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One of the government policies that can reduce CO2 emissions is the Emissions

Trading Scheme (ETS), which was implemented in the Chinese economy on

16 July 2021. It is the largest ETS in the world, covering 12% of global CO2

emissions. Since this policy has not been experienced in China, it is necessary to

predict its impact on CO2 emissions in this country. Furthermore, electricity and

heat production is the major contributor to total CO2 emissions from fuel

combustion. Therefore, this study attempts to predict the impact of the

emissions trading scheme on CO2 emissions from the combustion of coal, oil

and natural gas in electricity generation using annual data from 1985 to 2019. For

this purpose, this study first predicts CO2 emissions from the combustion of coal,

oil and natural gas for electricity generation in power plants using ARIMA and

structural Vector Autoregression (SVAR) techniques over the 2020–2030 period.

It then estimates the short- and long-run impact of the ETS policy on CO2

emissions from the combustion of coal, oil and natural gas in power plants over

the projected period (2020–2030) by employing the ARDL methodology. The

results suggest that the ETS policy is effective in reducing the CO2 emissions from

the combustion of all fuels in electricity generation over the long-run. This is

because of the increase in CO2 emissions from the combustion of these fuels in

power plants in the long run, which exceed the threshold value. But in the short-

run, it has a negative and statistically significant impact only on CO2 emissions

from the natural gas power plants. These results suggest that improving the

efficiency of all fuels can significantly reduce CO2 emissions in electricity

generation from coal, oil and natural gas in the short- and long-run. They also

enable China’s energy policymakers to update the ETS policy in its next phases.

KEYWORDS

emissions trading scheme, CO2 emissions, electricity production, power plants, ARIMA
methodology, structural VAR, ARDL model

OPEN ACCESS

EDITED BY

Xunpeng (Roc) Shi, University of
Technology Sydney, Australia

REVIEWED BY

Xueqiang Li,
Tianjin University of Commerce, China
Matheus Koengkan,
University of Aveiro, Portugal

*CORRESPONDENCE

Saeed Solaymani,
saeedsolaymani@gmail.com

SPECIALTY SECTION

This article was submitted to Sustainable
Energy Systems and Policies,
a section of the journal
Frontiers in Energy Research

RECEIVED 30 May 2022
ACCEPTED 29 July 2022
PUBLISHED 12 September 2022

CITATION

Solaymani S (2022), A prediction on the
impacts of China’s national emissions
trading scheme on CO2 emissions from
electricity generation.
Front. Energy Res. 10:956280.
doi: 10.3389/fenrg.2022.956280

COPYRIGHT

© 2022 Solaymani. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Abbreviations: CO2, carbon dioxide emissions; SO2, sulfur dioxide; ETS, Emissions Trading Scheme;
SVAR, structural Vector Auto-regression; ARIMA, autoregressive integrated moving average; ARDL,
Autoregressive distributed lag; GDP, gross domestic product; EEF, energy efficiency; POP, population.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 12 September 2022
DOI 10.3389/fenrg.2022.956280

https://www.frontiersin.org/articles/10.3389/fenrg.2022.956280/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.956280/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.956280/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.956280/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.956280/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.956280&domain=pdf&date_stamp=2022-09-12
mailto:saeedsolaymani@gmail.com
https://doi.org/10.3389/fenrg.2022.956280
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.956280


1 Introduction

Environmental degradation due to human activities since

industrialization has increased concerns about reducing the

negative impacts of this issue on daily life and the speed of

degradation. This issue results in externalities or side effects

meaning that the activity of economic units affects household

consumption and the production of other activities and the

benefits of those activities are only for them and do not come

into account. Many ways can help to bring externalities into

account, such as environmental taxes, direct control, the

emissions trading scheme (ETS) and so on. These policies

apply to combat climate change, particularly the ETS is the

key tool to cost-effectively reduce greenhouse gas emissions.

The emissions trading scheme in a country allows firms to sell

their excess emission units to firms that are over their targets.

