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Pipe vibration induced by water hammer frequently emerges in water conveyance
system, especially in the hydropower plant or pumped storage power station with long
diversion pipelines. This vibration in turn affects the hydraulic pulsation so that
undesired fluid-structure interaction (FSI) arises. In this research, attention is given
to a pipeline embedded in concrete. A six-equation model was derived to describe the
fluid-pipe-concrete interaction considering Poisson coupling and junction coupling.
With the elastic and homogeneous hypotheses, an iterative approach was proposed to
solve this model, and the results were validated by experiment and classical water-
hammer theory. Then dynamic FSI responses to water hammer were studied in a
reservoir-pipe-valve physical system. Hydraulic pressure, pipe wall stress and axial
motion were discussed with respect to different parameters of concrete. Results
obtained by the two-equation model, four-equation model and six-equation model
show characteristics of pressure wave and stress wave separately with and
without FSI.
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1 INTRODUCTION

Water conveyance pipeline has been widely used in marine engineering, petrochemical engineering,
energy and power engineering, spacecraft power system and also daily life. Repeated stimuli inside
and outside the pipeline have been proven to excite pulsations in the pressurized fluid. Water
hammer is a typical trigger frequently inducing structural vibration and new pressure fluctuations.
This fluctuation further causes pipe expansion or contraction, which in turn affects the hydraulic
pressure inside the pipe. This phenomenon is the typical fluid-structure interaction (FSI). However,
FSI responses closely depend on the operating condition of the pipe system. Hence, FSI analysis
should be carried out according to various constraints and boundary conditions (Mahmoodi, et al.,
2019; Tijsseling, 2019; Rajbamshi, et al., 2020).

Friction coupling, Poisson coupling and Junction coupling are three main types when pipeline
interacts with fluid. The first two emerge throughout the whole pipeline, whereas Junction coupling
only happens in local positions including the elbows, branches, valves, boundaries, and variable
cross-sections (Zanganeh, et al., 2015). System coupling in these locations becomes stronger (Alaei,
et al., 2019). Furthermore, response to friction coupling is the weakest and has a long duration of
oscillation (Huang and Alben, 2016). As the most important coupling form, Junction coupling
depends on the robustness of the system and usually causes a pressure head larger than the classical
water hammer (Karakouzian, et al., 2019). Poisson coupling and friction coupling can greatly
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influence Junction coupling. And in turn, Junction coupling has a
greater impact on the pipeline system compared with Poisson
coupling.

Regarding the constraints of pipeline, Li, et al. (2012) and Liu and
Li. (2011) analyzed the elastic support and found the complex
boundary conditions can be successfully simulated by the six-
equation elastic spring model. Then, Li, et al. (2014) expanded
the application of this elastic model. The FSI is continuously induced
and transmitted in fluids and pipelines. This interaction becomes
much stronger in pipes with few or no support (Liu and Li. 2011).
Meanwhile, FSI has a crucial effect on fluid pressure and pipe stress
when the pipe axial stiffness is greater than the rigidity of the
supports (Li, et al., 2012). In a typical case study, Riedelmeier
(Riedelmeier, et al., 2014) analyzed FSI phenomenon under four
kinds of axial support and determined proper support tomitigate the
displacement and stress in pipes.

The preceding achievements mainly focused on the FSI response
of water conveyance systems with various pipeline layouts. Notably,
the external constraints of pipes were generally discrete and their
effects on FSI response were simplified as boundary conditions. For
example, a pipe with continuity constraints degenerates into amulti-
span pipeline model (Wu and Shih, 2001; Yang, et al., 2004). This
simplification omits the global restriction of the constraint as well as
its vibration. So the current model available in the literature is yet to
be completely suitable. Herein, this paper investigates the constraints
and dynamic responses in a water conveyance pipeline surrounded
by concrete, focusing on fluid-pipe-concrete interaction. Pipe and
concrete are integrated as a composite structure in this research,
similar to that in a pre-stressed concrete cylinder pipe (PCCP) (Lee,
et al., 2012;Hu, et al., 2019; Sun, et al., 2020). Compared to the typical
FSI, FSI arising in such a system contains an extra pipe-concrete
interaction. However, this extra effect is yet to be included in the
current PCCP model.

