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This paper proposes a stochastic hydro unit commitment (SHUC)model for a price-

taker hydropower producer in a liberalizedmarket. The objective is tomaximize the

total revenue of the hydropower producer, including the immediate revenue, future

revenue (i.e., opportunity cost), and startup and shutdown cost. The market price

uncertainty is taken into account through the scenario tree. The solution of the

model is a challenging task due to its non-convex and high-dimensional

characteristics. A solution method based on the Benders Decomposition (BD)

and Modified Stochastic Dual Dynamic Programming (MSDDP) is proposed to

solve the problem efficiently. Firstly, the BD is applied to decompose the original

problem into a Benders master problem representing the hydro unit commitment

and a Benders subproblem representing the optimal operation of the hydropower

plants. TheBenders subproblem,which contains a largenumber of integer variables,

is further decomposed by the period and solved by the MSDDP proposed in this

paper. Finally, we verify the effectiveness of the SHUCmodel and the performance

of the proposed solution method in case studies.

KEYWORDS

hydro unit commitment, hydropower, mixed-integer linear programming, stochastic
programming, benders decomposition (BD), stochastic dual dynamic programming
(SDDP)

1 Introduction

The hydro unit commitment (HUC) problem is a significant operational problem in the

hydropower system (Li et al., 2014). It is used to determine an optimal commitment schedule of

each unit in the hydropower plant for the next day or week while considering various physical

constraints, such as water balance and minimum up and down time (Nazari-Heris et al., 2017;

Ackooij et al., 2021; Amani and Alizadeh, 2021). Due to its non-convex and high-dimensional

characteristics, the HUC problem has always been a challenging task (Cheng et al., 2016;

Ackooij et al., 2018).
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Due to the potential benefits of the HUC problem, a variety of

research has been proposed on the HUC problem over the last

few decades, mainly focused on the modeling and solution

methods (Parvez et al., 2019; Kong et al., 2020). Much

literature takes water consumption minimization as the

optimization objective (Li et al., 2014; Cheng et al., 2016;

Nazari-Heris et al., 2017; Ackooij et al., 2018; Ackooij et al.,

2021; Amani and Alizadeh, 2021), and most of the existing

models are deterministic (Li et al., 2014; Cheng et al., 2016;

Nazari-Heris et al., 2017; Ackooij et al., 2018; Parvez et al., 2019;

Kong et al., 2020; Thaeer Hammid et al., 2020; Ackooij et al.,

2021; Amani and Alizadeh, 2021). In a liberalized market, a

hydropower producer is usually an entity owning hydropower

units and participating in the electricity market with the objective

of maximizing its total revenue. The hydropower producer

obtains the power generation right and gains profit by

submitting bidding to the independent system operator (ISO).

The ISO is responsible for market clearing and calculating the

electricity price at each time. Therefore, the uncertainty of the

market price has a significant impact on the HUC schedule (Wei

et al., 2021; Xiao et al., 2021). On the other hand, due to the

existence of the reservoir, the hydropower producer can release

water at the current stage (which gains immediate revenue) or at

a certain stage in the future (which gains future revenue). That is,

the immediate revenue represents the revenue that the

hydropower producer obtains in the current stage by power

generation (Kelman et al., 1998). The future revenue represents

the economic value of the water stored in the reservoir. To

maximize the total revenue, the HUC schedule needs to make a

trade-off between the immediate revenue and future revenue

(i.e., opportunity cost). A coordinated scheduling method of the

wind-hydro system was proposed in (Abreu et al., 2012). The

scheduling method was formulated as a stochastic price-based

unit commitment model, which maximizes the immediate

revenue of the generation company. Literature (Pérez-Díaz

et al., 2010) proposed a dynamic programming model to solve

the short-term scheduling problem of a hydropower plant that

participates in a liberalized market with the objective of

maximizing the immediate revenue. The calculation method

of the future revenue was firstly proposed in (Kelman et al.,

1998). In the paper, the Stochastic dynamic programming (SDP)

was applied to calculate the future revenue of a hydrothermal

system in the liberalized market. However, the curse of

dimensionality of the SDP limited the further application.

Then Stochastic dual dynamic programming (SDDP)

proposed in (Pereira and Pinto, 1991) was applied in (Kelman

et al., 1998; Pereira et al., 1999; Barroso et al., 2002; Helseth et al.,

2016) to calculate the future revenue in a large hydropower

system. To the best of our knowledge, none of the existing

literature on HUC has taken the future revenue into account.

Due to the nature of non-convexity, the solution of the HUC

problem has always been a difficulty. Researchers have developed

various solution methods to solve it efficiently (Parvez et al.,

2019; Kong et al., 2020; Thaeer Hammid et al., 2020).

FIGURE 1
The complete scenario tree.

FIGURE 2
The flow chart of the LAPCP algorithm for solving the
problem (39).
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Conventional methods based on mathematical programming

primarily include mixed-integer linear programming (MILP)

(Diniz and Maceira, 2008; Tong et al., 2013; Guisández and

Pérez-Díaz, 2021), non-linear programming (NLP) (Lima et al.,

2013), mixed-integer quadratic programming (MIQP) (Finardi

and da Silva, 2006), and dynamic programming (DP) (Seguin

et al., 2016). Heuristic algorithms such as artificial neural

networks (ANN) (Naresh and Sharma, 2000), genetic

algorithm (GA) (Ahmed and Sarma, 2005), and differential

evolutionary (DE) (Zha ng et al., 2013) were also reported.

We refer to (Parvez et al., 2019; Kong et al., 2020; Thaeer

Hammid et al., 2020) for more solution methods on the HUC

problem. Recently, decomposition methods, including dual

decomposition (Finardi and da Silva, 2006), Benders

Decomposition (BD) (Benders, 2005; Moiseeva and Hesam

zadeh, 2017; Colonetti and Finardi, 2021), and SDDP

(Helseth et al., 2016; Hjelmeland et al., 2019) have gained

more and more attention in the hydropower generation

scheduling problems due to their good computational

performance. SDDP is a state-of-the-art algorithm for long-

and medium-term hydropower scheduling problems

(Hjelmeland et al., 2019). However, SDDP uses the dual

solution to construct the future cost function (FCF), so it

cannot be used to solve MILP problems (Hjelmeland et al.,

2019). The optimal operation of the hydropower plant is a

typical non-convex optimization problem. To tackle this

difficulty, the McCormick envelope was used by (Cerisola

et al., 2012) to approximate the bilinear relationship between

variables. Literature (Steeger and Rebennack, 2017) proposed a

Lagrangian relaxation of the non-convex SDDP subproblem,

and then Lagrange multipliers instead of dual multipliers were

used to construct valid FCF. Recently, literature (Zou et al.,

2019) proposed a Stochastic Dual Dynamic integer

Programming (SDDiP) algorithm for solving multi-stage

stochastic integer programming problems with binary state

variables. However, SDDiP has to solve a Lagrangian dual

problem at each stage. It is well known that the convergence

of the Lagrangian dual problem can be very slow. A novel type

of cut called locally valid cut was proposed by (Abgottspon

et al., 2014) and introduced to the SDDP framework to enhance

a convexified approximation of the FCF. The above references

propose different approaches to deal with non-convexity in the

SDDP subproblem. The ultimate purpose of these approaches is

to construct a valid and tight FCF.