The European emissions trading scheme, as a major pillar of

European energy policy, was the first large greenhouse gas

emissions trading that was launched in 2005. This policy may

lead to three interdependent issues: the allocation approach, the

absence of a credible commitment to pursue beyond 2012, and

concerns about its impact on the international competitiveness of

key sectors (Grubb and Neuhoff, 2010). It has reduced CO2

emissions by 40–80 million tonnes per year on average (Laing

et al., 2014).

Many studies have investigated the various aspects of ETS in

China. Some of them have applied difference-in-difference

methodology. For example, Peng et al. (2021) showed that

this policy reduces carbon emission in those industries that

receive allowance. Tang et al. (2021) revealed that the ETS

policy through the adjustment of industrial structure and

technological innovation decreases carbon emissions. Liu and

Sun (2021) showed that the pilot ETS policy has different impact

on carbon emissions of provinces in China. Similarly, Ma et al.

(2022), using difference-in-difference methodology,

demonstrated that this policy beside reducing carbon

emissions improves economic performance of enterprises.

Other studies employed various methodology to investigate

the impacts of ETS policy. Xiao et al. (2021) showed that ETS

policy improves total factor productivity in pilot regions in

commission with non-pilot regions. Oliveira et al. (2021)

using the Economic Projection and Policy Analysis (EPPA)

model showed that linking Brazilian ETS policy with China’s

ETS is less costly because of lower strict targets. Chen et al. (2020)

showed that low carbon price in ETS policy provide gain for most

of provinces, while those energy rich provinces loss from this

policy. This policy may also have an impact on energy efficiency

as a result of technological innovation and industrial structure

(Liu et al., 2020).

China is one of the top CO2 emitter countries worldwide.

These emissions have resulted from strong economic growth and

population growth. China’s average annual economic and

population growth over the last decade (2010–2021) was

6.95 and 0.50%, respectively. In 2019, the level of CO2

emissions in this country was 9,919.1 million tonnes of which

53.11% comes from electricity and heat production, 28% from

manufacturing, industries and construction, 9.17% from the

transport sector and 3.53% from other energy industries own

use. Therefore, the Chinese government has attempted to reduce

the level of CO2 emissions through certain environmental

policies. For example, the government has committed to

reducing carbon intensity by 40–45% during 2005–2020 at the

2009 Copenhagen Summit. To achieve the target in a cost-

effective manner, China is signaling strong intentions to

establish an emissions trading scheme that in 2013 established

pilot studies in seven provinces (Cui et al., 2014). Since the

electricity sector is the main contributor to CO2 emissions in

China Jotzo and Löschel (2014) believe that Chinese

policymakers need to pay specific attention to the operation

of emissions trading in a heavily regulated electricity sector. Dai

et al. (2018) found that when the emissions trading scheme policy

is implemented in the Chinese economy, the electricity and

aviation sectors will be the main buyers of the carbon credits,

whereas other sectors will be the main sellers.

China with an annual growth rate of 7% in electricity

generation between 2010 and 2018, is one of the top

electricity generation countries globally (about 27% of global

electricity generation) (IEA, 2021). The growth of electricity

consumption also is greater than the global average (about 60-

7-0% by 2040) with the majority coming from coal (about 66%)

followed by hydropower (about 17%) (IEA, 2021). Therefore,

98% of the emissions from electricity generation came from coal-

fired power plants. This means that coal consumption resulted in

4.4 Gt of CO2 emissions, corresponding to 13% of global CO2

emissions and 46% of China’s emissions from fossil fuel

combustion (IEA, 2021). In 2017, China announced the

launch of the ETS by the end of 2020 (ICAP, 2020) and

operated it by mid-2021 (Verde et al., 2021). Around 2020,

the program was expected to be fully operational in the

electricity sector and then gradually expand to other

industries (Jotzo et al., 2018). Therefore, due to the high

contribution of the electricity industry to CO2 emissions in

China (53.11% of total CO2 emissions), the government has

implemented the ETS policy in the electricity industry to reduce

CO2 emissions and to achieve the Copenhagen target in 2021.