A typical reservoir-pipe-valve system is used in this paper
to produce water hammer. With the simplified elastic model
of concrete, as well as continuity and motion equations of
fluid, pipe and concrete, the fluid-pipe-concrete six-equation
model is derived. Then an iterative approach is proposed to
solve this model and the results get validated by experiment.
Dynamic responses concerning the fluid-pipe-concrete
interaction of the reservoir-pipe-valve system are
subsequently scrutinized, including hydraulic pressure, pipe
wall stress and vibration.

2 NUMERICAL MODEL

When water conveyance system with a straight pipe suffers from
water hammer, the axial structural vibration becomes obvious. In the
fluid-pipe-concrete model, system characteristics can be described
by solid constitutive equations and fluid governing equations. Then
the FSI in such a composite structure is mathematically deduced.
Two global hypotheses should be followed.

• The axial component of parameters in the control volume is
equivalent to the average value in the corresponding section
(Ting, et al., 2017).

• Axial stress, strain and displacement are separately assumed
to be constant at the radial direction on a certain cross-
section.

2.1 Stress at Inner Interface and Outer
Interface
As for a piping system embedded in concrete, the pipe concrete
coupling is taken into account. A sketch of stress from concrete
imposing on pipe wall is shown in Figure 1. Figure 1A
illustrates the external forces applied on an element of pipe
wall. In this work, section of the concrete segment is
considered to be annular. Then the inner interface is
defined by the fluid and pipe wall, while outer interface by
the pipe wall and ambient concrete, as seen in Figure 1B.

Since the pipeline is symmetric, the stress of concrete
uniformly distributes around the pipe ring and can be
assumed as a function of the radial coordinate (Wu, 2017;
Mirjavadi, et al., 2020). By extension, Lame solutions of the
radial stress of pipe wall σr, hoop stress of pipe wall σθ, radial
stress of concrete σrs and hoop stress of concrete σθs in this
encased system are separately presented as follows (Daoxiang and
Weinlin, 2006):

σr �
(R+e)2

r2 − 1
(R+e)2
R2 − 1

p|r�R −
1 − R2

r2

1 − R2

(R+e)2
Pb (1)

σθ �
(R+e)2

r2 + 1
(R+e)2
R2 − 1

p|r�R −
1 + R2

r2

1 − R2

(R+e)2
Pb (2)

σrs �
R2
s

r2 − 1
R2
s

(R+e)2 − 1
Pb, σθs �

R2
s

r2 + 1
R2
s

(R+e)2 − 1
Pb (3)

where R is the internal diameter of pipe, e is the thickness of pipe
wall, Pb and p|r = R are external and internal pressure of pipe wall,
separately.

Pipe wall and concrete have the identical radial strain εr|r = R+e

on their interface. Due to the assumption of linear radial
displacement, εr|r = R+e = εr|r = R. According to Hooke law, εr|r
= R+e is defined as:

εr|r�R+e � 1
E
[σr|r�R+e − ](σθ|r�R+e + σz|r�R+e)] (4)

where σz is the axial stress of pipe wall, E is the elastic modulus of
pipe wall, and ] is the Poisson’s ratio of pipe wall.

According to the reference (Sinha, et al., 2001) in a concrete-
encased piping system, the concrete strain is small enough so that
the stress-strain relation degenerates into an elastic model,
shown as:

Pb � σrs|r�R+e � Esεrs|r�R+e + ]s(σθs|r�R+e + σzs|r�R+e) (5)
where σzs is the concrete axial stress because of expansion or
contraction of the outer pipe wall. Pb is the constant pressure
imposed on the outer pipe wall by ambient concrete, thus, Pb =
σrs|r = R+e. ]s and Es are the Poisson’s ratio and elastic modulus of
concrete, separately.
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Recalling linear displacement at the radial direction and
substituting Eqs 1–4 into Eq. 5, yields the radial stress on the
outer interface:

Pb � Es

E
[ − Pb − ]( 2R2p| r�R

(R + e)2 − R2
− (R + e)2 + R2

(R + e)2 − R2
Pb + σz)]