The contributions of this paper are listed as follows.

1) A stochastic hydro unit commitment (SHUC) model is

proposed, which aims to maximize the hydropower

producer’s total revenue. The opportunity cost and the

market price uncertainty are taken into account.

2) A solution method, which decomposes the SHUC problem

into two layers, is proposed based on the framework of

Benders Decomposition. The outer layer is the Benders

master problem, which is used to determine each unit’s

startup and shutdown status. The inner layer Benders

subproblem is used to determine the optimal operation of

the hydropower plants.

3) To efficiently solve the large-scale mixed-integer Benders

subproblem, a modified stochastic dual dynamic

programming (MSDDP) is proposed based on the Lift-

and-Project cutting plane (LAPCP) algorithm.

The rest of the paper is organized as follows. Section 2

proposes the SHUC model. Section 3 proposes the solution

method of the SHUC model. In Section 4, we verify the

effectiveness of the SHUC model and the computational

performance of the solution method in case studies. Finally,

Section 5 concludes this paper.

2 Stochastic unit commitment model

2.1 Objective function

In a liberalized market, the objective of the SHUC model is

to maximize the total revenue, which can be shown in

(Eqs 1–4):

TABLE 1 The flow chart of the MSDDP algorithm.
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maxF � (Rim + Rfut − C) (1)

Rim � ∑T
t�1
∑K
k�1

∑Jk
j�1

θtPt,k,j (2)

Rfut � ∑K
k�1

αk(vT,k) (3)

C � ∑T
t�1
∑K
k�1

∑Jk
j�1
[SUk,jzut,k,j + SDk,jzdt,k,j] (4)

Where Rim, Rfut, and C represent the immediate revenue,

future revenue, and the sum of the startup and shutdown

cost, respectively. T, K, and Jk represent the number of

periods, hydropower plants, and units in plant k,

respectively. We use θt to denote the random variable of

market price at period t. Pt,k,j represents the power output

of unit j in plant k. αk represents the piecewise linear

approximation of the future revenue (Moiseeva and Hesam

zadeh, 2017), which represents the opportunity cost of the

water stored in the reservoirs. It is expressed as a function of

the reservoir volumes. SUk,j and SDk,j represent the startup

and shutdown cost of unit j in plant k, respectively. zut,k,j is a

binary variable that is equal to 1 if unit j is started up and

zdt,k,j is a binary variable that is equal to 1 if unit j is

shut down.

2.2 Constraints

1) Water balance constraint

vt,k � vt−1,k + 3600Δt⎛⎝ −qt,k + It,k + ∑
ωk∈Ωk

qt−τ,ωk
⎞⎠, ∀t, ∀k (5)

Constraint (Eq. 5) represents the water balance equation

between two consecutive periods. Where vt,k, qt,k and It,k
represent the reservoir volume, water release, and inflow,

respectively. Δt represents the number of hours in one period.

FIGURE 3
The flow chart of the proposed solution method to solve the problem (1)–(25).
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Ωk is the set of hydropower plants which are located upstream of

the plant k. τ represents the water delay time between two

adjacent plants.

2) Water release, water discharge and spillage

qt,k � ut,k + spt,k, ∀t, ∀k (6)

ut,k � ∑Jk
j�1

rt,k,j, ∀t, ∀k (7)

0≤ rt,k,j ≤ zt,k,jR
max
k,j , ∀t, ∀k, ∀j (8)

Constraint (Eq. 6) defines the relationship between water

release, water discharge, and spillage. Constraint (Eq. 7) gives the

expression of the water discharge. Constraint (Eq. 8) defines the

upper and lower bounds on unit discharge. Where ut,k and spt,k

represent the water discharge and spillage, respectively. rt,k,j
represents the water discharge of unit j in plant k. zt,k,j is a

binary variable that is equal to 1 if unit j is online.Umax
k,j represents

the maximum of the water discharge of unit j.

3) Fore-bay level, tail-race level, penstock loss, and net head

hut,k � fuk(�vt,k), ∀t, ∀k (9)
�vt,k � vt−1,k + vt,k

2
, ∀t{2, . . . , 24}, ∀k (10)

hdt,k � fdk(qt,k), ∀t, ∀k (11)
hlt,k,j � flk,j(rt,k,j), ∀t, ∀k, ∀j (12)

ht,k,j � hut,k − hdt,k − hlt,k,j, ∀t, ∀k, ∀j (13)

The fore-bay level is formulated as a non-linear function of

the reservoir volume (Li et al., 2014), as shown in (Eq. 9).

Constraint (Eq. 10) defines the medium volume as the average

reservoir volume in two consecutive periods (Pereira et al., 2017).

The tail-race level is formulated as a nonlinear function of the

water release (Li et al., 2014), as given in (Eq. 11). Constraint (Eq.

12) gives the relationship between the penstock loss and unit

discharge (Cheng et al., 2016). Constraint (Eq. 13) defines the

expression of the net head. Where hut,k and hdt,k represent the

fore-bay and tail-race levels of plant k, respectively. hlt,k,j and

ht,k,j represent the penstock loss and net head of the unit j in plant

k, respectively.

4) Future revenue constraints

αk ≤∑K
k�1

πw,kvT,k + βw, w ∈ Φ, ∀k (14)

Constraint (Eq. 14) defines the future revenue of the

hydropower producer. Where πw,k and βw denote the slope

and intercept of the future revenue, respectively. vT,k
represents the reservoir volume at period T. Φ represents the

set of the slope index. The future revenue is expressed as a

piecewise linear function of the reservoir volume. It can be

obtained by the medium-term scheduling using SDDP. We

refer to (Kelman et al., 1998) for more details.

5) Hydropower generation function

Pt,k,j � fpk.j(rt,k,j, ht,k,j, ηk,j), ∀t, ∀k, ∀j (15)
ηk,j � fek,j(rt,k,j, ht,k,j), ∀t, ∀k, ∀j (16)
0≤Pt,k,j ≤ zt,k,jP

max
k,j , ∀t, ∀k, ∀j (17)

The hydropower generation function is a non-linear

function of the unit discharge, generation efficiency, and net

head (Cheng et al., 2016), as shown in (Eq. 15). The generation

efficiency of the hydro unit is a non-linear function of the unit

discharge and net head (Cheng et al., 2016), as defined in (Eq.

16). Where ηk,j represents the generation efficiency of the unit j.

The non-linear relationships in (Eqs 9, 11, 12, 15, 16) can be

linearized using the method proposed in (Guisández and Pérez-

Díaz, 2021).

TABLE 2 Technical parameters of the hydropower plants.

