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This study proposes a combination interval prediction based hybrid ensemble (CIPE)
model for short-term wind speed prediction. The combination interval prediction (CIP)
model employs the extreme learning machine (ELM) as the predictor with a biased convex
cost function. To relieve the heavy burden of the hyper-parameter selection of the biased
convex cost function, a hybrid ensemble technique is developed by combining the bagging
and stacking ensemble methods. Multiple CIP models with random hyper-parameters are
first trained based on the sub-datasets generated by the bootstrap resampling. The linear
regression (LR) is utilized as the meta model to aggregate the CIP models. By introducing
the binary variables, the LR meta model can be formulated as a mixed integer
programming (MIP) problem. With the benefit of the biased convex cost function and
ensemble technique, the high computational efficiency and stable performance of the
proposed prediction model is guaranteed simultaneously. Multi-step ahead 10-min wind
speed interval prediction is conducted based on actual wind farm data. Comprehensive
experiments are carried out to verify the superiority of the proposed interval prediction
model.

Keywords: interval prediction, wind speed prediction, biased convex cost function, ensemble learning, mixed
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1 INTRODUCTION

Wind energy, as a clean and renewable energy resource, has been widely utilized and highly valued in
recent years. However, due to its high intermittency and variability, the application of wind power
brings considerable uncertainties to modern power systems (Li, 2022a). Forecasting wind power
output intrinsically relies on estimates of wind speed. Effective and reliable prediction of the short-
term wind speed can assist the timely adjustment of the scheduling plan, reduce cost impact on
power system operators, and aid the integration of wind energy in the electricity system (Zhang et al.,
2020). Traditional point prediction only provides the deterministic predicted value (Li, 2022b).
Compared with point prediction, interval prediction is capable of quantifying the uncertainty by
constructing fluctuation intervals for wind speed (Li et al., 2020a). Therefore, interval prediction with
a certain confidence is meaningful for offering a comprehensive reference to the relevant decision-
making issues of power systems (Li et al., 2021a).

The interval prediction pays more attention to the boundary information compared to the point
prediction. Among the various interval prediction methods, the lower and upper bound estimation
(LUBE) method as a nonparametric approach becomes one of the mainstream methods. In
(Khosravi et al., 2011), the LUBE employing a double-output neural network with the
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performance index coverage width-based criterion (CWC) was
first proposed to directly construct the prediction interval (PI).
Cost function is one of the improvement directions in the
subsequent works. In (Wan et al., 2014), the winkler score was
revised and combined with coverage deviation to substitute
CWC. In the study by (Shrivastava et al., 2016), the interval
width and coverage rate of PIs were separately optimized to train
the LUBE by utilizing the multi-objective differential evolution
algorithm. In the study by (Kavousi-Fard et al., 2016), a fuzzy-
based cost function was introduced into the LUBE framework,
and the PI combination approach was applied to further improve
reliability and flexibility. In the study by (Hu et al., 2017), three
indices, deviation of the coverage rate, deviation of PI from
uncovered targets, and interval width were viewed as
optimization objectives, further improving the prediction
performance of multi-objective optimization. In the study by
(Liu et al., 2020), a continuous and differential cost function was
proposed, making a gradient descent training mechanism feasible
in the LUBE framework. With the development of deep learning,
some works aimed to improve the performance of LUBE from the
perspective of a prediction engine. Various deep neural networks
were also introduced into LUBE to further enhance the
performance, such as recurrent neural networks (Shi et al.,
2018) and long short-term memory networks (Banik et al., 2020).

In the above references (Khosravi et al., 2011), (Hu et al.,
2017), (Shi et al., 2018), (Banik et al., 2020), the LUBE model was
usually trained by the heuristic algorithm due to the non-
differentiability of the cost function, which introduced the
heavy computational cost and unstable performance. To
address this problem, a biased convex cost function was
proposed in the study by (Long et al., 2021), which comprises
error term and penalty term to comprehensively evaluate the
quality of PI. Due to the differentiability and convexity, the
convex optimization could be utilized to train the LUBE
model instead of heuristic algorithm. However, the model
performance depends on enumeration and combination of the
hyper-parameters, to which the performance of the proposed
biased convex cost function is related. Thus, complex hyper-
parameter tuning seriously limits model training efficiency.

To relieve the heavy burden of hyper-parameter selection,
ensemble techniques are applicable in this study. The ensemble
mechanism combines several weak learners to generate a superior
strong learner and does not have high requirements of base
models (Xiyun et al., 20172017). The bagging ensemble is a
simple and widely used ensemble method, which generates
sub-datasets by bootstrap resampling to build base models and
aggregate them by averaging or majority voting (Breiman, 1996).
In the study by (Liu and Xu, 2020), the bootstrap resampling was
also utilized to obtain empirical distributions of point prediction
errors to construct PI. However, the average combination strategy
of bagging is too simple to guarantee the prediction performance
(Liu and Xu, 2020). High and stable prediction accuracy of the
bagging ensemble model requires a large number of base models,
which leads to great training time (Li et al., 2021b).