This policy is a market-based environmental policy aiming at

reducing carbon emissions. Therefore, the government and

policy makers must pay more attention to its positive impacts.

How this policy affects the electricity sector and achieves its

target is of great concern for policy makers and potential

investors.

Therefore, this study, using different econometric methods,

first predicts CO2 emissions from combustion of coal, natural gas

and oil in electricity generation over the next 11 years

(2020–2030). It then attempts to investigate the impact of the

emissions trading scheme policy on CO2 emissions from fuel
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combustion in three types of power plants (i.e., coal, natural gas

and oil) in China during 2020–2030. It also estimates the

relationship between CO2 emissions from the combustion of

different fuels in power plants and GDP, population and energy

efficiency in China. The main contribution of this study is that it

is the first study that predicts CO2 emissions from China’s power

plants for the next decade. This is because the majority of studies

on emission trading scheme policy investigated the impact of

pilot policy the selected regions and industries. Another

contribution is investigating the impact of the emissions

trading scheme at the sectoral level, particularly at the level of

three types of power plants for a period which the ETS policy will

be implemented in the electricity sector.

This study is organized in the following manner. The next

section looks at an overview of the literature on the global and

local emissions trading scheme. Methodology and data are

outlined in Section 3. Section 4 analyzes the findings of the

study and Section 5 deals with the model of the study. Section 6

provides a discussion on results and section 7 presents a

conclusion and some policy recommendations.

2 Literature review

In 2011, China, the world’s leading carbon emitter,

implemented the ETS pilot policy to reduce carbon emissions

in seven provinces. Many studies showed that the pilot study is

effective in reducing CO2 emissions in these regions. For

example, Wen et al. (2021) showed that overall CO2 emissions

decreased by about 1,165.72 Mt between 2011 and 2015,

representing 12.78% of total industrial CO2 emissions from

pilot regions. Zheng et al. (2021) also showed that the ETS

pilot policy has played a governance role in China and

improved carbon emissions performance.

Chang et al. (2018) found, through co-integration

techniques, various impacts of ETS pilot projects in China’s

provinces, particularly their impacts in the short- and long-

run. For example, using the panel data for provinces and

industries, Zhang et al. (2019) showed that the ETS has a

significant impact on carbon emission intensity in Guangdong

and Beijing, while it is not significant in Shanghai, Tianjin, Hubei,

and Chongqing. This policy also decreased China’s GDP and

increased the price of electricity, as indicated by a dynamic

recursive Computable General Equilibrium model conducted

by Lin and Jia (2019). Similarly, Li et al. (2018) and Zhang

et al. (2018) using the CGE methodology found that the ETS

policy reduces China’s GDP and CO2 emissions and leads to

clean electricity production. Based on the theories and models of

equilibrium and system dynamics, Feng et al. (2018) showed that

tradable green certificates and carbon emissions trading decline

CO2 emissions in the electric power industry. The emissions

trading scheme in the electricity industry will cover around 3 Gt

of CO2 emissions annually, representing about 8% of global CO2

emissions (Jotzo et al., 2018). Based on non-parametric

optimization models Liu et al. (2018) found that the

maximum potential gains can be obtained when CO2-SO2

emissions trading are combined.

Lu et al. (2021) demonstrated that the carbon trading policy,

which has led to additional costs, has less impact on the industrial

competitiveness. Zeng et al. (2020) also reported that the

emissions trading scheme reduces CO2 emissions from power

plants and can reduce the total abatement costs from 0.37 to

41.5% in China. Tan et al. (2019) using an optimization model

found similar results for thermal power generation. Ma et al.

(2018) found that both TGC planning and the carbon emissions

scheme can jointly adjust the structure of power industries.

The carbon emission trading also affects other sectors. For

example, Liu et al. (2021) found that it effectively improves

the total asset-liability ratio of enterprises, but decreases the

value of the current capital market. Zhang et al. (2022) also

showed that carbon emission trading system has a crowding-

out effect on R&D investment. However, Liu and Sun (2021)

indicated that this policy promotes low-carbon technological

innovation.

