00,

and the difference in net output during the corresponding period

is the difference in the amount of wind abandoned with or

without carbon capture devices.

Figure 14 shows a comparison of the dispatch results for case

1 (both with carbon capture units, using different wind power

forecasts). As can be seen from the graph, when using GRU to

forecast wind power, there is a certain degree of reduction in the

amount of abandoned wind power due to the increased accuracy

TABLE 1 Thermal power unit parameters (Total of 10 thermal units; input parameters include operation, cost, climbing parameters and carbon
capture intensity) (Shui et al., 2019).

Unit
number

Maximum
output

Minimum
output

Start-
stop
costs

Cost
parameter
a

Cost
parameter
b

Cost
parameter
c

Minimum
start/stop
time

Unit
climbing

Carbon
emission
intensity

1 455 200 31,500 0.00336 113.33 7000 6 200 0.9

2 455 150 35,000 0.00217 120.82 6790 5 200 0.92

3 130 30 3850 0.014 116.2 4900 5 80 0.99

4 130 25 3920 0.01477 115.5 4760 5 80 0.98

5 162 45 6300 0.02786 137.9 2450 5 100 1.02

6 80 20 1190 0.04984 155.82 2590 3 72 1.05

7 85 25 1820 0.00553 194.18 3360 3 80 1.06

8 55 10 210 0.02891 181.44 4620 1 60 1.12

9 55 10 210 0.01554 190.89 4655 1 60 1.15

10 55 10 210 0.01211 194.53 4690 1 60 1.1

TABLE 2 Other system parameters (Mainly system size parameters and carbon capture plant operating and cost parameters) (Yu et al., 2022).

Parameter name Value

λB (Energy consumption per unit of carbon capture)/((MW·h)/t) 0.269

θB (Carbon Capture Efficiency) 0.9

η (Maximum operating condition)/% 120

MMEA (MEA Moore’s mass)/(g/mol) 61.08

MCO2(CO2 molar mass)/(g/mol) 44

θ (The amount of regeneration tower can be resolved)/(molCO2/molMEA) 0.24

CR (Solution concentration)/% 30

σR (Solution density)/(t/m3) 1.01

σT (Carbon trading price)/($/t) 120

λh (Carbon emission allowance factor)/(t/(MW·h)) 0.7

μ2 (Day-ahead wind power reserve factor) 0.2

ω (Net Residual Value Rate)/% 5

NC(Depreciable life of liquid storage tank)/year 5

PCY(Liquid storage tank unit price)/($/m3) 300

VCY(Reservoir volume)/m3 60000*4

μ1 (Day-ahead load standby factor) 0.05

CZJ (Total price of carbon capture equipment)/million $ 165159.4

CGJ (Total cost of retrofit of regenerative tower compressor expansion to 120% capacity)/million $ 14264.3

NT (Depreciable life of carbon capture equipment)/Year 15

σQ (Cost of wind abandonment penalty)/($/(MW·h)) 210

λB (Energy consumption per unit of carbon capture)/((MW·h)/t) 0.269
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of the forecast. As can be seen from Table 3, in the day-ahead

dispatching phase, the carbon transaction cost, abandonment

penalty cost, total cost, and carbon emissions are reduced by

166,206$, 11,547$, 177,753$ and 1479t respectively when using

GRU to forecast wind power compared to using the Belgian grid

to forecast wind power, a respective decrease of 23.293%,

83.644%, 24.439%, and 12.716%. This validates the

advantages of the flexible operation of carbon capture units.

At the same time, by using GRU to forecast wind power, carbon

capture units can capture more CO2 and effectively improve

wind power utilization. Overall, the improvement in the

accuracy of wind power forecasting has been proven to have

a positive impact on the reduction of carbon emissions and

system economics.

In the day-ahead dispatch stage, carbon emissions depend

mainly on the level of wind power consumption and the

output of high-carbon units. As wind power does not emit

carbon, the higher its utilization rate, the more thermal units

will be replaced. At the same time, the amount of abandoned

wind power decreases, the output of high-carbon thermal

units decreases, and carbon emissions are reduced

accordingly.

As shown in Figure 15, closely related to the net output of

the thermal units is the carbon capture energy consumption.