The stacking ensemble was first proposed by Wolpert to use a
meta learner for aggregating heterogeneous base models, which
transforms model aggregation into a newmodel training problem

(Wolpert, 1992). Such transformation allows diverse forms of
combination to improve the aggregation effect and relieves the
requirement of the number of base models. In the study by
(Massaoudi et al., 2021), a multi-layer perceptron was utilized as
the meta learner to combine different base models for load
prediction. In the study by (Moon et al., 2020), multiple deep
neural network models were aggregated by the principle
component regression based on the stacking ensemble
structure. Thus, the meta learner mechanism of stacking
ensemble is introduced into bagging to replace the average
combination strategy to enhance the ensemble quality in this
study.

To consider the computational efficiency of short-term
prediction, the linear regression model is chosen as the
meta model to combine PIs constructed by base models. In
the study by (Zhao et al., 2020), the ELM, which was regarded
as a nonparametric regression function, was formulated as a
MIP problem by introducing the binary variable to mark
whether the actual target covered by the PI. The quantile
regression (Koenker and Bassett, 1978) was further used to
cut down the number of the binary variables to improve the
computational efficiency. Thus, the LR meta model in this
study can also be formulated as a MIP problem through
introducing the binary variable, by which the combination
quality of PIs and the training efficiency of the meta model can
be ensured simultaneously, and such formulation can be
solved using the convex optimization technique.

This study proposes a CIP-based hybrid ensemble model,
which combines bagging and stacking ensemble approaches.
The CIP model with a biased convex cost function is
constructed based on the LUBE interval prediction
structure. To relieve the heavy burden of hyper-parameter
selection, the ensemble technology is employed to cut down
the number of hyper-parameters to three, which are the
number of base models, the number of hidden neurons,
and the value of the regularization coefficient. Multiple
CIPs with random hyper-parameters of the biased convex
cost function are selected as base models. Considering model
performance and training efficiency, the LR model is chosen
as the meta model to aggregate CIP base models, which can be
formulated as a MIP problem by introducing binary variables.
Multi-step ahead 10-min wind speed predictions with
multiple coverage probability are investigated in this study,
and comprehensive experiments are implemented based on
realistic wind farm data to validate the performance of the
proposed model.

In short, the main contributions of this study can be
summarized as follows:

1) A hybrid ensemble model is proposed for wind speed interval
prediction. The burden of tuning hyper-parameters of the
biased cost function is relieved and the total number of hyper-
parameters cuts down to three.

2) Stacking ensemble is introduced into bagging ensemble to
reduce model complexity. The linear regression model is
utilized as the combiner, which can be formulated as a
MIP problem, to improve the model training time.
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2 COMBINATION INTERVAL
PREDICTION–BASED ENSEMBLE MODEL

2.1 Evaluation Criterion
A prediction interval is composed of the upper and lower bounds
that bracket a future unknown value with a prescribed empirical
confidence level. In order to comprehensively evaluate the general
performance of the PIs, coverage rate and interval width are
served as the two criteria for the assessment. Given time-series
sample set D = {(xi, yi)}Ni�1, xi and yi denote the relevant
explanatory variables and the prediction target, respectively.
The predicted interval corresponding to yi is termed as [li, ui].

The prediction interval coverage probability, PICP, measures
the reliability of the PI, which is formulated by the proportion of
the targets falling within the PIs in (1).

PICP � 1
N

·∑N
i�1
1[li ,ui](yi) , (1)

where 1[li ,ui] (yi) = 1 when yi is covered by [li, ui], otherwise 0.
The prediction interval normalized average width, PINAW,

represents the concentration degree of PI, expressed as (2).

PINAW � 1
NR

·∑N
i�1
(ui − li) , (2)

where R denotes the range of the target value.

Generally, PI with high PICP and small PINAW is preferable.
However, excessive pursuit of narrow width is prone to yielding
unreliable PI with substandard coverage probability. Therefore,
the performance of the PI is generally evaluated via comparing
the PINAW under certain PICP.

The improved CWC index (Wang et al., 2020), shown in (3)
and (4), provides a comprehensive evaluation of PI.

CWC � (1 + η1 · PINRW) · (1 + γ · e−η2(PICP−PINC)), (3)
γ � { 0, PICP≥PINC

1, PICP<PINC
, (4)

where PINRW denotes the prediction interval normalized root
mean square width, which is expressed as (5), η1 is utilized to
linearly increase the influence of PINRW, η2 is the penalty factor
for PICP, and PINC represents the expected nominal coverage
probability for the evaluation on the test dataset.

PINRW � 1
R
·

������������
1
N

∑N
i�1
(ui − li)2

√√
. (5)

2.2 The Framework of Combination Interval
Prediction Based Hybrid Ensemble Model
The proposed CIPE model is on the basis of the hybrid ensemble
framework which combines bagging and stacking ensemble,
displayed in Figure 1. In base model training, the bootstrap
resampling is first utilized to generate different sub-datasets, D1,
. . . , Dk, . . . , DK. The kth CIP base model is pre-trained using the
convex optimization technique based on the Dk.

In meta model data collection, the whole dataset D is utilized by
each pre-trained CIP base model to separately construct PI, which
corresponds to the same time point. The predicted upper and lower
bounds of each pre-trained CIP model are collected to generate the
dataset U and L, which are the training data for meta models.

In meta model training, the LR model is employed to aggregate
base models, which can be formulated as a MIP problem by
introducing the binary variable to describe whether the target is
covered by PI. The quantile regression is utilized to cut down the
number of binary variables. To achieve the expected PICP and narrow
PINAW, the sum of PI width with weight penalty is regarded as the
objective and the expected PICP is considered as the constraint.