The review of the above literature shows that many studies

have investigated the impact of the pilot study in seven Chinese

provinces. They are also focusing on other sectors rather than the

electricity sector. No specific studies have predicted the impact of

this policy on the CO2 emissions in electricity production after its

implementation. Therefore, this study fills these gaps by

predicting the CO2 emissions from the combustion of coal, oil

and natural gas in electricity production and then investigates the

impact of the ETS policy on it.

3 Methodology and data

One of the main goals in estimating a regression model is to

be able to predict the changes of the endogenous variable with a

certain quantity of the exogenous variable. Prediction is the

process through which an objective or subjective model can

be used to estimate a variable for the past or future. To

predict a variable, one must first predict the variable inside

the sample, then select the best method. It can then predict

the variable based on the best model for the future.

Forecasting is mainly divided into two categories: in-sample

forecasting and out-of-sample forecasting. In the in-sample

prediction, the variable can be estimated based on a

mathematical or qualitative model, then compared with the

actual variable. This measures the strength of forecasting

models. But the out-of-sample forecast estimates the variable

for future or past periods (out of the sample). Mathematical and

statistical models are generally used to perform the process of

predicting economic variables, that is, the approximate

estimation of an economic variable in the future. In other

words, the objective method requires the construction of amodel.
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The quantitative (objective) method is performed using

either the econometric or structural method and the time

series or non-structural method. In the first method, an

econometric model is initially estimated as follows:

Y � f (X) (1)

Where Y is a dependent variable and X is a vector of

independent variables. After the formation of the functions

and having the X variables, the Y variable can be estimated or

predicted. This is mainly done to predict a variable using changes

in other variables.

In the second method, known as the non-structural method,

one variable can be predicted based on its own past

developments, and does not require another variable. In this

method, the most important task is to identify the time series

behavior according to its past values. It should be noted that the

best way to predict a variable is to use all methods. After

forecasting, the two methods will be compared with

forecasting scales and the best method will be selected and

used for prediction. The two forecasting methods used in this

study are described in the following sub-section.

3.1 Vector Autoregression (VAR) model

The VAR methodology is very similar to the simultaneous

equation models. But in this method, we are dealing with several

endogenous variables and each endogenous variable is explained

using its past values and the lagged values of all other endogenous

variables of the model. The model generally does not include any

exogenous variables. In addition, the VAR model determines the

short-term behavior of variables with other variables and the

lagged values of the variable itself. The general form of the auto-

regression process is as follows:

Yt � A +∑
p

j�1BjYt−j +∑
q

i�1CiYt−i + εi (2)

Where εi is the stochastic term, which in VAR methodology is

known as a reaction or stochastic shock.

As noted above, one of the most common time series

forecasting methods is the use of the VAR model.

Accordingly, in this study, CO2 emissions from the

combustion of coal, oil and natural gas in power plants are

estimated within the framework of a structural VAR (SVAR)

model, which combines the VAR model and structural

regression. In these models, the prediction of a variable, for

example Y, is related not only to its previous values, but also to

the current and past values of the variables affecting this variable.

Before introducing the primary functional form of the study

model, we need to provide some evidence. Mikayilov et al.

(2018) and Solaymani (2020) found a positive relationship

between CO2 emissions and gross domestic product (GDP).

At the sectoral level, an increase in transport value added

stimulates CO2 emissions from the transport sector

(Solaymani, 2022). Evidence has also demonstrated that

population is responsible for CO2 emissions in the economy

(Zhang G et al., 2018; Rahman et al., 2020). de Souza Mendonça

et al. (2020) argued that an increase of 1% in population

increases CO2 emissions by more than 1%. On the impact of

energy efficiency, Razzaq et al. (2021) argued that an

improvement of 1% in energy efficiency mitigates CO2

emissions by less than 0.30% in the short- and long-run.

Similarly, Akram et al. (2020) highlighted that energy

efficiency reduces carbon emissions in developing economies.