Unlike the split carbon capture unit, case 1 uses an integrated

FIGURE 12
Day-ahead dispatch results with and without carbon capture devices ((A) is without carbon capture devices, (B) is with carbon capture devices).

TABLE 3 Day-ahead dispatching costs.

Costs Without carbon capture Belgian grid wind
power forecast

GRU wind power forecast

Operating Costs of Thermal Power Units/$ 711397 735595 751974

Carbon Trading Costs/$ 383544 290683 192160

Wind Abandonment Penalty Costs/$ 825835 255743 209170

Depreciation cost of storage fluid/$ 0 47378 47379

Total Cost/$ 1920776 1329401 1200684

Carbon Emissions/t 17746 10347 9605

FIGURE 13
Comparison of the output of thermal power units with and
without carbon capture devices.
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carbon capture unit, where the processes of CO2 absorption

and CO2 capture are not coupled, enabling a time-shifting of

the carbon capture energy consumption, so that the energy

consumption is higher in the low load periods and the lower

limit of the net output of the carbon capture unit is lower than

that of the split type. The carbon capture units G1 and G2 are on

all hours, so there is no need to increase the net output to

provide down-rotation reserves, which allows more wind power

to be absorbed and reduces the carbon emissions of the system

compared to not installing carbon capture devices. However,

due to the low load, there is still a problem of wind

abandonment and the low carbon capability needs to be

further explored.

Figure 16 shows a comparison of the changes in the storage

tanks of case 1, where A considers the Belgian grid forecast wind

power and B considers the GRU forecast wind power. As can be

seen from the graph, the carbon capture units release CO2 at

low load times (2:00–9:00), which shows a decrease in the

amount of liquid-rich tank storage and an increase in the

amount of liquid-poor tank storage. During peak load hours

(16:00–24:00), CO2 is stored, showing a rise in the amount of

liquid stored in the rich tank and a fall in the amount of liquid

stored in the lean tank. The reduced energy consumption of the

carbon capture equipment processing enables energy time-

shifting, laying the foundation for low carbon economic

dispatch and further reducing carbon emissions with

integrated carbon capture compared to split carbon capture.

Compared to the dispatch carried out by the Belgian grid

predicting wind power, the use of GRU predicts that wind

power has a CO2 release during the small low load hours

between 13:00 and 16:00.

Table 4 shows the cost table for the dispatch phase within

case 2. Two scenarios are included: using the Belgian grid

forecast or using the GRU forecast for wind power. Intraday

dispatch does not take into account unit start-ups and

shutdowns, so the costs include carbon trading costs, wind

abandonment costs, lost load costs, and total costs. In the

intraday scheduling phase, the total cost of using GRU wind

forecasts is reduced by 177,753$ or 24.439% compared to using

forecast wind. Carbon emissions are reduced by 1479t or

12.716%. The cost of the wind abandonment penalty is

reduced by 11,547$, or 83.644%. It can be seen that the

carbon capture system using GRU prediction wind power

has the same advantages in terms of wind abandonment,

cost, and carbon emissions in intra-day dispatch.

The intra-day dispatch is based on the start-up and

shutdown of the units determined by the day-ahead

dispatch, and the intra-day dispatch output is adjusted as

follows. As can be seen from Figure 17, the same wind

abandonment situation exists in case 2 intra-day dispatch

FIGURE 14
Comparison of dispatch results for case 1 ((A) considering grid forecast wind power in Belgium, (B) considering GRU forecast wind power).

FIGURE 15
Comparison of carbon capture energy consumption using
different forecast wind power in day-ahead dispatch.
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when using the Belgian grid forecast wind power for dispatch,

with the abandonment time points mainly existing in the

0–20 period. This is because thermal power needs to reach a

minimum output before it can be dispatched, and when thermal

units start and stop, this can be seen as a sudden change in

output power, and as the time scale shortens, due to the

influence of creep. Combining all periods within a day, the

remaining thermal units are adjusted less than the sudden

change in thermal power caused by the start and stop of the

thermal units, resulting in a wind abandonment and load loss

situation. Systems containing carbon capture plants and using

GRU to forecast wind power have stronger wind abandonment

and load shedding characteristics.