With the help of the ensemble mechanism, the values of hyper-
parameters in each CIP basemodel are randomly generated. The heavy
burden of the artificial selection of hyper-parameters in the CIP model
is relieved. Besides, the combination of the bagging and stacking
ensemble further enhances the generalization and robustness of the
randomly generated base model. Thus, the computational efficiency
and prediction performance can be achieved at the same time.

2.3 Combination Interval Prediction Base
Model
The CIP model is based on a double-output ELM prediction
model (Long et al., 2021), shown as Figure 2. A biased convex

FIGURE 1 | Framework of the CIPE model.
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cost function is proposed to obtain the output weight matrix for
the upper and lower bounds, respectively. Different trained upper
and lower bounds under different hyper-parameters of the
proposed cost functions are combined. The optimal
combination of the predicted upper and lower bounds with
optimal hyper-parameters is optimized by minimizing the
PINAW under the constraint of satisfying the expected PICP.

2.3.1 Extreme Learning Machine Predictor With
Biased Convex Cost Function
Given the training dataset {(xi, yi)}Ni�1, the mapping of xi in ELM
(Huang et al., 2004) is analytically formulated as (6).

h(xi) � f (wTxi + b), (6)
where f(x) is the activation function while h(x) is the output
vector of the hidden layer, and w and b are the input
weight matrix and the bias vector of the hidden layer,
respectively.

The lower and upper bounds of the PI can be defined as (7).

{ li � h(xi)T · β
ui � h(xi)T · �β , (7)

where �β and β are the output weight matrices of the upper and
lower bound output, respectively.

Since the actual value of li and ui are unknown, the �β and β
cannot be directly obtained by the utilization of the
Moore–Penrose generalized inverse technique. To solve this
problem, a biased convex cost function is proposed as (8),
which comprises the error term θi

2 and the penalty term S(θi).
The θi is the distance between the actual value and predicted
bound of the ith predicted target. The penalty term is
expressed as (9). In interval prediction, θi is separately
denoted as Δ �yi and Δ yi for upper and lower bounds,
where Δ �yi = yi–ui and Δ yi = li–yi.

E(θi|W, r, c) � θ2i +W · S(θi|r, c), (8)

S(θi|r, c) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

1 + erθi+c
, rθi + c≥ 0

2 − (rθi + c)
4

, rθi + c< 0
, (9)

where W, r and c are the hyper-parameters of the biased cost
function.

Each hyper-parameter of biased cost function E(·) has a clear
meaning which is directly related to the performance of PI. W is
the coefficient of penalty term S(·), which controls its proportion
in E(·). The hyper-parameter c is to alleviate the punishment on
the predicted targets which exceed the predicted bound. Because
100% coverage probability is usually not the objective, it is not
necessary to impose penalties on any violators. r amplifies the
deviation θ, providing more degrees of freedom to E(·).

Figure 3 graphically illustrates the effect of the hyper-
parameters of E(·). If θ > 0, the target exceeds the predicted
bound. In Figure 3A, at θ = 0.5, the value of E(·) increases to
about 6 times the original value when W increases from 1 to 10.
Thus, the increase inW leads to more penalties on the uncovered
target such that the predicted bound can be quickly adjusted to
cover it and PICP is improved. Similarly, apt changes of c and r
are able to control the proportion of punishment to adjust
the PICP.

Furthermore, the part where the red and blue lines overlap
illustrates that the target is inside the predicted bound. The
penalty term S(θ) almost disappears and error term θ2 is the
main part of the function E(·). In this condition, more attention is
paid to reducing the distance between the target and predicted
bound to decrease the interval width.

2.3.2 Upper and Lower Bound Combination
To improve the generalization performance of ELM, a
regularization term is added. The specific formulation of the
biased cost function of upper and lower bound output are
presented as (10) and (11).

F(�β|Vu) � ∑N

i�1E(Δ�yi|Wu, ru, cu) + Cu
�β
T �β, (10)

F( β |Vl) � ∑N

i�1E(Δyi
|Wl, rl, cl) + Clβ

T
β, (11)

where Cu and Cl are the regularization coefficients, Vu = {Wu, ru,
cu, Cu} is the hyper-parameter set for the upper bound, and Vl =
{Wl, rl, cl, Cl} is the hyper-parameter set for the lower bound. To
achieve narrow PINAW and satisfy the expected PICP, the
selection of Vu and Vl should be optimized and the CIP model
can be formulated as (12).

min
β,{Vu,Vl}∈ Θ

PINAW

s.t. PINAW> 0
PICPp ≤PICP≤ 1
β � {�β, β} ∈ arg{min{F(�β|Vu), F( β |Vl)}}, (12)

where PICP* denotes the pre-assigned nominal coverage
probability for model training, and Θ represents the searching
space of Vu and Vl. Since eight hyper-parameters need to be fine-
tuned, grid search strategy is utilized. Multiple prediction

FIGURE 2 | Structure of the CIP model.
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boundaries corresponding to different hyper-parameters are
generated, and the optimal PI is constructed via enumeration
and combination. The hyper-parameter space is too large to
search, and the optimal value is difficult to determine. Thus,
the ensemble mechanism is introduced to reduce the heavy work
of hyper-parameter selection by randomly generating the hyper-
parameter values.