In SVAR models, influential variables can be considered

endogenous or exogenous in the model. In this model, based

on the above evidence, CO2 emissions from each power plant are

considered as a function of real GDP, population and energy

efficiency. Accordingly, the following model is specified:

Dt � f(GDPt, EEFt, POPt). (3)

Where C O 2 is CO2 emissions in millions of tonnes, GDP in

billion dollars (at constant 2015 prices) and population (POP) in

millions.

3.2 ARIMA model

The autoregressive integrated moving average (ARIMA)

process for the variable Y can be represented as the following

relationship:

Yt � f(x) +∑
p

i�1βiYt−i∑
q

j�1δiut−j + ut

Yt � Δdxt � (1 − L)dxt

(4)

Where L is the lag operator. In the ARIMA (p, d, q) process,

p, d, and q represent the number of autoregressive lags, the order

of differentiation, and the number of moving average sentences,

respectively. If d is equal to zero, the ARIMA process becomes the

ARMA process. The Box-Jenkins methodology is usually used to

estimate the ARIMA and ARMA models, which has three stages

of identification, estimation and accurate measurement.

The number of autoregressive sentences and the number of

moving average sentences is generally calculated using the

autocorrelation and the partial autocorrelation functions based

on the Box-Jenkins steps.

3.3 Criteria for measuring the power of
predictions

Different criteria were used to compare the forecast power

and select the best forecasting method. These criteria include the

mean absolute error (MAE), mean squared error (MSE) and

mean absolute percentage error (MAPE). These criteria can be

formulated as follows.

Frontiers in Energy Research frontiersin.org04

Solaymani 10.3389/fenrg.2022.956280

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.956280


MAE � ∑n
i�1
∣∣∣∣ei
∣∣∣∣

n
(5)

MSE � ∑n
i�1e

2
i

n
(6)

MAPE � 100%
n

∑
n

i�1

∣∣∣∣∣∣∣∣
ei
yi

∣∣∣∣∣∣∣∣ (7)

In these relations n is the number of predictions, ei is the

prediction error obtained from the difference between the

predicted values and the actual values, and yi are the actual

values. These criteria will be used to measure predictive power in

this study.

In this study, the annual time series from 1985 to 2019 are

used to predict CO2 emissions at each of the power plants. The

variables in the study include carbon dioxide (CO2) emissions

from burning coal, natural gas and oil in power plants, real gross

domestic product (GDP), Chinese population (POP), and energy

efficiency (EEF) for each power plant. The data are collected from

the World Bank (World Development Indicators) and the U.S.

Energy Information Administration.

3.4 Autoregressive distributed lag (ARDL)
model

This study uses an econometric method introduced by

Pesaran et al. (2001), known as the ARDL model, to estimate

the effect of the emissions trading scheme policy on the CO2

emissions from the combustion of coal, natural gas and oil in

China’s power plants. This method is preferable to other

traditional methods because it is not necessary that each

variable be in its first order. This method is also more

efficient for small samples. Under the ARDL method, the

maximum level of stationary for all variables must be I (1).

Therefore, we use Dickey-Fuller and Phillips-Peron tests to

test the stationary of variables in the models. After examining

the stationarity of the variables, we need to estimate the

relationship between the variables using the following

equation.

Δ ln CO2t � α0 + γ1 ln CO2t−1 + γ2 ln GDPt−1 + γ3 ln POPt−1

+ γ4EEFt−1 + γ5DUMt−1 +∑
p

i�1δ1Δ ln CO2t−i

+∑q

j�1δ2Δ ln GDPt−j +∑m

k�1δ3Δ ln POPt−k

+∑
n

l�1δ4ΔEEFt−l +∑
s

w�1δ5ΔDUMt−w + ut (8)

In this equation, the natural logarithmic form is used for the

exogenous variables, and Δ shows that the variable is in the first-

order difference. CO2 is the carbon dioxide obtained from

electricity generation and is measured in million tonnes of

CO2. GDP is the real gross domestic product (2015 constant

prices $US). The EEF indicates the energy efficiency of each

power plant. POP is the population (million people), and the

DUM is the dummy variable that can be used to examine the

impact of the emissions trading scheme policy during the

predicted period (2020–2030). t refers to the period

1985–2019 and ut is the error term.