Table 5 shows the dynamic dispatch stage cost table and

Figure 18 shows the case 3 dynamic dispatch diagram.

Intraday dispatch provides a reference point for the total

output of the thermal plant for dynamic dispatch, which

regulates the carbon capture energy consumption without

changing the total output.

As can be seen from Table 5, the total cost of forecasting wind

power using GRU is reduced by $134,983$ compared to the

Belgian forecast of wind power in dynamic scheduling. Carbon

emissions are reduced by 2395t or 19.867%. Loss of load costs is

reduced by 6173$, or 73.218%. The cost of the wind

abandonment penalty is reduced by 137,018$ or 18.540%. It is

clear that in dynamic dispatch, the system using GRU to forecast

wind power is more advantageous in terms of disposing of

abandoned wind and dealing with load loss.

Figure 18 shows a graph of dynamically dispatched unit output.

As can be seen from the graph, the improvement in prediction

accuracy has led to greater involvement of carbon capture plants in

the regulation of the 5min time scale, resulting in significant

improvements in wind abandonment and load shedding, and

demonstrating the effectiveness of the fast regulation

characteristics of carbon capture plants. By regulating the carbon

capture energy consumption to follow the changes in load and wind

power, the carbon capture plant achieves the objective of absorbing

the abandoned wind and reducing the lost load.

FIGURE 16
Comparison of reservoir changes in the day-ahead dispatch of Case 1 ((A) considering the Belgian grid forecast wind power, (B) considering the
GRU forecast wind power).

TABLE 4 Intraday dispatching costs.

Costs Belgian grid wind
power forecast

GRU wind power forecast

Carbon Trading Costs/$ 713539 547333

Wind Abandonment Penalty Costs/$ 13805 2258

Lost Load Costs/$ 0 0

Total Cost/$ 727344 549591

Carbon Emissions/t 11631 10152
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FIGURE 17
Intraday stage dispatch diagram ((A) considering Belgian grid forecast wind power, (A) considering GRU forecast wind power).

TABLE 5 Dynamic dispatching costs.

Costs Belgian grid wind
power forecast

GRU wind power forecast

Carbon Trading Costs/$ 7586 621

Wind Abandonment Penalty Costs/$ 739027 602009

Lost Load Costs/$ 8431 2258

Total Cost/$ 739872 604889

Carbon Emissions/t 12055 9660
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5 Conclusion

This paper constructs a multi-timescale optimal dispatch

model that considers improving wind power forecasting

accuracy while containing an integrated carbon capture plant

and demonstrates the effectiveness of carbon capture plants in

absorbing wind abandonment, coping with load loss situations,

and reducing system costs, as shown in the following findings.

1) During day-ahead dispatch, the system with an integrated carbon

capture plant has a 69.032% reduction in the cost of wind

abandonment penalties relative to a system with only

conventional plants, due to the deeper regulation range of the

carbon capture plant. Carbon trading costs are reduced by

24.211% and carbon emissions are reduced by 41.694%. This

demonstrates the effectiveness of carbon capture plants in

improving wind power utilization and reducing carbon emissions.

2) In the intraday dispatch stage, the use of GRU to forecast

wind power has led to an increase in forecast accuracy, which,

when combined with carbon capture plants, can further

exploit the low carbon performance of the system and

improve economic efficiency. In the intra-day dispatch

FIGURE 18
Dynamic dispatch diagram for case 3 ((A) considering Belgian forecast wind power, (A) considering GRU forecast wind power).
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stage, the system’s dispatch flexibility can be improved to

further reduce wind abandonment and achieve full utilization

of source-side adjustable resources.

3) During dynamic dispatch, the system can respond to

fluctuations in load and wind power in timely due to the

fast regulation characteristics of the carbon capture plant and

the improved accuracy of wind power forecasting. Its total

cost is reduced by 134,983$ relative to a system that uses the

Belgian grid forecast wind power. Carbon emissions were

reduced by 2,395t or 19.867%. The cost of loss of load is

reduced by 6173$, or 73.218%. The cost of wind

abandonment penalties was reduced by 137,018$, or

18.540%. This justifies the improvement in forecasting

accuracy and the use of multi-scale scheduling in dealing

with wind abandonment and load loss.
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