2.4 Hybrid Ensemble Model
2.4.1 Hybrid Ensemble Structure
Bagging and stacking are two conventional ensemble methods.
Bagging ensemble aggregates the multiple base models by
averaging or majority voting. The base models are trained
based on different sub-datasets generated by the bootstrap
resampling. Stacking ensemble combines several
heterogeneous base models using a meta model. Its general
idea is to use the base models’ outputs along with real target
values to train the meta model. Unlike bagging, stacking
employs a certain learning algorithm as the combination
strategy to train the combiner instead of simple averaging
or voting methods. Thus, the stacking ensemble does not need
many base models to guarantee the robustness and stability of
the model.

The hybrid ensemble structure of the proposed CIPE model is
the integration of bagging and stacking, which absorbs their
advantages. In Figure 1, the bootstrap resampling method of
bagging is first used to benefit the base model pre-training and the
idea of the meta model of stacking is utilized to aggregate the base
models. The training dataset for the meta model is generated by
collecting the predicted outputs of the pre-trained base models on
the original dataset. The former ensemble approach is capable of
reducing the over-fitting or under-fitting, and the latter is
promising to reduce the bias and increase the prediction accuracy.

2.4.2 LR Meta Model
By utilizing binary variable a to indicate whether the target hits or
misses PI, the LR meta model can be formulated as a MIP
problem (Zhao et al., 2020). Suppose that L ={l1, . . . , lN} and
U ={u1, . . . , uN} are datasets for training the meta model of the
lower and upper bound, respectively. The meta model can be
formulated as (13).

min
�υ,υ ,aj

∑N
j�1
[g(uj, �υ) − g(lj, υ)] + λ(‖�ω‖1 + ���ω���1)

s.t. 0≤g(lj, υ)≤g(uj, �υ),∀j � 1, ..., N

g(lj, υ)≤yj +M(1 − aj),∀j � 1, ..., N

g(uj, �υ)≥yj −M(1 − aj),∀j � 1, ..., N
aj ∈ {0, 1},∀j � 1, ..., N∑N

j�1aj ≥ ⌈PICPp ·N⌉,
(13)

where �yj = g(uj, �υ) = �ω·uj + �b and yj = g(lj, υ) = ω·lj + b represent the
lower and upper bound, respectively. Actually, the g(uj, �υ) and g(lj, υ)
can be any convex function in this hybrid ensemble structure. To
consider the computational cost and practicality, the LR model is
selected as the meta model in this study. The objective is the pursuit
of minimal interval width and l1-norm regularization term ||ω||1.

The first constraint guarantees non-negative and non-crossing of
PI. The next two constraints represent the relationship between the
lower and upper bound, and the last constraint is the expected PICP
requirement. �υ and υ represent the parameters of the LR model, in
which �ω and ω represent the weight, and �b and b denote the
intercept. λ is the regularization coefficient. yj denotes the actual
target value, and M is a sufficient large constant.

It is obvious that the size of binary variables is large, which is
related to the number of training samples. To further improve the
model training efficiency, the quantile regression can be utilized to
reduce the number of binary variables. In the studies by (Wan et al.,
2017) and (Wan et al., 2018), quantile regressionwas formulated as a
simple linear programming problem, which is applied in this study.
The optimization objective is composed of the auxiliary variable for
replacing Pinball loss function and the regularization term, and the
constraints remain consistent with the findings of (Wan et al., 2017).
The interval bound corresponding to the given quantile can be
created through solving the linear programming problem.

The quantile regression with the given proportion pair 1-PICP*
and PICP* is first conducted to obtain the sub-interval PIsub, which is
presented in (14). The theoretical PICP of PIsub is 2PICP*-1, which is
less than PICP*. Thus, the yi covered by PIsub is also covered by PI.
The LR meta model then focuses on the training samples which are
not covered by PIsub so that the number of binary variables which
need to be solved is greatly reduced. The index set Γ of training data
and index set Η of targets covered by PIsub are defined as (15).

FIGURE 3 | Illustration of the hyper-parameters of E(·): (A) change on the value of W, (B) change on the value of c, and (C) change on the value of r.
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PIsubj � [ysub

j
, �ysub

j ]: � [q1−PICPp

j , qPICP
p

j ], (14)
Γ: � {1, · ··, N} H: � {j ∈ Γ

∣∣∣∣∣yj ∈ PIsubj }. (15)
The LRmeta model with the help of quantile regression can be

further formulated as (16).

min
�υ,υ ,aj

∑N
j�1
[g(uj, �υ) − g(lj, υ)] + λ(‖�ω‖1 + ���ω���1)

s.t. g(lj, υ)≤yj ≤g(uj, �υ),∀j ∈ H

0≤g(lj, υ)≤g(uj, �υ), ∀j ∈ Γ

g(lj, υ)≤yj +M(1 − aj),∀j ∈ Γ\H
g(uj, �υ)≥yj −M(1 − aj),∀j ∈ Γ\H
aj ∈ {0, 1},∀j ∈ Γ\H∣∣∣∣∣∣∣∣∣∣H

∣∣∣∣∣∣∣∣∣∣ + ∑
j∈Γ\H

aj ≥ �PICPp ·N�,

(16)

where |Η| denotes the number of binary variables covered by
PIsub. The binary variable aj reflects whether yj falling outside
PIsub is covered by PI.