Parameters Plant Xi Plant Xiang

Vmax (m3 × 108) 115.0 49.5

Vmin (m3 × 108) 51.1 40.7

Pmax (MW) 12,600 6,000

Pmin (MW) 0 0

Umax (m³/s) 7,450 6,704

Umin (m³/s) 0 0

Units 18 8

TABLE 3 The parameters of the future revenue constraints.

w πw.k βw × 109

Plant Xi Plant Xiang

1 0.0273 0.0148 −2.4195

2 0.0197 0.0118 −1.6123

3 0.0137 0.0081 −1.0322

FIGURE 4
The procedure of the scenario tree generation.
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7) Forbidden operation zones

Pt,k,j − Fk,j − �Pk,j(1 − zot,k,j)≤ 0, ∀t, ∀k, ∀j (18)
Pt,k,j − �Fk,j(1 − zot,k,j)≥ 0, ∀t, ∀k, ∀j (19)

Constraints (Eq. 18) and (Eq. 19) define the constraints of

the forbidden operation zones on the hydro unit. Where

[Fk,j, �Fk,j] is the forbidden power output of unit j. zot,k,j is

a binary variable that is equal to 1 if 0≤Pt,k,j ≤Fk,j and

0 if �Fk,j ≤Pt,k,j ≤ �Pk,j.

6) Logical constraints

zt,k,j − zt−1,k,j � zut,k,j − zdt,k,j, ∀t, ∀k, ∀j (20)
zut,k,j + zdt,k,j ≤ 1, ∀t, ∀k, ∀j (21)

zut,k,j + ∑t+UT−1

τ�t+1
zdt,k,j ≤ 1, ∀t, ∀k, ∀j (22)

zdt,k,j + ∑t+DT−1

τ�t+1
zut,k,j ≤ 1, ∀t, ∀k, ∀j (23)

∑T
t�1
zut,k,j ≤ZU, ∀t, ∀k, ∀j (24)

∑T
t�1
zdt,k,j ≤ZD, ∀t, ∀k, ∀j (25)

Constraints (Eq. 20) and (Eq. 21) define the startup and

shutdown statuses of the unit j. Constraints (Eq. 22) and

(Eq. 23) guarantee the minimum online/offline time of the

unit j. Constraints (Eq. 24) and (Eq. 25) limit the maximum

numbers of startup and shutdown, respectively. Where UT

and DT represent the minimum online and offline time of

the unit, respectively. ZU and ZD represent the number of

the startup and shutdown of the unit, respectively.

3 Solution method

The SHUC model proposed in Section 2 contains a large

number of integer variables. The solution time increases

exponentially when the number of scenarios increases.

SDDP is an efficient decomposition algorithm for solving

multi-stage stochastic programming problems. However, the

multiperiod coupling constraints (Eqs 22–25) and integer

variables make the SDDP algorithm unable to be applied

directly.

This section proposes a two-layer decomposition solution

method based on the BD and MSDDP. We first use the BD to

deal with multiperiod coupling constraints. The original

problem (Eqs 1–25) is decomposed into a Benders master

problem (BMP) [as shown in (Eqs 26–28)] and a Benders

subproblem (BSP) [as shown in (Eqs 29–34)]. Then, the BSP

is further decomposed according to the period and solved by

the MSDDP algorithm proposed in Section 3.2. In each

iteration, the BMP provides the startup and shutdown

statuses for the BSP, while the BSP decides the optimal

operation schedule of each unit and feeds back the

parameters used to construct the Benders cut.

The solution method proposed in this section is conceptually

similar to the work proposed in (Helseth et al., 2018), the

differences between the two methods are listed as follows. 1)

The binary variables related to the water level constraints are

included in the BSP to provide information for the optimization

of the BSP. Therefore, the BSP is formulated as a MILP problem,

which cannot be solved by the SDDP. That is, the solution

method proposed in (Helseth et al., 2018) will no longer work

here. 2) The proposed method solves the BSP to optimal in each

iteration of the BD algorithm. Therefore, the cut generated by the

BSP is tighter than the method in (Helseth et al., 2018), which

leads to a shorter solution time.

To avoid confusion, the cut provided for the BMP is called

Benders cut, as shown in (Eq. 27). The cut generated in the

backward iteration of the MSDDP is called MSDDP cut, as

shown in.

TABLE 4 The problem scale of the BMP, BSP, and SHUC model.

# Of variables # Of binary variables # Of binary constraints

BMP 2,496 1,872 4,368

BSP 2.34 × 1012 8.47 × 1011 1.72 × 1012

SHUC 2.34 × 1012 8.47 × 1011 1.72 × 1012

TABLE 5 The comparison of the solution results between CPLEX and
the proposed method.

Term CPLEX Proposed

Immediate revenue ($ × 106) 7.4522 7.4515

Future revenue ($ × 108) 2.8176 2.8184

ST and SD cost ($ × 104) 1.8223 1.8223

Total revenue ($ × 108) 2.8842 2.8849

Total release of plant Xi (m3 × 107) 3.7291 3.7293

Total release of plant Xiang (m3 × 107) 4.2728 4.2726

Solution time (s) 541 61
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3.1 The outer layer BD algorithm

The BMP is shown in (Eqs 26–28):

max⎡⎢⎢⎣χ −∑T
t�1
∑K
k�1

∑Jk
j�1
(SUk,jzut,k,j + SDk,jzdt,k,j)⎤⎥⎥⎦ (26)

χ −∑T
t�1
∑K
k�1

∑Jk
j�1

σt,k,jzt,k,j ≤ l (27)

(20) − (25) (28)
Where χ is a continuous variable representing the objective value

of the inner layer BSP. σt,k,j and l represent the slope and

intercept of the Benders cut, respectively. The calculation of

σt,k,j and l are discussed in Section 3.2.

The BSP is shown in (Eqs 29–34):

maxR � ∑T
t�1
∑K
k�1

∑Jk
j�1

θtPt,k,j +∑K
k�1

αk(vT,k) (29)

(5) − (19) (30)
mt,k,j � ~zt,k,j: (τt,k,j), ∀t, ∀k, ∀j (31)
0≤ rt,k,j ≤mt,k,jU

max
k,j , ∀t, ∀k, ∀j (32)

0≤Pt,k,j ≤mt,k,jP
max
k,j , ∀t, ∀k, ∀j (33)

mt,k,j ∈ [0, 1], ∀t, ∀k, ∀j (34)

Where ~zt,k,j represents the unit startup/shutdown status

determined in the BMP. τt,k,j represents the dual variable of

the corresponding constraint.

3.2 The inner layer MSDDP algorithm

We denote the stochastic process of market price by

(θ1, . . . , θT), with θ1 being deterministic. We assume the

stochastic process (θ1, . . . , θT) is stagewise independent. This

allows cut sharing between different MSDDP subproblems

(Hjelmeland et al., 2019). The stochastic process can be discretized

to a scenario tree, in which the realizations in each period are finite, as

shown in Figure 1. The number of scenarios in the complete scenario

tree isN � ∏T
t�2Nt.Nt is the number of realizations at period t. This

results in replacing the BSP (Eqs 29–34) with the sample average

approximation (SAA) problem (Birge and Louveaux, 2011), which

can be solved by the MSDDP algorithm proposed in this section.

The main idea of the MSDDP contains four parts:

convergence criterion, sampling, forward iteration, and

FIGURE 5
The startup and shutdown status of units in the two plants.
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backward iteration. The first three parts is similar to the

well-known SDDP. For more details, we refer to (Shapiro,

2011).

In the backward iteration of the classical SDDP algorithm,

the SDDP cuts are generated using the dual variables of the

state transition equation (Pereira and Pinto, 1991; Shapiro,

2011). However, the information of dual variables is

unavailable due to the existence of integer variables in (Eq.