+ ]sσzs + R2
s + (R + e)2

R2
s − (R + e)2]sPb

(6)
The fluid radial velocity component Vr is assumed to be

constant at a certain section. So Vr is equal to the radial
velocity of pipe ur on the inner interface (Lai, et al., 2020).
Then pressure relationship with respect to pipe center-line and
inner interface is established:

P − p|r�R � 1
2
ρfR

zur|r�R
zt

(7)

where P is the pressure at the pipe center line. ρf is the fluid
density. And radial motion equation of pipeline is defined as:

ρt
zur

zt
� Rp|r�R
(R + e/2)e −

(R + e)Pb

(R + e/2)e −
∫R+e
R

σrdr

(R + e/2)e (8)

where ρt is the density of pipe wall material. Substitute Eq. 1 into
Eq. 8:

ρt
zur

zt
� R2p|r�R
(R + e/2)2e −

(R + e)2Pb

(R + e/2)2e (9)

The following can be obtained by solving Eqs 6, 7, Eq. 9.

Pb � aP + bσz + cσzs (10)
p|r�R � dP + fσz + hσzs (11)

The definition of coefficients a, b, c, d, f and h can be seen in
the Appendix.

2.2 Governing Equations for Fluid
2.2.1 Axial Motion Equation of Incompressible Flow
The equation of axial motion of fluid at pipe centerline is:

ρfAfdz
DV

Dt
+ Af(P + zP

zz
− P)dz � 0 (12)

where t and z are time and axial direction respectively. V is the
fluid velocity at pipe centerline. Af is the area of the flow
section. The total acceleration of fluid is composed of the
convective acceleration and the local one. So Eq. 12 can be
converted to:

ρfAfdz(zV
zt

+ V
zV

zz
) + Af(P + zP

zz
− P)dz � 0 (13)

The one-dimensional axial motion equation of fluid at pipe
centerline is obtained.

zV

zt
+ V

zV

zz
+ 1
ρf

zP

zz
� 0 (14)

FIGURE 1 | Sketch of stress acting on pipe wall. (A) Side view. (B) Cross-sectional view.
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2.2.2 Continuity Equation of Incompressible Flow
Ignoring the hoop velocity of the pipe, continuity equation of the
symmetric flow can be expressed in cylindrical coordinate:

zρf
zt

+ 1
r

z

zr
(ρfrVr) + z

zz
(ρfV) � 0 (15)

Recalling the definition of fluid bulk modulus K, zP/zρf = K/ρf,
Eq. 15 is converted to:

1
K

zP

zt
+ 1
r

z(rVr)
zr

+ zV

zz
� 0 (16)

Averaging over the cross-section, a continuity equation of
one-dimensional flow is derived as (Tijsseling, 2007):

1
πR2

∫R

0
2πr(1

K

zP

zt
+ 1
r

z(rVr)
zr

+ zV

zz
)dr � 0 (17)

The Resultant Equation Is:

1
K

zP

zt
+ 2Vr

R
+ zV

zz
� 0 (18)

Vr

R
� ur

R
� 1
E

z[σθ|r�R − ](σz|r�R + σr |r�R)]
zt

(19)

Substituting Eqs 1, 2 into Eq. 19:

Vr

R
� 1
E
[(R + e)2 + R2

(R + e)2 − R2

zp|r�R
zt

− 2(R + e)2
(R + e)2 − R2

zPb

zt
− ](zp|r�R

zt

+ zσz
zt

)] (20)

Substituting Eqs 10, 11, into Eq. 20:

Vr

R
� α

zP

zt
+ β

zσz
zt

+ γ
zσzs

zt
(21)

in which

⎛⎜⎝ α
β
γ

⎞⎟⎠ � −1
E

2(R + e)2
(R + e)2 − R2

⎛⎜⎝ a
b
c

⎞⎟⎠ + 1
E
[(R + e)2 + R2

(R + e)2 − R2
− ]]⎛⎜⎝ d

f
h

⎞⎟⎠

+ ]
E
⎛⎜⎝ 0

1
0

⎞⎟⎠

Substituting Eq. 21 Into Eq. 18:

zV

zz
+ (1

K
+ 2α) zP

zt
+ 2β

zσz
zt

+ 2γ
zσzs
zt

� 0 (22)