3 COMBINATION INTERVAL
PREDICTION–BASED ENSEMBLE MODEL
TRAINING
With the integration of bagging and stacking ensemble and the
assistance of the MIP approach, the efficiency and stable
performance of the CIPE model can be achieved
simultaneously. The major procedure for training the CIPE
model is exhibited in Figure 4.

First, K different equal-sized subsets are generated by
bootstrap resampling. Hyper-parameters of each base model
are randomly assigned, and all base models are pre-trained on
the corresponding subsets. In each CIP model, the optimal global
solutions of minimizing (10) and (11) are the roots of their
gradients Gu(·) and Gl(·) in (17) and (18), respectively. The trust-
region algorithm (Zhang and Ordóñez, 2012) is chosen to search
the root of Gu(·) and Gl(·). The proper gradient norm tolerance is
set as the termination criteria.

Gu(�β|Vu) � ⎡⎣∑N
i�1

dE(Δ�yi

∣∣∣∣Wu, ru, cu)
dΔ�yi

· ∇�βΔ�yi + 2Cu
�β⎤⎦

L×1

. (17)

Gl( β |Vl) � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣∑N
i�1

dE(Δy
i

∣∣∣∣∣Wl, rl, cl)
dΔy

i

· ∇βΔyi
+ 2Cl β

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
L×1

. (18)

After pre-training all base models, the original training datasetD
is utilized for each pre-trained CIP base model to generate PI. The
corresponding predicted upper and lower bounds of each CIP base
model are separately collected to generate the meta model training
datasets U and L, in which predicted bounds of base models are
served as features. The quantile regression with proportion pair 1-
PICP* and PICP* are conducted to obtain the sub-interval PIsub. Two
LR meta models for the upper and lower bound are simultaneously
trained through the MIP based on PIsub.

In the prediction process, the samples in the prediction dataset are
first predicted by each CIP base model. K datasets of predicted upper
and lower bounds are constructed. After that, the predicted upper and
lower bounds of the PIs are separately combined by the two trained
LR models to form the final upper and lower bounds of PI.

Compared with the single CIP model, the novel CIPE model
avoids artificially determining the optimal value of the eight
hyper-parameters of the biased convex cost function in the
huge searching space. The integration of bagging and stacking
improves the generalization performance and ensures the
prediction accuracy and simplifies overall complexity.

4 CASE STUDY

In this section, to evaluate the performance of the proposed CIPE
model, five other state-of-the-art interval prediction methods are

FIGURE 4 | Flowchart of the proposed CIPE model training.
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employed for benchmarking. First, two other ensemble
forecasting approaches, including CIP with a bagging
ensemble (CIP-b) model and quantile regression forest (QRF)
(Meinshausen, 2006), are utilized to confirm the ensemble
performance. Second, two other methods concerning cost
functions are used to examine the quality of the biased convex
cost function, which are the bi-level optimization (BLO) (Safari
et al., 2019)-based interval prediction model and LSTM with a
gradient descend algorithm (LGD) (Li et al., 2020b)-based
interval prediction model. Third, the CIP model is compared
with CIPE to verify the improvement on model performance of
the proposed method.

In the CIP-b model, PI is constructed by averaging the
predicted upper and lower bounds of CIP base models which
are utilized in CIPE. In the QRF model, a random forests
algorithm regarded as the ensemble method is introduced to
build PIs through calculating quantiles corresponding to the
upper and lower bounds. In the BLO model, two independent
ELMs are served as prediction engines and an even power
polynomial function is proposed as the cost function. The
hyper-parameters are tuned by the meta-heuristic algorithm.
In the LGD model, a novel cost function applicable to the
gradient descend algorithm is introduced into the deep
learning network–based interval prediction model. LSTM with
fully connected neural networks is employed as the prediction
engine. In the CIP model, the hyper-parameters of the cost
function are determined using the grid search method. All
experiments are executed on a PC with an AMD 3600X CPU
at 3.8 GHz CPU and 16 GB RAM.

4.1 Experiment Setting
The realistic wind farm data from Huashishan Wind Farm in
Ningxia, China, are collected, which covers the period of time
from June to August 2016 with 10-min resolution. The historical
wind speed, wind direction, temperature, and calendar data are
selected as the input features. Multi-horizon prediction
experiments are implemented. The input vector and the
prediction target are normalized to [0, 1] linearly by min-max
scaling, respectively.

The proposed CIPE model has three hyper-parameters
requiring manual setting, the number of base models K is
set as 5, the number of hidden neurons of ELM in the base
model is selected as 200, and the regularization coefficient in
the MIP problem is set as 0.001. The parameters of the biased
cost function are randomly assigned, as shown in Table 1. Two
cost functions corresponding to upper and lower bounds have
the same random rule, and the parameters remain unchanged
during the training process. In BLO, the number of hidden
neurons of ELM is set as 200 and the degree of the polynomial
is 4. Particle swarm optimization (PSO) (Kennedy and
Eberhart, 1995) is utilized to tune the hyper-parameters. In
LGD, the hyper-parameter settings are mainly based on the
work of (Li et al., 2020b) and artificially fine-tuned. In QRF, the
number of trees, maximum depth of trees, and minimum size
of leaf nodes are set as 200, 15, and 25, respectively. In CIP, the
number of hidden neurons of ELM is also set as 200. The first
2/3 of samples are selected as the training dataset and the rest

are the test dataset. All the approaches are compared based on
the same datasets.