30). Inspired by (Balas et al., 1993; Balas et al., 1996), the Lift-

and-Project cutting plane algorithm (LAPCP) is developed

here to solve the mixed-integer BSP problem through its LP

relaxation at each stage. Lift-and-Project cuts are sequentially

added to the LP relaxation problem to ensure its optimal

solution is the same as the original mixed-integer problem.

Finally, the MSDDP cut is generated using the dual solution

of the linear relaxation problem.

For ease of presentation, the general mathematical form of

the BSP at tth stage can be stated as

max cTt,sxt,s + dT
t,syt,s + ψt(xt,s)

s.t. Bt,sxt−1,s + At,sxt,s + Ct,syt,s ≥ bt,s
xt−1,s, xt,s ∈ {0, 1}n (35)

ψt(xt,s) � max cTt+1,sxt+1,s + dT
t+1,syt+1,s + ψt+1(xt+1,s)

s.t. Bt+1,sxt,s + At+1,sxt+1,s+Ct+1,syt+1,s ≥ bt+1,s xt,s, xt+1,s ∈ {0, 1}n (36)

Where s is the scenario index. xt,s and yt,s represent the integer

variable and continuous variable, respectively.ψt(xt,s) is the future
revenue of the tth stage problem. The feasible set of the problem

(Eq. 35) is represented as Mt. The linear relaxation of Mt is Yt.

The convex hull of the feasible set of (Eq. 35) can be stated as

Dt � conv{ (xt−1,s, xt,s, yt,s): Bt,sxt−1,s + At,sxt,s + Ct,syt,s ≥ bt,s,
xt−1,s, xt,s ∈ {0, 1}n }

(37)
According to (Balas, 2011), the optimal solution of (Eq. 38)

solves (Eq. 35).

max cTt,sxt,s + dT
t,syt,s + ψt(xt,s)

s.t. (xt−1,s, xt,s, yt,s) ∈ Dt
(38)

However, the exact expression of Dt is extremely difficult to

obtain due to the exponential dimensions of the problem (Balas,

2011). The LAPCP algorithm is an exact algorithm for solving the

MILP problem (Balas et al., 1993). Themain idea of LAPCP is to solve

the LP relaxation of the original mixed-integer problem (Eq. 35). In

each iteration, a Lift-and-Project cut (LPA cut), which cuts off part of

Yt, but no point of Mt, is generated and added to the LP relaxation

problem to approximate Dt. The virtue of the LAPCP algorithm

allows us to solve (Eq. 35) through the corresponding LP relaxation

problem (Eq. 39) in a sequential manner. The flow chart of the

LAPCP algorithm for solving the problem (Eq. 39) is shown in

Figure 2.

max cTt,sxt,s + dT
t,syt,s + ψi

t(xt,s)
s.t. At,sxt,s + Ct,syt,s ≥ bt,s − Bt,sx̂t−1,s (ϑt,s,1)

πi
t,sxt,s + λit,syt,s ≥ δit,s − κit,sx̂t−1,s, i � 1, . . . , I (ϑit,s,2)

xt,s ∈ [0, 1]
(39)

Where x̂t−1,s is the trial value provided by the forward iteration of
the MSDDP. πi

t,s, λ
i
t,s, κ

i
t,s and δit,s are parameters of the LAP cut.

ϑt,s,1 and ϑt,s,2 are dual variables of the corresponding constraints.

I represents the number of the LAP cuts.

The parameters of the LAP cut can be obtained by solving

(Eq. 40) (Balas et al., 1993).

min κit,sx̂
i
t−1,s + πi

t,sx̂
i
t,s + λit,sŷ

i
t,s − δit,s

s.t. κit,s − u1
t,sBt,s ≥ 0

σ it,s − u0
t,se − u1

t,sWt,s ≥ 0
κit,s − v1t,sBt,s ≥ 0
σ it,s − v0t,se − v1t,sWt,s ≥ 0
−δit,s + v1t,sbt,s + v0t,s ≥ 0
u1
t,se + u0

t,s + v1t,se + v0t,s � 1
u0
t,s, u

1
t,s, v

0
t,s, v

1
t,s ≥ 0

(40)

Where Wt,s � [At,s, Ct,s]. u1t,s and v1t,s are vectors. u
0
t,s and v0t,s are

scalars. e is a compatible vector of ones.

FIGURE 6
The power output of the two plants.

FIGURE 7
The evolution of the reservoir volume of two plants.
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The proposed MSDDP algorithm is shown in Table 1. Given

x̂t−1,s, (Eq. 39) is a LP problem, which indicates that theMSDDP cut

can be obtained by solving the corresponding LP dual problem.

Therefore, theMSDDP cut of the t-1 stage problem can be generated

according to (Eq. 41).

φt−1 ≤
1
Nt

∑Nt

s�1
⎡⎣ϑt,s,1(bt,s − Bt,sxt−1,s) +∑I

i�1
ϑit,s,2(δit,s − κit,sxt−1,s)⎤⎦

(41)
When the BSM (i.e., the MSDDP algorithm) converges, the

Benders cut can be calculated, as shown in (Eq. 27). The

calculation of σt,k,j and l are shown as follows:

σt,k,j � 1
Nt

∑Nt

s�1
τt,k,j,s, ∀t, ∀k, ∀j (42)

l � R1 −∑T
t�1
∑K
k�1

∑Jk
j�1

σt,k,j~z
B
t,k,j (43)

Where R1 represents the optimal value of the inner layer problem

at the first stage. To sum up, the flow chart of the proposed solution

method to solve the problem (Eqs 1–25) is shown in Figure 3.

4 Case study

4.1 Basic data

To verify the effectiveness of the proposed SHUC model

and solution method. Two realistic case studies are used: the

Xiluodu and Xiangjiaba hydropower system (in Sections

4.2.1–4.2.3) and a bigger hydropower system (in Section

4.2.4) reported in (Conejo et al., 2002).

The Xiluodu and Xiangjiaba hydropower system, which

includes two hydropower plants (hereinafter referred to as

plant Xi and plant Xiang), is located on the Yangtze River,

Sichuan Province, in southwestern China. The Xiluodu plant is

the third-largest hydropower plant in the world. It is an annual

regulation plant that contains 18 large-size units with a total

capacity of 12,600 MW. The Xiangjiaba plant, which is located

downstream of the Xiluodu plant, includes 8 units with a total

capacity of 6,000 MW (Peng et al., 2015). The main technical

parameters of the two plants are shown in Table 2. For

simplicity, the number of startup and shutdown of the unit

is two, and the minimum startup and shutdown time is assumed

to be 4 h. The forbidden operation zones of the units are

assumed to be [0, 0.2Pmax]. The start-up and shutdown costs

are 300 $/time and 100 $/time, respectively. The convergence

tolerance of the outer layer BD algorithm is set as 0.01%. The

parameters of the future revenue constraints (Eq. 14) are shown

in Table 3. The initial reservoir volumes are 69.0e8 m³ and

45.0e8 m³, respectively. It should be noted that the termination

volumes of the two reservoirs are not set. In Section 4.2.2, we

show that due to the existence of the future revenue constraints

(Eq. 14), the plants terminated discharging at optimal volumes,

at which the total revenue of the hydropower producer is

maximized.