2.3 Governing Equations for Pipe
2.3.1 Axial Motion Equation of Structures
For pipe walls, the axial external force is the shear force.
Considering pipe-concrete coupling, the motion equation of
the pipe is:

ρtAtdz
zuz

zt
+ At[(σz + zσz

zz
dz) − σz] � −Gεs2π(R + e)dz

(23)

where uz and σz are axial velocity and axial stress of pipe, At is the
cross-sectional area of the pipe wall. G = E/2(1+]s) is the shear
modulus of elasticity of concrete. The axial strain of concrete εs =
zws/zz. ws is the axial displacement of concrete.

Eq. 23 is then Simplified:

ρt
zuz

zt
+ zσz

zz
� − R + e

(R + e/2)e
Es

2(1 + ]s)
zWs

zz
(24)

Due to the concrete axial velocity us = zws/zt, Eq. 24 is
updated.

ρt
zuz

zt
+ zσz

zz
+ R + e

(R + e/2)e
Es

2(1 + ]s)
z(∫

t
usdt)
zz

� 0 (25)

2.3.2 Pipeline Continuity Equation
According to the Hooke law, the strain-stress relation applied to
pipe axial direction is:

εz � zWz

zz
� 1
E
[σz − ](σr + σθ)] (26)

where wz is the axial displacement of pipe wall and uz = zwz/zt.
According to Eqs 1, 2, the sum of radial and hoop mean
stresses is:

σr + σθ � 1
2π(R + e/2)e ∫R+e

R

2π(σr + σθ)dr

� R2(R + e)2
2(R + e/2)2e2 ln(1 + e

R
)p|r�R − R2

2(R + e/2)ePb (27)

For convenience, Eq. 27 is written as:

σr + σθ � kP + lσz +mσzs (28)
in which

⎛⎜⎝ k
l
m

⎞⎟⎠ � R2

2(R + e/2)e
⎛⎜⎝ a

b
c

⎞⎟⎠ + R2(R + e)2
2(R + e/2)2e2 ln(1 + e

R
)⎛⎜⎝ d

f
h

⎞⎟⎠
Substituting Eq. 28 into Eq. 26:

zuz

zz
− (1

E
− ]l
E
) zσz

zt
+ ] k

E

zP

zt
+ ]m

E

zσzs

zt
� 0 (29)

2.4 Governing Equations for Concrete
Considering structural vibration caused by FSI, the axial motion
equation of concrete is:

ρsAsdz
zus

zt
+ As

zσs

zz
dz � Esεs

2(1 + ]s) 2π(R + e)dz (30)

where ρs and As are density and sectional area of concrete,
respectively. Eq. 30 can be simplified.

ρs
zus

zt
+ zσs

zz
� π(R + e)Esεs

(1 + ]s)As
(31)
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According to Hooke law, the strain-stress relation of
concrete is:

εs � zws

zz
� 1
E
[σs − ](�σsr + �σsθ)] (32)

Taking time derivative of Eq. 32:

zus

zz
� 1
E
[zσs

zt
− ]

z(�σsr + �σsθ)
zt

] (33)

Based on Eq. 3, the sum of radial and hoop mean stresses can
be expanded as:

�σsr + �σsθ � 1
2π(Rs + es/2)es ∫Rs+es

Rs

2πr(σsr + σsθ)dr

� R2
s

(Rs + es/2)esPb � R2
s

(Rs + es/2)es (aP + bσz + cσzs)
(34)

Then substituting Eq. 34 into Eq. 33:

zus

zz
� 1
E

zσs
zt

− vs
E

R2
s

(Rs + es/2)es (a zPzt + b
zσz

zt
+ c

zσzs

zt
) (35)

Till now, a six-equation model describing the fluid-pipe-
concrete system is derived. This model consists of continuity
and motion equations of fluid and pipe, and constitutive
equations of concrete. And these equations are coupled by
the boundary conditions on their interfaces, at r = R and
r = R + e.