Before estimating the models, it is necessary to identify

the co-integration relationship among variables using the

bounds test, to find a high level of confidence in the

coefficients of the lagged variables. Simultaneously, this

test relies on an F-test consisting of two parts, the upper

bound and the lower bound. If the value of F is higher than the

upper limit, it is proved that there is a co-integration relation

between the variables, and if the value of F is less than the

lower limit, the null hypothesis cannot be rejected. If the

F-statistic falls between the two limits, the results will not be

clear. This test consists of two hypotheses. The H0 hypotheses

shows that all coefficients are zero and the H1 hypotheses

indicates that at least one of the coefficients is not zero. For

the F test, we use the critical value developed by Narayan and

Smyth, (2005) for small samples. After detecting the

establishment of the co-integration relationship, the long-

run ARDL model (Equation 9) for calculating the long-run

dynamics is estimated as follows:

lnCO2t � α0 + γ1lnCO2t−1 + γ2lnGDPt−1 + γ3lnPOPt−1

+ γ4EEFt−1 + γ5DUMt−1 + υt (9)

In Equation 9, the optimal lag length structure is selected

using the Schwartz information criterion. The coefficients

measure the long-run effect of each variable of the models on

CO2 emissions. After estimating Equation 9, the residuals will be

used as the error correction model (ECM). This model shows

how variables quickly return to long-run equilibrium after a

shock. The ECMmust have a statistical coefficient with a negative

sign equal to or less than one. The error correction model of

Equation 8 is formulated in the form of Equation 10.

Δ ln CO2t � α0 +∑
p

i�1δ1Δ ln CO2t−i +∑
q

j�1δ2Δ ln GDPt−j

+∑
m

k�1δ3Δ ln POPt−k +∑
n

l�1δ4ΔEEFt−l

+∑
s

w�1δ5ΔDUMt−w + θECMt−1 + εt (10)

For a better understanding of the study methodology, a

conceptual framework is presented in the Figure 1.

4 Model estimation

4.1 Determining the optimal lags length

After determining the variable for each model, in the next

step, we examine the stationary state of the variables. In this

study, the Augmented Dickey-Fuller and the Phillips-Perron

tests were used to examine the stationary of variables. The

results of these tests are reported in Table 1.

Frontiers in Energy Research frontiersin.org05

Solaymani 10.3389/fenrg.2022.956280

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.956280


Table 2 shows that among the study variables, only the

population (POP) is stationary at its level and the other

variables are not stationary at their level, but they have been

stationary in their first differences. To determine the optimal lag

length, we can use the criteria of the likelihood ratio (LR), Akaike

(AIC), Schwartz (SC) and Hannan-Quinn (HQ) tests. The results

of these tests are reported in Table 2.

According to Table 2, the Schwartz criterion shows one lag

for the coal model, three lags for the gas model and one lag for the

oil model.

TABLE 1 Result for the unit root test.

Variables Augmented dickey fuller Phillips - perron

Level First difference Level First difference

LnGDP 0.807 −4.014a 0.548 −4.034a

LnPop −2.146 −2.283 −12.470a −0.641

LnC O 2_C 1.897 −3.593b 1.330 −3.593b

LnC O 2_G 3.896 −3.002b 8.713 −3.070b

LnC O 2_O 1.618 −4.649a 1.618 −4.661a

EEF_C −0.050 −4.305a −0.730 −4.282a

EEF_G −0.773 −7.441a −2.344 −8.927a

EEF_O −1.397 −4.826a −1.417 −4.778a

a denotes the variable is significant at 1%
b denotes the variable is significant at 5%

Note: _C, _G and _O indicate the variable is for Coal, Gas and Oil power plant, respectively.

TABLE 2 Results for the optimal lag length for each model.