The generation of the scenario tree includes three steps

(Heitsch and Römisch, 2003), as shown in Figure 4. 1) Price

forecast. The market price is forecasted using the autoregressive

moving average (ARMA) model. 2) Probability distribution

estimation. The Pearson 3 distribution is used for probability

distribution estimation of the forecast error. The parameter of the

probability density function (pdf) of the Pearson 3 distribution is

estimated using the historical day-ahead market price of Sichuan

Province. 3) Scenario generation. The Monte Carlo sampling

method is used to generate discretized scenarios from the forecast

price and pdf.

FIGURE 8
The convergence process of the BD algorithm (A) and the MSDDP algorithm in the fourth iteration of the BD algorithm (B).

TABLE 6 The comparison of the solution results between CBD and the
proposed method.

Term CBD Proposed

Total revenue ($ × 108) 2.8036 2.9204

Solution time (s) 3,600 2,123

Number of iterations 25 9

Final gap (%) 3.16 0.0093
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A time horizon of 1 day is considered with hourly time steps.

Three price nodes are considered at each period, with a total of

323 scenarios in the complete scenario tree. The problem scale of

the proposed SHUC model in the complete scenario tree is

shown in Table 4.

The simulation program was run on a personal computer

with an Intel i7-7900K processor, 3.30 GHz, and 16GB RAM.

The commercial solver, CPLEX 12.9 under Python environment,

was called to solve the model.

4.2 Results

4.2.1 Deterministic case
We first apply our solution method in a deterministic unit

commitment model to verify our code. In the deterministic case,

the uncertainty of the market price is not considered, i.e., only one

price scenario (the forecast price) is input to the unit commitment

model. Therefore, the inner layer algorithm is actually a dual dynamic

integer programming (DDP) algorithm (Pereira and Pinto, 1991).

Therefore, the convergence criterion needs to be modified. Here, the

gap between the upper and lower bound (ε) is set as the convergence

criterion, as shown in (Eq. 44). The convergence tolerance of the

DDP algorithm is set as 0.01%.

ε � UBDDP − LBDDP

LBDDP
(44)

Where UBDDP and LBDDP are the upper and lower bound of the

DDP algorithm, respectively.

We apply the CPLEX to solve the deterministic model

directly (no decomposition method is used) and compare it

with the proposed solution method. The comparison results

are shown in Table 5. It can be seen that the relative error

between the two methods is less than 0.001%. The solution time

of the CPLEX is 8.8 times that of the proposed method, which

shows the advantage of the proposed solution method.

Figure 5 lists the startup and shutdown status of all units

in the two plants. Due to the constraints (Eqs 22–25), the

number of startup and shutdown and the online/offline time

of all units satisfy the pre-set data.

Figure 6 shows the 24-hour power generation schedule of two

plants. Figure 7 shows the evolution of the reservoir volumes. The

termination volumes of the two reservoirs are 68.847e8 m³ and

44.95e8 m³, respectively. During the low price period, the

reservoir volume of plant Xi increased by 3.07e6 m³, which

indicates that the discharge is less than the inflow. Using the

water storage during these periods can lift the water head and

improve the power generation efficiency.

4.2.2 Stochastic case
In the stochastic case, the scenario tree generated in Section

4.1 is input to the SHUCmodel. A set of 500 scenarios is sampled

from the complete scenario tree in the forward iteration of the

MSDDP algorithm. As in (Pereira and Pinto, 1991), the

FIGURE 9
The total revenue ratios in different termination volumes to the value in Table 4: (A) the termination volume of plant Xiang is 44.95e8 m³, and (B)
the termination volume of plant Xi is 68.847e8 m³.

TABLE 7 Comparison of solution results under different confidence levels.

Confidence level Gap (%) Iter Time/iter (s) Solution time (s) Total revenue
($ × 108)

97.5% 0.099 14 180 2,502 2.9198

95% 0.097 9 236 2,123 2.9204

90% 0.096 7 387 2,710 2.9206

67% 0.091 4 809 3,237 2.9206

Frontiers in Energy Research frontiersin.org10

Li et al. 10.3389/fenrg.2022.955875

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.955875


algorithm stops when the upper bound is within the 95%

confidence interval of the lower bound.

The program runs for 2,123 s. Figure 8A shows the upper and

lower bounds of the outer layer BD algorithm. The final gap

between the upper and lower bounds is 0.0093%. Figure 8B shows

the convergence process of the inner layer MSDDP algorithm in

the fourth iteration of the BD algorithm. The MSDDP algorithm

converges to the 95% confidence interval after 31 iterations.

We then apply the classical Benders Decomposition

(CBD) algorithm (Benders, 2005) to solve the SHUC model

and compare it with the proposed solution method. The

running time is limited to 3 h. The comparison of the

solution results is shown in Table 6. The total revenue of

the two methods is 2.8036 × 108$ and 2.9204 × 108$,

respectively. The revenue of the proposed method is 4%

higher than the CBD algorithm. In terms of computational

performance, the CBD goes through 25 iterations and finally

does not converge to the pre-set tolerance (0.01%). The final

gap of the CBD is 3.16%. When using the CBD algorithm to

solve the SHUC model, the integer variables must be stored in

the master problem, resulting in the loss of effective

information related to the optimization direction of the

discrete variables. It can only rely on the dual information

provided by the subproblem to assist in the optimization of the

mater problem. Therefore, more solution time is needed.

The value of the stochastic solution (VSS) (Heitsch and

Römisch, 2003) is an index used to test the quality of the

solution of the stochastic programming problem, as shown in

(Eq. 45).

VSS � RP − EEV (45)
Where RP represents the optimal value of the stochastic case,

which is equal to the weighted average of the objective value of all

scenarios. EEV represents the optimal value of the

deterministic case.

Compared with the deterministic case, the total revenue

of the stochastic case increases by 6.5902 × 106$, accounting

for 2.3% of the total revenue. That is, the value of VSS is

6.5902 × 106$. This value represents the cost of ignoring the

market price uncertainty in the unit commitment model.

As mentioned in Section 4.1, the termination volumes of

the two reservoirs are not set. We end this section by

discussing the impact of future revenue constraints (Eq.

14). We set the parameters of the future revenue

constraints πw,k and βw to be zero, which enforced the Rfut

in the objective function equal to zero. Then the boundary

condition (i.e., the termination volumes) should be set in the

model to terminate the calculation. The total revenue ratios in

different termination volumes to the value in Table 4

(“Proposed”) are shown in Figure 9. It can be seen that the

maximum value of the total revenue is equal to the value in

Table 6. This indicated that constraints (Eq. 14) could

terminate discharging at optimal termination volumes, at

which the total revenue of the hydropower producer is

maximized. The incorporation of constraints (Eq. 14) in

the SHUC model can make a balance between the

immediate revenue and the future revenue of the

hydropower producer to maximize the total revenue.

FIGURE 10
The topology of the hydropower system in (Conejo et al.,
2002).
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4.2.3 The impact of the confidence level
Table 7 compares the results of the proposed solution

method under different confidence levels. Column

1 represents the final gap of the BD algorithm. The second

column represents the iteration number of the BD algorithm. The

third column represents the average time used per iteration.