3 SOLUTION METHODOLOGY

3.1 Finite Volume Discretization
The finite volume method (FVM) can provide satisfactory
predictions to flow transients by solving equations in each
control volume (Ferras, et al., 2017) and by presenting each
physical term in integral form (Cardiff, et al., 2016). Based on
cell-centered FV discretization, an iterative approach is

proposed in this paper to calculate the FSI responses. As
shown in Figure 2A, the control volume includes two
dimensions, namely the time step ΔT and the control
volume length ΔZ. The model is solved at the center of
each cell. In order to numerically keep higher accuracy, the
discretization grids system is shown in Figure 2B, where ΔZ =
2Δz and ΔT = 2Δt.

This method discretizes Eq. 14 and Eq. 22, Eq. 25, Eq. 29, Eq.
31 and Eq. 35 using the control volume and integrates differential
equations from t to t + Δt in each control volume. The generalized
differential equation can be expressed as:

A
zQ
zt

+ B
zQ
zz

� S (36)

The Crank-Nicolson implicit form of time-centered difference
provides a second-order accuracy to predict the partial
differential terms. And unconditional stability is guaranteed
with respect to the solution process (Ramírez, et al., 2018).

∫∫
ΔtΔz

(A zQ
zt

+ B
zQ
zz

− S)dtdz � 0 (37)

A ∫
Δz

zQdz + B∫
Δt

zQdt − S ∫∫
ΔtΔz

dtdz � 0 (38)

A(Qn+1
i − Qn

i )Δz + B
2
[(Qn+1

i+1 − Qn+1
i ) + (Qn

i+1 − Qn
i )]Δt � SΔzΔt

(39)
AQn+1

i Δz + B
2
(Qn+1

i+1 − Qn+1
i )Δt � AQn

i Δz −
B
2
(Qn

i+1 − Qn
i )Δt

+ SΔzΔt
(40)

where Q denotes the state matrix in each control volume at each
time step.

Q � [V uz us P σz σs ]T
A, B and S are shown in the Appendix. n denotes the nth time

step. i is the ith calculation nodes. Δt denotes the time step. Δz
denotes the axial interval of each node.

FIGURE 2 | Discretization grids system (A) Cell-centered form of FVM. (B) An equivalent grid system of A.
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According to Eqs 37–40, the iterative matrix between adjacent
time steps for the water conveyance system is built as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 D1

B2 A2 D2

B3 A3 D3

1 1 1
BN−1 AN−1 DN−1

BN AN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
8N×8N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q1

Q2

Q3

..

.

QN−1
QN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
8N×1

�
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1

C2

C3

..

.

CN−1
CN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
8N×1

(41)
in which

Bi � 1
2
B( I4×4

04×4
)

Di � 1
2
B( 04×4

I4×4
)

Ci � AQn
i Δz −

B
2
(Qn

i+1 − Qn
i )Δt + SΔzΔt

Vector Ci and Qi separately denote the state vector in the ith
node at the nth and (n+1)th time step. i = 1 to N, where 1 and N
refer to the inlet and outlet of the pipeline, respectively. When
discontinuity happens between adjacent pipelines or fluid, this
discontinuous section will be modeled as an interior boundary
condition. Ai and Ci are included in the following equations of
boundary conditions.

3.2 Boundary Conditions
Given that the cross-sectional area of the reservoir is much larger
than that of the pipeline, the water level in the tank can be treated
as a constant (Vardy et al., 1996):

P � P0 (42)
where P0 denotes the pressure provided by the water level in
the reservoir. The pipe inlet and outlet are rigidly connected to
the system respectively, so the corresponding continuity
equations of axial direction are as follows (De Santis and
Shams, 2019):

uz � 0, us � 0 (43)
When the outlet valve is closed, fluid flow velocity, axial

velocity of the pipe wall and discharge satisfy:

Af(V − uz) � τQ0 (44)
where τ = (1—t/Tc)

1.5, τ is the closing coefficient which
gradually changes from 1 to 0 when the valve is closed. Tc

is the total shutdown time. Subscript 0 denotes the
initial value.