Lag LogL LR FPE AIC SC HQ

Coal model

0 −630.524 NA 7.06E+12 40.93704 41.12207 40.99735

1 −312.644 533.2176 24,854.23 21.46092 22.38608a 21.7625

2 −289.754 32.48905 16,876.32 21.01641 22.68168 21.55925

3 −266.853 26.59520a 12,582.71a 20.57115a 22.97655 21.35525a

4 −254.863 10.82948 22,468.01 20.82988 23.9754 21.85524

Gas model

0 −732.59 NA 5.11E+15 47.52192 47.70695 47.58224

1 −453.047 468.9106 2.13E+08 30.51916 31.44431 30.82073

2 −427.877 35.72493 1.25E+08 29.92755 31.59283 30.47039

3 −395.993 37.02712a 52,256,486 28.90275 31.30815a 29.68685

4 −369.327 24.08505 36,201,720a 28.21465a 31.36017 29.24001a

Oil model

0 −657.94 NA 4.14E+13 42.70583 42.89086 42.76614

1 −389.682 449.9818 3.58E+06 26.43109 27.35624a 26.73267

2 −367.738 31.14635a 2.58E+06 26.04761 27.71288 26.59044

3 −345.501 25.82342 2,011,024a 25.64523 28.05063 26.42933a

4 −327.991 15.8158 2,514,936 25.54779a 28.69331 26.57315

aDenotes lag order selected at the 5% level.

Frontiers in Energy Research frontiersin.org06

Solaymani 10.3389/fenrg.2022.956280

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.956280


4.2 Co-integration test

The purpose of estimating the VAR model is to determine

the number of long-run relationships between the model

variables. Since the model consists of three variables, it is

possible to have at least two long-run relationships between

them. To test this problem using the Johansen’s method, the

maximum eigenvalue and the trace statistics were used. The

results of these statistics for each one of the models are

presented in Table 3. As can be seen in this table, both the

trace statistic and the maximum eigenvalue confirm the

existence of at least one long-run relationship between the

variables of each one of the models at the 95% confidence

level. Therefore, we have estimated a long-run relationship

under the Johansen model.

4.3 Johansen model estimation

The Johansen model shows the long-run relationships and is

helpful for policymaking. In addition, according to Table 4, the

long-run relationships for each model is one, which is stated

below. In addition, all variables are considered independent in

this regard.

ln CO2 Ct � α1 ln GDPt + α2 ln POPt + α3EEF Ct (11)
ln CO2 Gt � β1 ln GDPt + β2 ln POPt + β3EEF Gt (12)
ln CO2 Ot � γ1 ln GDPt + γ2 ln POPt + γ3EEF Ot (13)

The results show that in the long run, real GDP has a negative

and significant relationship with CO2 emissions for each model.

These results also show that, in the long run, there is a significant

relationship between population and the CO2 emissions. This

model shows a significant relationship between the energy

efficiency of each energy and CO2 emissions from the

combustion of each fuel. This means that their coefficients are

reliable at the 1% level of significance, except for the real GDP in

the natural gas model.

4.4 ARIMA model’s estimation

Another methodology used in this study is the

autoregressive integrated moving average (ARIMA) model.

The estimation of ARIMA models involves four main steps.

The first step is the model’s identification. The identification step

in estimating ARIMA models is made using the autocorrelation

function (ACF) and the partial autocorrelation function (PACF).

One of the prerequisites for the ARIMA model is the

nonstationary condition of the variable under consideration.

The third step in the ARIMA method is the model’s evaluation.

Normally, at this stage, estimates with higher degrees are made

and the best model is selected from them according to Akaike

and Schwartz criteria as well as the white noise of the residual

terms. The Akaike and Schwartz criteria were used to select the

appropriate model, upon which the ARIMA (1,1,4) model,

ARIMA (4,1,1) and ARIMA (6,1,10) were selected for coal,

TABLE 3 Results for selection the order of co-integration.