In this study, the expected nominal coverage probability,
PINC, in the test dataset is set as 90% and 95%. Since the
deviation of PICP from PINC is inevitable, the average
coverage deviation (ACD) is introduced to evaluate the
performance of PIs in (19). The parameters η1 and η2 of CWC
in (3) are set as 6 and 10, respectively.

ACD � PICP − PINC. (19)

4.2 Comparison Experiment
4.2.1 Comparison With Other Ensemble Models
The prediction results of various ensemble models in multi-step
ahead prediction under different PINC are demonstrated in
Table 2. It is evident that the proposed CIPE obtains better
performance than QRF and CIP-b, and CIP-b behaves the worst.
First, in the aspect of PICP, the evaluation index ACD indicates
the compliance and volatility of PICP. Apparently, PICP of CIP-b
significantly fluctuates and is severely substandard in most cases.
CIPE and QRF have roughly the same reliability in PICP, but the
variance for ACD of CIPE is equal to 0.076, which is smaller than
that of QRF, 0.102, which means CIPE has better prediction
stability. Second, in terms of PINAW, ignoring CIP-b for its poor
performance in PICP, QRF tends to generate conservative
intervals with the larger PINAW. Third, CWC
comprehensively evaluates the quality of the constructed PIs.
CIPE obtains the smallest value of CWC in most instances,
further indicating that CIPE has comprehensive advantages in
model performance.

In the QRF model, the random forest structure is applied as
the ensemble structure, and the quantile regression is regarded as
the base predictor. In Table 2, CIPE obtains smaller PINAW than
QRF in all the cases and is approximately 2% narrower than QRF,
whichmeans that the proposed CIPE is capable of constructing PI
with better interval width under a similar coverage performance
compared to QRF. Besides, except for the 4-step ahead prediction
under PINC = 90%, in which CIPE produces substandard PICP,
all values of index CWC of CIPE are smaller than those of QRF,
demonstrating better ensemble performance of CIPE than QRF.

The intervals predicted by CIPE and QRF under PINC = 90%
in 4-step ahead prediction and under PINC = 95% in 1-step ahead
prediction are exhibited in Figure 5 and Figure 6, respectively. In
Figure 5, PI constructed by CIPE is generally bracketed by and
narrower than the one corresponding to QRF most of the time.
The real targets tend to fall in the middle of the interval generated
by CIPE, presenting its more reliable performance in prediction.

TABLE 1 | Random generation rule of hyper-parameters of the biased cost
function in CIPE.

Parameter Random value

W 1 + 40× U [0, 1]
c 5 + 2× U [0, 1]
r - 4–6× U [0, 1]
C 0.5× U [0, 1]
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In Figure 6, although the gap between two intervals is not quite
obvious, the interval width of CIPE is still smaller than that of
QRF at all times. During the period of high volatility marked by
the red dotted box in Figure 6, the interval of QRF tends to
guarantee PICP through generating spikes to increase the interval
width. Therefore, CIPE has better performance in sharpness
under similar reliability.

CIP-b utilizes simple averaging to integrate the CIP base
models used by CIPE. The prediction results of 5 different
base models, CIP-b, and CIPE under PINC = 90% in multi-

step ahead prediction are demonstrated in Table 3. It is evident
that CIP-b suffers from large deviation around PINC and the
greatest occurs in 4-step ahead prediction. In this circumstance,
PINAW cannot reasonably describe the model performance of
CIP-b because too high or too low PICP results in inappropriate
interval width. Accordingly, the serious inadequacy of PICP
exhibits bad prediction performance of CIP-b. This is because
the simple averaging ensemble method of bagging proposes high
requirement on the number of base models, and the serious
shortage of base models is to blame for the performance of CIP-b.

TABLE 2 | Multi-step ahead prediction results of QRF, CIP-b, and CIPE under different PINC.

PINC(%) PICP(%) ACD(%) PINAW(%) CWC

QRF CIP-b CIPE QRF CIP-b CIPE QRF CIP-b CIPE QRF CIP-b CIPE

1-step 95 95.37 93.54 95.69 0.37 −1.46 0.69 24.92 20.94 22.77 2.52 4.87 2.37
90 90.67 96.28 90.15 0.67 6.28 0.15 18.30 22.74 17.18 2.11 2.36 2.04

2-step 95 95.55 92.35 95.48 0.55 −2.65 0.48 36.49 27.88 33.46 3.21 6.16 3.01
90 90.45 92.41 90.26 0.45 2.41 0.26 27.33 27.88 25.98 2.66 2.67 2.58

3-step 95 94.96 88.54 95.35 −0.04 −6.46 0.35 38.85 27.04 37.50 6.72 7.63 3.27
90 90.70 84.74 90.77 0.70 −5.26 0.77 32.11 23.43 30.46 2.94 6.48 2.88

4-step 95 94.69 82.62 95.08 −0.31 −12.38 0.08 43.30 28.47 42.19 7.37 12.05 3.54
90 90.10 76.46 89.90 0.10 −13.54 −0.10 34.80 22.41 32.52 3.11 11.43 5.93

5-step 95 95.27 77.22 95.47 0.27 −17.78 0.47 49.35 26.97 46.99 3.99 18.13 3.83
90 90.22 87.20 90.15 0.22 −2.80 0.15 37.59 30.20 34.57 3.28 6.54 3.09

FIGURE 5 | Prediction result of CIPE and QRF under PINC = 90% in 4-step ahead prediction.