4 METHOD VALIDATION

4.1 Experimental Data Comparison
Amore general apparatus proposed by Vardy and Fan is used for
benchmark purposes, as seen in Figure 3 (Vardy et al., 1996).
This system consists of a single pipe of 4.5 m and a rod of 5.006 m.
The pipe is suspended and kept horizontal by long wires. Both
ends of it are sealed by steel caps. And the pipe contains
pressurized water to prevent cavitation. Then the steel rod
axially impacts the stationary pipe to generate waves in the
fluid and in the pipe.

This system during transients is solved by the six-equation
model and the iterative methodology. Herein, the pipe is regarded
as a thin-wall pipe encased in the samematerial (ρt = ρs, ] = ]s, E =
Es). The corresponding cross-section is similar to the sketch in
Figure 1B.

Results from the experiment and numerical iteration are
presented in Figure 4, including pressure fluctuations at the
impact end (Figure 4A) and at the remote end (Figure 4B) of
the pipe. The time step in the numerical calculation is 10−4 s to
ensure this algorithm can capture the high-frequency fluctuation.
While in the test, the max sampling frequency is 80 Hz. So the
black curve in Figure 4 is relatively smooth compared to the red
line. The latter one containsmore fluctuating features. In Figure 4A,
pressure values at the first peak are 2.82MPa for experiment and
2.74MPa for simulation. The relative error is 2.84%. Moreover, this
six-equation model mainly takes axial coupling and radial coupling
into account, while failing to include torsion coupling. Due to
experimental error, the discrepancy between the two curves is
acceptable. Generally, numerical results are in good agreement
with the experimental data. This reveals this numerical model is
suitable to investigate the dynamics and kinematics of the piping
system embedded in concrete. And the FV discretization method is
feasible to solve this system.

4.2 Classical Model Comparison
A typical reservoir-pipe-valve system is built up with pipe length
L = 10 m, R = 0.1 m, e = 0.01 m. Figure 5 sketches this system
encased in concrete.

In this system, the water hammer induced by closing the valve
was separately calculated by the classical two-equation model and
the six-equation model established in this paper. As seen in
Figure 6, little deviation arises between these two models

FIGURE 3 | Experimental apparatus (Vardy et al., 1996).
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when ES = 1015 Pa. The two-equation model neglects fluid-pipe
interaction based on the classical water hammer theory. With
respect to the six-equation model, the elastic modulus of concrete
is large enough so that the pipe vibration is negligible and the FSI
response is weak. In such a case, the six-equation model
degenerates to the classical model and their results are almost
identical.

To further justify the derived six-equationmodel, comparisons to
the two-equation model, and four-equation model are discussed

with respect to the water hammer in a typical reservoir-pipe-valve
system. The pressure fluctuations upstream the valve by these
models are illustrated in Figure 7. The two-equation model
omits the FSI, so the pressure curve is trapezoidal waveform in
shape. The four-equation model involves fluid-pipe interaction but
neglects constraints on the pipe’s outer surface. This is equivalent to
an exposed pipe system.

The peak segment of the black line in Figure 7 can be split into
three parts. In region I, the red and blue lines are lower than the black

FIGURE 4 | Time history of pressure (A) Impact end. (B) Remote end.

FIGURE 5 | Side view of water conveyance system encased in concrete.

FIGURE 6 | Dynamic pressure with and without FSI. FIGURE 7 | Hydraulic pressure by different models.
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line due to pipe expansion at the valve. In region II, red and blue lines
climb over the black line. Because in FSI-involved models,
contraction of the pipe wall plays pumping effects on fluid,
triggering a larger pressure than the classical result. In region III,
the axial stress wave bounces back, expands again the pipe and results
in the last pressure drop over the pressure surge. Moreover, an
exposed pipe (four-equation model) has a smaller pressure wave
speed, but stronger FSI responses due to less support. When the pipe
is embedded into concrete, constraints weaken the contributions of
the pumping effect. Peak pressure is suppressed, shown as the red line
lower than the blue one. When the stiffness of the concrete is large
enough, peak pressure and pressure wave speed are similar to those in
the classical model, as shown in Figure 6.

5 RESULTS AND DISCUSSIONS

This section deals with the kinematic and dynamic characteristics
based on the layout in Figure 5 when the fluid-pipe-concrete
interaction is taken into account. Hydraulic transients is triggered
by closing the valve in 0.01 s. And the closing law depends on the
coefficient τ in Eq. 44.