Column 4 represents the solution time of the BD algorithm.

Finally, column 5 represents the total revenue.

It can be seen that the proposed solution method finally

converged under different confidence levels. With the increase of

the confidence level, the number of iterations of the BD algorithm

decreases while the time used per iteration increases. In fact, the

solution obtained in the MSDDP algorithm is getting closer to the

optimal solution with the increase in the confidence level. Therefore,

the Benders cut provided to the BMP is tighter. While the solution

time needed in the MSDDP algorithm also increases. It should be

noted that the solution time of the model is shortest when the

confidence level is 90%. Therefore, it is necessary to make a trade-off

between the solution accuracy of the MSDDP and the number of

iterations to minimize the overall solution time. Finally, we can

observe that the difference in total revenue under different

confidence levels is extremely small. This is because the confidence

level is only used to control the convergence of the inner layer

MSDDP algorithm. The convergence of the whole algorithm is

determined by the gap between the upper and lower bounds of

the outer layer BD algorithm. Therefore, the outer layer BMP will

adjust the startup and shutdown status of the unit to achieve global

optimization.

4.2.4 Computational performance of theMSDDP
In this section, we test the computational performance of the

proposed MSDDP algorithm using the data of the hydropower

system reported in (Conejo et al., 2002). The hydropower system

contains eight plants, with a total capacity of 3,084 MW. The

topology and detailed parameters of the hydropower plants are

shown in Figure 10 and Table 8, respectively. For the sake of

simplicity, the parameters of the future revenue constraints πw,k

and βw are set as zero. The initial volume of the reservoirs is

shown in Table 9. The termination volumes are equal to the

initial volumes. Two alternative methods [Lagrangian relaxation

(Steeger and Rebennack, 2017) and locally valid cut (Abgottspon

et al., 2014)] are used in the backward iteration of the BSP and

compared with the MSDDP algorithm. The confidence level of

the three algorithms is set as 90%. Five sets of market price

scenarios are sampled in the forward iteration, including 50, 100,

200, 300, and 500 scenarios, respectively. The running time of the

programs is limited to 3 h.

Table 10 shows the comparison of the computational

performance of the three algorithms. The first column

represents the number of scenarios sampled in the forward

iteration. It can be seen that the computation time and the

time used per iteration increase with the increase of the

forward sample scenarios. This is because more

subproblems need to be solved as we increase the number

of sample scenarios in the forward iteration. The MSDDP

converged to the pre-set tolerance with different choices of the

number of the forward sample scenarios. The solution time of

the MSDDP algorithm is the shortest among the three

algorithms. The LVC and LR method cannot converge to

the pre-set tolerance within 3 h when the number of sampled

scenarios is 500. It should be noted that the iteration number

of the MSDDP algorithm is less than the other two algorithms,

which illustrates that the cuts generated by the MSDDP

algorithm are the tightest.

TABLE 8 Technical parameters of the hydropower plants in (Conejo et al., 2002).

Plant Vmax/Hm³ Vmin/Hm³ Pmax/MW Umax/(m³/s) I/(Hm³/h)

1 225 6 28.6 62 0.05

2 162 6 69.5 163 0.06

3 1,200 6 139.1 469 0.60

4 66 6 116.4 662 0.05

5 26 6 186.7 628 0.05

6 225 6 28.6 62 0.03

7 115 6 247.7 716 0.04

8 181 6 550.9 1,028 0.05

TABLE 9 The initial volume of the reservoirs in (Conejo et al., 2002).

Plant 1 2 3 4 5 6 7 8

Vmax/Hm³ 215 147 1,100 55 20 210 105 150
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5 Conclusion

This paper proposes a stochastic unit commitment model for a

price-taker hydropower producer in a liberalized market. The

objective is to maximize the total revenue. The opportunity cost

and the market price uncertainty are taken into account. To solve the

stochastic unit commitment problem efficiently, a solution method

based on the Benders decomposition and modified stochastic dual

dynamic programming algorithm is proposed. Finally, we verified the

effectiveness of the proposed model and solution method in case

studies. The simulation results show that: 1) Compared with the

deterministicmodel, the proposed stochastic unit commitmentmodel

can increase the total revenue of the hydropower producer by 2.3%, so

it is necessary to consider the uncertainty of the market price. 2) The

incorporation of future revenue constraints can make a balance

between the immediate revenue and the future revenue to

maximize the total revenue of the hydropower producer. 3) The

proposed solution method can efficiently solve the large-scale

stochastic unit commitment problem. Compared with the existing

methods, the proposed solution method can significantly reduce the

solution time and achieve global optimization.

The following aspects can be further expanded in future

research.

1) The proposed SHUC model is actually a two-stage unit

commitment model, in which the commitment schedule for

the entire scheduling horizon is decided before the uncertainty

is realized. The extension of the unit commitment model on the

multi-stage model will be promising research.

2) The extension of the modified stochastic dual dynamic

programming on the stage-dependent case may be

interesting research.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material, further inquiries can be

directed to the corresponding author.

Author contributions

ZL carried out the formulation of the model, presentation of

solution method, case analysis, and wrote the first draft. PY

assisted in the formulation of the model and improvement of the

solution method. YY and GL assisted in the case analysis. YT

helped the revision of the manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Abgottspon, H., Njálsson, K., Bucher, M. A., and Andersson, G. (2014). “Risk-
averse medium-term hydro optimization considering provision of spinning
reserves,” in 2014 International Conference on Probabilistic Methods Applied to
Power Systems (PMAPS), Durham, UK, 07-10 July 2014 (IEEE).

Abreu, L. V. L., Khodayar, M. E., Shahidehpour, M., and Wu, L. (2012). Risk-
constrained coordination of cascaded hydro units with variable wind power
generation. IEEE Trans. Sustain. Energy 3 (3), 359–368. doi:10.1109/tste.2012.
2186322

TABLE 10 Computational performance of the locally valid cut (LVC), Lagrangian relaxation (LR) and MSDDP.

# of FS Time (s) Number of iterations Gap (%)

LVC LR MSDDP LVC LR MSDDP LVC LR MSDDP

50 9,853 8,689 3,624 44 37 27 0.097 0.096 0.097

100 10,376 8,729 3,505 40 35 21 0.099 0.099 0.095

200 10,800 9,021 3,774 33 32 17 0.105 0.098 0.098

300 10,800 9,347 4,209 31 25 15 0.142 0.095 0.092

500 10,800 10,800 4,672 28 23 13 0.351 0.114 0.094

Frontiers in Energy Research frontiersin.org13

Li et al. 10.3389/fenrg.2022.955875

https://doi.org/10.1109/tste.2012.2186322
https://doi.org/10.1109/tste.2012.2186322
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.955875


Ackooij, W. V., Ambrosio, C. D., Liberti, L., Taktak, R., Thomopulos, D., and
Toubaline, S. (2018). Shortest path problem variants for the hydro unit
commitment problem. Electron. Notes Discrete Math. 69, 309–316. doi:10.1016/j.
endm.2018.07.040