FIGURE 6 | Prediction result of CIPE and QRF under PINC = 95% in 1-step ahead prediction.
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However, the proposed CIPE model effectively solves this
problem through introducing the stacking ensemble approach.

As long as the performance of all the base models is not too
bad, CIPE can achieve a preferable and stable performance and
has the capability of accommodating and ameliorating the bad
performance of its base models. In 3-step ahead prediction of
Table 3, it clearly observed that Base 1, Base 3, and Base 4 have
severely substandard PICP, which are around 60%. In this case,
CIPE can still construct PI which satisfies the coverage
requirement. Moreover, CIPE can balance the narrow width
caused by the substandard coverage rate and the wide width
caused by the relatively high coverage rate. Similarly, in 4-step
ahead prediction, the PICP of four base models scatter around
60%, while only one of them achieves above-standard
performance. It is evident that PI constructed by CIPE still
manifests relatively satisfying PICP which is close to PINC and
preferable PINAW. It implies that CIPE mitigates the
requirement of the number of base models and improves
prediction performance.

4.2.2 Comparison With Other Models With Cost
Function
Table 4 presents the prediction results of various models with
uniquely designed cost function in multi-step ahead prediction
under PINC = 90%. CIPE obtains the best performance among
the three methods, demonstrating the superiority of its cost
function. BLO utilizes a heuristic algorithm to find the optimal
hyper-parameters, and the performance is seriously limited by the
search space, maximum iterations, and other factors which are
difficult to decide. Furthermore, the even power polynomial cost
function pays much attention to PICP and ignores its balance
with PINAW. Therefore, BLO tends to achieve substandard PICP,

conservative PINAW, and unsatisfactory training efficiency.
Besides, LGD employs two functions respectively
corresponding to PICP and PINAW to form a cost function.
However, the coverage part of the cost function leads to the
possibility of interval crossover, posing great challenge to hyper-
parameter adjustment. The average absolute ACD of LGD, which
is equal to 0.53, is higher than that of CIPE, 0.35. It indicates that
the performance of CIPE in PICP is closer to expectation than
LGD. In terms of PINAW, the average improvement of CIPE
compared to LGD is 19.56% and the maximum reaches 27.6%,
which occurs in 1-step ahead prediction. From the perspective of
the comprehensive index CWC, CIPE generally obtains the
smallest value, which illustrates its preferable performance and
further exhibits the superiority of the biased convex cost function.

Figure 7 and Figure 8 graphically present the specific
comparisons of the prediction result. Figure 7 shows the
prediction result of CIPE and BLO under PINC = 90% in 2-step
ahead prediction. Generally, PI of CIPE is completely surrounded by
that of BLO and the gap is clearly visible, indicating the better
sharpness of the PI predicted by CIPE. Figure 8 presents the
comparison between CIPE and LGD under PINC = 90% in 3-
step ahead prediction. The result demonstrates that LGD tends to
construct conservative PI with large interval width. It is evident that
the boundaries of LGD prediction interval are relatively smooth,
which cannot effectively reflect the characteristics of real targets.
Therefore, the PI predicted by CIPE obtains better performance than
those predicted by LGD and BLO.

4.2.3 Comparison With Single Combination Interval
Prediction Model
The prediction results of CIP and CIPE under different PINC are
presented in Table 5. CIPE generally has better performance than

TABLE 3 | Multi-step ahead prediction results of different base models, CIP-b, and CIPE under PINC = 90%.

Pred. step Base 1 Base 2 Base 3 Base 4 Base 5 CIP-b CIPE

PICP(%) 1 97.78 96.35 63.21 84.74 72.60 96.28 90.15
2 91.82 83.52 68.61 85.02 98.76 92.41 90.26
3 64.64 93.06 50.82 57.89 87.03 84.74 90.77
4 64.92 64.66 94.03 63.08 58.89 76.46 89.90
5 83.98 83.78 65.00 55.42 95.08 87.20 90.15

PINAW(%) 1 29.69 33.32 18.46 16.69 15.56 22.74 17.18
2 31.55 20.81 14.84 23.49 48.70 27.88 25.98
3 17.86 37.80 19.46 15.95 26.06 23.43 30.46
4 17.42 21.08 36.18 20.59 16.80 22.41 32.52
5 32.76 31.99 19.55 20.88 45.83 30.20 34.57

TABLE 4 | Multi-step ahead prediction results of LGD, BLO, and CIPE under PINC = 90%.