Sensitive analysis of grid size and time step is first discussed, which
determines the result precision. In this process, the Courant number is
well controlled to ensure a stable iteration and reliable results.
Numerical results of peak pressure vary with these two parameters
are given in Figure 8. When Δz > 0.1m in Figure 8A, the peak
pressure drops dramatically with the increase of grid interval. On the
contrary, ifΔz< 0.1m, the numerical result is not sensitive to grid size.
Figure 8B shows a similar manner when the threshold value of the
time step is 10−4 s. Consequently, the node interval and time step are
separately set to be 0.1m and 10−4 s in the iterative algorithm.

5.1 Influence of Concrete on Hydraulic
Pressure
As known from Eq. 22 and Eq. 31, FSI responses to water
hammer greatly depend on parameters of concrete, including

its Poisson’s ratio, thickness-radius ratio, elastic modulus and
density. Hydraulic pressure upstream the valve fluctuates with
these parameters are shown in Figures 9A–D, respectively.

It is clear that the Poisson’s ratio and concrete density hardly
affect the hydraulic pressure as the two curves are almost
overlapped, as seen in Figures 9A,D. Firstly, coefficients in
Eqs 10, 11 are the function of ]s from their definitions in the
Appendix. But the difference of R·p|r=R - (R + e)·Pb can be
ignorable. Moreover, ]s mainly contributes to the axial shear
force between concrete and pipe, while little affects the pressure.
With respect to the concrete density, ρs only dominates the
inertia of concrete, then affects the frictional force on the outer
interface. However, hydraulic pressure hardly changes when ρs
becomes ten times larger. This reveals that the axial vibration of
concrete plays a negligible role in FSI responses.

In contrast, the thickness-radius ratio and elastic modulus play
an important role in the FSI response. By extension, larger Es
alleviates the pumping effect on fluid and further weakens the FSI
response. Hydraulic pressure fluctuates more moderately in this
case and decays faster, as seen in Figure 9C. Besides, Es and es/Rs
both influences the pressure wave speed, then change the fluid
inner pressure. Figure 10 shows the wave speed changing with
the product of Es and es/Rs.

In the graph when Eses/Rs < 106 Pa, pressure wave speed is
almost constant and the pumping effect can be ignored. So the
pipe encased in concrete is approximate to an exposed one, and
the four-equation model is suitable in this case. When Eses/Rs >
1011 Pa, influences of wave speed and pumping effect are also
negligible. In this case, the FSI response is weak, so the two-
equation model is suitable. When Eses/Rs increases from 106 Pa to
1011 Pa, the wave speed changes dramatically as well as the FSI
responses. Notably, the Eses/Rs of concrete is within this range.
Thus, studying the FSI in a piping system embedded in concrete is
of great importance.

5.2 Pipe-Wall Stress
In this study, pressure gradients applied to the interface cause
pipe wall expansion or contraction, and further compress or relax

FIGURE 8 | Validation of independence (A) grid size. (B) time step.
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the ambient concrete. Thus, Pb is produced and subsequently
weakens the FSI responses. The dynamic pressure on the inner
and the outer interfaces are separately shown in Figures 11A,B.

Stronger pulsations are caused by larger Eses/Rs on both inner
and outer interfaces. With larger Pb, a weaker pumping effect is
obtained. Hoop stress and radial stress of pipe wall become
smaller due to restrictions by concrete from Eqs 1, 2. The
result is the piping system gets safer. Moreover, the difference

between R·p|r=R and (R + e)·Pb is smaller in the case of larger Eses/
Rs, which can further lead to weaker axial stress pulsation in the
pipe wall, as shown in Figure 12.

The six-equationmodel derived in this paper aims to investigate
FSI subject to water hammer. Due to the deformation of structures,
FSI response to some extent weakens the stress pulsation in the
pipe wall. As shown in Figure 13, both the hoop and radial stress
are larger using the classical model without FSI.