Ackooij, W. V., D’Ambrosio, C., Thomopulos, D., and Trindade, R. S. (2021).
Decomposition and shortest path problem formulation for solving the hydro unit
commitment and scheduling in a hydro valley. Eur. J. Operational Res. 291 (3),
935–943. doi:10.1016/j.ejor.2020.12.029

Ahmed, J. A., and Sarma, A. K. (2005). Genetic algorithm for optimal operating
policy of a multipurpose reservoir. Water Resour. Manage. 19 (2), 145–161. doi:10.
1007/s11269-005-2704-7

Amani, A., and Alizadeh, H. (2021). Solving hydropower unit commitment
problem using a novel sequential mixed integer linear programming approach.
Water Resour. Manag. 35 (3), 1711–1729. doi:10.1007/s11269-021-02806-6

Balas, E., Ceria, S., and CornuéJols, G. (1993). A lift-and-project cutting plane
algorithm for mixed 0-1 programs. Math. Program. Ser. A B 58, 295–324. doi:10.
1007/BF01581273

Balas, E., Ceria, S., and Cornuéjols, G. (1996). Mixed 0-1 programming by lift-
and-project in a branch-and-cut framework.Manag. Sci. 42 (9), 1229–1246. doi:10.
1287/mnsc.42.9.1229

Balas, E. (2011). Disjunctive programming. Pittsburgh, PA: John Wiley & Sons.

Barroso, L. A. N., Fampa, M. H. C., Kelman, R., Pereira, M. V., and Lino, P.
(2002). Market power issues in bid-based hydrothermal dispatch. Ann. Operations
Res. 117 (1), 247–270. doi:10.1023/a:1021537910823

Benders, J. F. (2005). Partitioning procedures for solving mixed-variables
programming problems. Comput. Manag. Sci. 2 (1), 3–19. doi:10.1007/s10287-
004-0020-y

Birge, J. R., and Louveaux, F. (2011). Introduction to stochastic programming.
Chicago, IL: Springer Science & Business Media.

Cerisola, S., Latorre, J. M., and Ramos, A. (2012). Stochastic dual dynamic
programming applied to nonconvex hydrothermal models. Eur. J. Operational Res.
218 (3), 687–697. doi:10.1016/j.ejor.2011.11.040

Cheng, C., Wang, J., and Wu, X. (2016). Hydro unit commitment with a head-
sensitive reservoir and multiple vibration zones using MILP. IEEE Trans. Power
Syst. 31 (6), 4842–4852. doi:10.1109/tpwrs.2016.2522469

Colonetti, B., and Finardi, E. C. (2021). Stochastic hydrothermal unit
commitment models via stabilized benders decomposition. Electr. Eng. 103 (4),
2197–2211. doi:10.1007/s00202-020-01206-0

Conejo, A. J., Arroyo, J. M., Contreras, J., and Villamor, F. (2002). Self-scheduling
of a hydro producer in a pool-based electricity market. IEEE Trans. Power Syst. 17
(4), 1265–1272. doi:10.1109/tpwrs.2002.804951

Diniz, A. L., and Maceira, M. E. P. (2008). A four-dimensional model of hydro
generation for the short-term hydrothermal dispatch problem considering head and
spillage effects. IEEE Trans. Power Syst. 23 (3), 1298–1308. doi:10.1109/tpwrs.2008.
922253

Finardi, E. C., and da Silva, E. L. (2006). Solving the hydro unit commitment
problem via dual decomposition and sequential quadratic programming. IEEE
Trans. Power Syst. 21 (2), 835–844. doi:10.1109/tpwrs.2006.873121

Guisández, I., and Pérez-Díaz, J. I. (2021). Mixed integer linear programming
formulations for the hydro production function in a unit-based short-term
scheduling problem. Int. J. Electr. Power Energy Syst. 128 (1), 106747. doi:10.
1016/j.ijepes.2020.106747

Heitsch, H., and Römisch, W. (2003). Scenario reduction algorithms in stochastic
programming. Comput. Optim. Appl. 24 (2), 187–206. doi:10.1023/a:
1021805924152

Helseth, A., Fodstad, M., and Mo, B. (2018). Optimal hydropower maintenance
scheduling in liberalized markets. IEEE Trans. Power Syst. 33 (6), 6989–6998.
doi:10.1109/tpwrs.2018.2840043

Helseth, A., Fodstad, M., and Mo, B. (2016). Optimal medium-term hydropower
scheduling considering energy and reserve capacity markets. IEEE Trans. Sustain.
Energy 7 (3), 934–942. doi:10.1109/tste.2015.2509447

Hjelmeland, M. N., Zou, J., Helseth, A., and Ahmed, S. (2019). Nonconvex
medium-term hydropower scheduling by stochastic dual dynamic integer
programming. IEEE Trans. Sustain. Energy 10, 481–490. doi:10.1109/TSTE.2018.
2805164

Kelman, M., Pereira, M., and Campodónico, N. (1998). Long-term hydro
scheduling based on stochastic models. EPSOM 98, 23–25.

Kong, J., Skjelbred, H. I., and Fosso, O. B. (2020). An overview of formulations
and optimization methods for the unit-based short-term hydro scheduling
problem. Electr. Power Syst. Res. 178, 106027. doi:10.1016/j.epsr.2019.106027

Li, X., Li, T., Wei, J., Wang, G., and Yeh, W. W. (2014). Hydro unit commitment
via mixed integer linear programming: A case study of the three gorges project,
China. IEEE Trans. Power Syst. 29 (3), 1232–1241. doi:10.1109/tpwrs.2013.2288933

Lima, R. M., Marcovecchio, M. G., Novais, A. Q., and Grossmann, I. E. (2013). On
the computational studies of deterministic global optimization of head dependent
short-term hydro scheduling. IEEE Trans. Power Syst. 28 (4), 4336–4347. doi:10.
1109/tpwrs.2013.2274559

Moiseeva, E., and Hesamzadeh, M. R. (2017). Strategic bidding of a hydropower
producer under uncertainty: modified benders approach. IEEE Trans. Power Syst.
33, 861–873. doi:10.1109/TPWRS.2017.2696058

Naresh, R., and Sharma, J. (2000). Hydro system scheduling using ANN
approach. IEEE Trans. Power Syst. 15 (1), 388–395. doi:10.1109/59.852149

Nazari-Heris, M., Mohammadi-Ivatlooa, B., and Gharehpetian, G. B. (2017).
Short-term scheduling of hydro-based power plants considering application of
heuristic algorithms: A comprehensive review. Renew. Sustain. Energy Rev. 74,
116–129. doi:10.1016/j.rser.2017.02.043

Parvez, I., Shen, J., Khan, M., and Cheng, C. (2019). Modeling and solution
techniques used for hydro generation scheduling. Water 11 (7), 1392. doi:10.3390/
w11071392

Peng, L., Zhou, J., Chao, W., Qiao, Q., and Mo, L. (2015). Short-term hydro
generation scheduling of Xiluodu and Xiangjiaba cascade hydropower stations
using improved binary-real coded bee colony optimization algorithm. Energy
Convers. Manag. 91, 19–31. doi:10.1016/j.enconman.2014.11.036

Pereira, A. C., de Oliveira, A. Q., Baptista, E. C., Balbo, A. R., Soler, E. M.,
Nepomuceno, L., et al. (2017). Network-constrained multiperiod auction for pool-
based electricity markets of hydrothermal systems. IEEE Trans. Power Syst. 32 (6),
4501–4514. doi:10.1109/tpwrs.2017.2685245

Pereira, M., Campodonico, N., and Kelman, R. (1999). Application of stochastic
dual DP and extensions to hydrothermal scheduling. PSRI Technical Report 012/99.