Pred.
step

PICP(%) ACD(%) PINAW(%) CWC

LGD BLO CIPE LGD BLO CIPE LGD BLO CIPE LGD BLO CIPE

1 90.20 90.08 90.15 0.20 0.08 0.15 23.73 19.89 17.18 2.47 2.19 2.04
2 90.53 91.56 90.26 0.53 1.56 0.26 30.87 30.64 25.98 2.91 2.86 2.58
3 91.33 89.85 90.77 1.33 −0.15 0.77 35.90 32.23 30.46 3.24 6.03 2.88
4 90.40 89.77 89.90 0.40 −0.23 −0.10 39.49 36.26 32.52 3.45 6.46 5.93
5 89.80 88.84 90.15 −0.20 −1.16 0.15 44.07 39.81 34.57 7.60 7.25 3.09
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single CIP. In terms of ACD, the average absolute value of CIPE is
equal to 0.35, which is smaller than that of CIP, 0.65. It implies
CIPE possesses more preferable PICP performance which is
closer to the expected coverage probability than single CIP. In
the aspect of PINAW, CIPE obviously obtains narrower width
than CIP in all cases and the average improvement reaches 7.48%.
Besides, except for the 4-step ahead prediction under PINC =
90%, in which CIPE achieves substandard PICP, CIPE obtains
smaller values of index CWC than CIP, demonstrating better
comprehensive performance. Therefore, it illustrates that the

prediction performance can be effectively improved through
the proposed ensemble method.

Figure 9 and Figure 10 intuitively show the specific
comparison of performance between CIPE and CIP under
PINC = 90% in 2-step ahead prediction and under PINC =
95% in 1-step ahead prediction. It is clearly noticed that the
upper bound of the interval generated by CIPE is significantly
lower than that of the CIP model, while the lower bounds of the
two models are very close. In Figure 9, the interval width of PI
constructed by CIPE is about 3 m/s, and the gap compared to the

FIGURE 7 | Prediction result of CIPE and BLO under PINC = 90% in 2-step ahead prediction.

FIGURE 8 | Prediction result of CIPE and LGD under PINC = 90% in 3-step ahead prediction.

TABLE 5 | Multi-step ahead prediction results of CIP and CIPE under different PINC.

PINC(%) PICP(%) ACD(%) PINAW(%) CWC

CIP CIPE CIP CIPE CIP CIPE CIP CIPE

1-step 95 95.63 95.69 0.63 0.69 25.46 22.77 2.53 2.37
90 89.69 90.15 −0.31 0.15 18.44 17.18 4.28 2.04

2-step 95 96.14 95.48 1.14 0.48 37.01 33.46 3.22 3.01
90 90.19 90.26 0.19 0.26 30.87 25.98 2.85 2.58

3-step 95 94.83 95.35 −0.17 0.35 39.79 37.50 6.84 3.27
90 91.09 90.77 1.09 0.77 32.55 30.46 2.96 2.88

4-step 95 95.61 95.08 0.61 0.08 43.83 42.19 3.63 3.54
90 90.62 89.90 0.62 −0.10 34.07 32.52 3.05 5.93

5-step 95 95.99 95.47 0.99 0.47 48.54 46.99 3.91 3.83
90 89.30 90.15 −0.70 0.15 37.69 34.57 6.79 3.09
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one constructed by CIP is around 1 m/s. Figure 10 has a similar
situation, which means that the CIP model tends to be more
conservative in sharpness than the CIPE model.

4.2.4 Comparison of Computational Efficiency
The model training time under PINC = 90% is reported in Table 6.
The model of CIP has the greatest computational cost due to the
hyper-parameters’ searching by the grid search. The following is the
BLO model because the training performance of the heuristic
algorithm largely depends on the maximum number of iterations.
The remaining four models have close computational times. The
training time of CIP-b is the least owing to its simple averaging
ensemble mechanism, but it suffers from unsatisfactory prediction
performance. Except for CIP-b, the proposed CIPE method obtains

the minimal training time. It illustrates that CIPE successfully
alleviates the pressure of tuning hyper-parameters of the biased
cost function and achieves superior training efficiency. In general,
facilitated with the hybrid ensemble framework, the proposed CIPE
model merits high potential for online model updating.

5 CONCLUSION

In this study, a CIP-based hybrid ensemble model for multi-
horizon ahead wind speed interval prediction was proposed.
The CIP model was a ELM predictor with a biased convex cost
function based on LUBE prediction structure. To avoid the heavy
training work of the CIP model, the ensemble technique was
employed. The bagging and stacking ensemble methods were
combined to aggregate multiple CIP models with randomly
assigned hyper-parameters. The CIP models were trained first
based on the sub-datasets generated using the bootstrap
resampling technique of bagging ensemble. The LR model was
chosen as the meta model to aggregate CIP base models instead of
the average aggregation. The MIP method and quantile regression
were utilized to train the hybrid ensemblemodel and determine the
optimal parameters of the LR model. Due to the efficient
computational performance of MIP and the biased convex cost

FIGURE 9 | Prediction result of CIPE and CIP under PINC = 90% in 2-step ahead prediction.

FIGURE 10 | Prediction result of CIPE and CIP under PINC = 95% in 1-step ahead prediction.

TABLE 6 | Training time of different models under PINC = 90% in multi-step ahead
prediction.

Pred. step CIPE (s) QRF (s) CIP-b (s) LGD (s) BLO (s) CIP (s)

1 15.5 21.6 11.9 32.1 4894.2 9401.2
2 16.9 21.4 11.4 31.8 5294.5 8843.9
3 15.8 21.5 10.6 32.2 5086.5 9036.3
4 15.4 21.5 11.1 32.8 5603.1 8896.4
5 16.2 21.4 10.5 32.3 5257.7 8793.3
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function of CIP, the overall computational efficiency of CIPE is
guaranteed, which is important for the short-term wind speed
prediction. Comprehensive case studies under realistic wind farms
validated the superior effectiveness and efficiency of the proposed
CIPE model, exhibiting excellent PI quality and high potential for
online application.
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