5.3 Pipe-Wall Motion
In this segment, the axial vibration of the system is analyzed.
Axial displacement of the pipe wall relates to the fluid and
concrete, while the concrete plays the damping role. Signals of
axial displacement in the time domain and frequency domain are
shown in Figures 14A,B, separately. When FSI is taken into
account, the pipe-wall motion is found to relate to the pressure
wave in fluid and stress wave in solid. These two waves propagate
throughout the pipeline system in the axial direction,
contributing to the vibration amplitude in Figure 14A. In
radial direction, pipe expansion or contraction is confined by
the ambient concrete, so the radial vibration of the pipe wall
is weak.

Pipe vibration is mainly caused by hydraulic pressure
fluctuation, especially when FSI is included. All vibration modes
in this case are system modes. However, pipe deformation mode
can be identified by data processing. The first eight modes of pipe

FIGURE 9 | Dynamic pressure varies with the parameters of concrete (A) Poisson’s ratio. (B) Thickness-radius ratio. (C) Elastic modulus. (D) Density.

FIGURE 10 | Pressure wave speed varies with Eses/Rs.
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with respect to different models are shown in Table 1. Data in the
right column correspond to the local peaks in Figure 14B.
According to calculation results, the frequency of pressure wave
is 35.2 Hz, the frequency of stress wave in pipe wall is 129.3 Hz, and
the frequency of stress wave in concrete is 99.6 Hz.

The two-equation model predicts the highest frequency value at
each mode without FSI. Compared with the four-equation model,
constraints by concrete enlarges the frequency value in the six-equation
model. Wave speed in this model is faster, in accord with the curve
tendency in Figure 10. Additionally, Pipe and concrete absorb more
energy fromwater hammers so that FSI responses are alleviated. Similar
results are obtained inFigure 7. Comparison of the threemodels shows
that inherent frequency of the piping system is changed when different
factors are taken into account, like the concrete. On the other, the
pressure surge acts as an unstable source during FSI responses. When
parameters of the concrete change, nature frequency of the pressure
pulsation is changed accordingly. This situationmay lead to undesirable
resonance, especially in a more complex pipeline layout.

6 CONCLUSION

This work studies the FSI responses of a piping system embedded
in concrete during water hammers. Based on area average
treatment on a cross-section, a six-equation model is derived

FIGURE 11 | Pressure fluctuates with Eses/Rs (A) On the inner interface. (B) On the outer interface.

FIGURE 12 | Axial stress of pipe wall fluctuates with Eses/Rs.

FIGURE 13 | Stress increases with p|r=R (A) Hoop stress. (B) Radial stress.
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to describe the fluid-pipe-concrete interaction. This model is
subsequently solved by numerical iteration and results are
compared with experimental data and classical models,
showing good agreements.

In a reservoir-pipe-valve system, hydraulic pressure with respect
to concrete parameters is discussed. Numerical results reveal that
Poisson’s ratio and density of concrete hardly contribute to FSI
responses, while elastic modulus and thickness-radius ratio play
crucial roles. More specifically, Esmainly weakens the pipe pumping
effect and es/Rs determines pressure wave speed. Larger Es and
smaller es/Rs result in more mild pressure fluctuations. When
Eses/Rs < 106 Pa, this six-equation model is approximate to the
four-equation model, namely an exposed pipeline system. When
Eses/Rs > 1011 Pa, constraints from concrete are large enough so that
the classical two-equation model is suitable.

Structural vibration caused by FSI mitigates stress pulsations
separately in circumferential, radial and axial directions of the
pipe wall. These pulsations are more moderate in the case of
weaker FSI responses. Without FSI, the classical water-hammer
theory may lead to an unintended large safety margin and
uneconomic design. It should be noted that weaker FSI
responses cause higher structural frequency in a water
conveyance system, which justifies more explorations in the
design and operation stage of the piping system.
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FIGURE 14 | Dynamic axial displacement (A) Time domain. (B) Frequency domain.

TABLE 1 | First eight modes of pipe with respect to three models.

Mode Two-Equation Model (Hz) Four-Equation Model (Hz) Six-Equation Model (Hz)

1 36.7 33.4 35.2
2 103.1 97.2 99.6
3 134.0 126.6 129.3
4 184.8 176.3 179.0
5 321.1 305.3 310.1
6 362.3 343.7 348.3
7 412.7 387.7 393.7
8 465.3 443.3 450.3
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