Pereira, MV. F., and Pinto, LM. V. G. (1991). Multi-stage stochastic optimization
applied to energy planning. Math. Program. 52 (1), 359–375. doi:10.1007/
bf01582895

Pérez-Díaz, J. I., Wilhelmi, J. R., and Arévalo, L. A. (2010). Optimal short-term
operation schedule of a hydropower plant in a competitive electricity market.
Energy Convers. Manag. 51 (12), 2955–2966. doi:10.1016/j.enconman.2010.06.038

Seguin, S., Cote, P., and Audet, C. (2016). Self-scheduling short-term unit
commitment and loading problem. IEEE Trans. Power Syst. 31 (1), 133–142.
doi:10.1109/tpwrs.2014.2383911

Shapiro, A. (2011). Analysis of stochastic dual dynamic programming method.
Eur. J. Operational Res. 209 (1), 63–72. doi:10.1016/j.ejor.2010.08.007

Steeger, G., and Rebennack, S. (2017). Dynamic convexification within nested
Benders decomposition using Lagrangian relaxation: an application to the
strategic bidding problem. Eur. J. Operational Res. 257 (2), 669–686. doi:10.
1016/j.ejor.2016.08.006

Thaeer Hammid, A., Awad, O. I., Sulaiman, M. H., Gunasekaran, S. S., Mostafa, S. A.,
Manoj Kumar, N., et al. (2020). A review of optimization algorithms in solving hydro
generation scheduling problems. Energies 13 (11), 2787. doi:10.3390/en13112787

Tong, B., Zhai, Q., and Guan, X. (2013). An MILP based formulation for short-
term hydro generation scheduling with analysis of the linearization effects on
solution feasibility. IEEE Trans. Power Syst. 28 (4), 3588–3599. doi:10.1109/tpwrs.
2013.2274286

Wei, C., Zhao, Y., Zheng, Y., Xie, L., and Smedley, K. M. (2021). Analysis and
design of a nonisolated high step-down converter with coupled inductor and ZVS
operation. IEEE Trans. Ind. Electron. 69 (9), 9007–9018. doi:10.1109/tie.2021.
3114721

Xiao, D., do Prado, J. C., and Qiao, W. (2021). Optimal joint demand and virtual
bidding for a strategic retailer in the short-term electricity market. Electr. Power
Syst. Res. 190, 106855. doi:10.1016/j.epsr.2020.106855

Zhang, H., Zhou, J., Na, F., Zhang, R., and Zhang, Y. (2013). An efficient multi-
objective adaptive differential evolution with chaotic neuron network and its
application on long-term hydropower operation with considering ecological
environment problem. Int. J. Electr. Power Energy Syst. 45 (1), 60–70. doi:10.
1016/j.ijepes.2012.08.069

Zou, J., Ahmed, S., and Sun, X. A. (2019). Stochastic dual dynamic integer
programming. Math. Program. 175 (1), 461–502. doi:10.1007/s10107-018-1249-5

Frontiers in Energy Research frontiersin.org14

Li et al. 10.3389/fenrg.2022.955875

https://doi.org/10.1016/j.endm.2018.07.040
https://doi.org/10.1016/j.endm.2018.07.040
https://doi.org/10.1016/j.ejor.2020.12.029
https://doi.org/10.1007/s11269-005-2704-7
https://doi.org/10.1007/s11269-005-2704-7
https://doi.org/10.1007/s11269-021-02806-6
https://doi.org/10.1007/BF01581273
https://doi.org/10.1007/BF01581273
https://doi.org/10.1287/mnsc.42.9.1229
https://doi.org/10.1287/mnsc.42.9.1229
https://doi.org/10.1023/a:1021537910823
https://doi.org/10.1007/s10287-004-0020-y
https://doi.org/10.1007/s10287-004-0020-y
https://doi.org/10.1016/j.ejor.2011.11.040
https://doi.org/10.1109/tpwrs.2016.2522469
https://doi.org/10.1007/s00202-020-01206-0
https://doi.org/10.1109/tpwrs.2002.804951
https://doi.org/10.1109/tpwrs.2008.922253
https://doi.org/10.1109/tpwrs.2008.922253
https://doi.org/10.1109/tpwrs.2006.873121
https://doi.org/10.1016/j.ijepes.2020.106747
https://doi.org/10.1016/j.ijepes.2020.106747
https://doi.org/10.1023/a:1021805924152
https://doi.org/10.1023/a:1021805924152
https://doi.org/10.1109/tpwrs.2018.2840043
https://doi.org/10.1109/tste.2015.2509447
https://doi.org/10.1109/TSTE.2018.2805164
https://doi.org/10.1109/TSTE.2018.2805164
https://doi.org/10.1016/j.epsr.2019.106027
https://doi.org/10.1109/tpwrs.2013.2288933
https://doi.org/10.1109/tpwrs.2013.2274559
https://doi.org/10.1109/tpwrs.2013.2274559
https://doi.org/10.1109/TPWRS.2017.2696058
https://doi.org/10.1109/59.852149
https://doi.org/10.1016/j.rser.2017.02.043
https://doi.org/10.3390/w11071392
https://doi.org/10.3390/w11071392
https://doi.org/10.1016/j.enconman.2014.11.036
https://doi.org/10.1109/tpwrs.2017.2685245
https://doi.org/10.1007/bf01582895
https://doi.org/10.1007/bf01582895
https://doi.org/10.1016/j.enconman.2010.06.038
https://doi.org/10.1109/tpwrs.2014.2383911
https://doi.org/10.1016/j.ejor.2010.08.007
https://doi.org/10.1016/j.ejor.2016.08.006
https://doi.org/10.1016/j.ejor.2016.08.006
https://doi.org/10.3390/en13112787
https://doi.org/10.1109/tpwrs.2013.2274286
https://doi.org/10.1109/tpwrs.2013.2274286
https://doi.org/10.1109/tie.2021.3114721
https://doi.org/10.1109/tie.2021.3114721
https://doi.org/10.1016/j.epsr.2020.106855
https://doi.org/10.1016/j.ijepes.2012.08.069
https://doi.org/10.1016/j.ijepes.2012.08.069
https://doi.org/10.1007/s10107-018-1249-5
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.955875

	Solving stochastic hydro unit commitment using benders decomposition and modified stochastic dual dynamic programming
	1 Introduction
	2 Stochastic unit commitment model
	2.1 Objective function
	2.2 Constraints

	3 Solution method
	3.1 The outer layer BD algorithm
	3.2 The inner layer MSDDP algorithm

	4 Case study
	4.1 Basic data
	4.2 Results
	4.2.1 Deterministic case
	4.2.2 Stochastic case
	4.2.3 The impact of the confidence level
	4.2.4 Computational performance of the MSDDP


	5 Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References