Hypothesis H0 Hypothesis H1 Trace statistic 5% Critical
value

Max-Eigen statistic 5% Critical
value

Coal model

r = 0 r ≥ 0 64.04463a 47.85613 37.9527a 27.58434

r = 1 r ≥ 1 26.09193 29.79707 14.69912 21.13162

r = 2 r ≥ 2 11.39281 15.49471 9.793,107 14.2646

r = 3 r ≥ 3 1.5997 3.841,465 1.5997 3.841,465

Gas model

r = 0 r ≥ 0 64.01293a 47.85613 39.56543a 27.58434

r = 1 r ≥ 1 24.44751 29.79707 19.58731 21.13162

r = 2 r ≥ 2 4.860,201 15.49471 4.615,254 14.2646

r = 3 r ≥ 3 0.244,946 3.841,465 0.244,946 3.841,465

Oil model

r = 0a r ≥ 0 55.68548a 47.85613 34.52404a 27.58434

r = 1 r ≥ 1 21.16145 29.79707 10.90198 21.13162

r = 2 r ≥ 2 10.25947 15.49471 7.89001 14.2646

r = 3 r ≥ 3 2.369,458 3.841,465 2.369,458 3.841,465

aShows H0 hypothesis reject at 5% level.
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natural gas and oil models, respectively. However, since the main

purpose of estimating these patterns is prediction, the amount of

prediction error is more important in selecting the model.

Detailed results of the ARIMA estimates are presented in

Table 5.

In Table 5, for the coal model, the first-order, AR (1), and the

fourth order of the autoregressive sentence, AR (4), are

statistically significant. For the natural gas model, the fourth

order, AR (4), and the first order, MA (1), are statistically

significant and for the oil model, the sixth order, AR (6), and

the 10th order, MA (10), are statistically significant.

4.5 Comparing the prediction power of
VAR and ARIMA models

In the previous sections, CO2 emissions from burning coal,

natural gas and oil in power plants were estimated using the VAR

and ARIMA methods. Based on these methods, the forecasted

values of CO2 emissions and their actual values for each model

during 2010–2019 are presented in Tables 6 and 7. In this section,

we compare the dual estimates of each model and check which

one of them has greater predictive power. To do this, three

criteria were used: the sum of squares error (MSE), the mean

absolute value of error (MAE) and the mean absolute percentage

error (MAPE).

We now turn to the question of which of the two

forecasting methods for each model has the least error? To

answer this question, we compare the actual data and the

predicted values of these two methods over the last 10 years

(2010–2019), and determine the one with the least error.

Meanwhile, the longer the forecast period, the greater the

prediction error because the prediction of each period also

contains the sum of the prediction error of the past. To

determine the small amount of prediction errors, as

mentioned above, the MSE, MAE and MAPE measures

were used. The results of these measures are reported in

Table 8.

The evaluation of the predictive power of the VAR model

and its comparison with the ARIMA model indicates the

difference in the accuracy of this model compared to

another model. As shown in Table 8, the VAR model has

the least error in predicting CO2 emissions in the oil and

natural gas models. However, in the prediction of CO2

emissions from the coal power plant, the ARIMA model has

the least prediction error.

TABLE 4 Results for the Johansen model.

Variable LnCO2_C LnCO2_G LnCO2_O

Coefficient (std.
err.)

t-stat Coefficient (std.
err.)

t-stat Coefficient (std.
err.)

t-stat

LnGDP −1.038 (0.004) 259.500 −0.314 (0.185) 1.697 −1.921 (0.066) 29.106

LnPOP 0.793 (0.083) 9.554 −26.329 (3.363) 7.829 15.748 (1.255) 12.548

EF_C/G/O 0.384 (0.004) 96.000 0.004 (0.0003) 13.333 0.010 (0.001) 10.000

TABLE 5 Results for the ARIMA model.

Model Variable Coefficient Std. Error t-Statistic p-value

Coal model C 126.078 47.752 2.640 0.013

AR (1) 0.400 0.153 2.619 0.014

MA (4) 0.245 0.135 1.818 0.079

Gas model C 2.900 1.830 1.584 0.124

AR (4) 0.487 0.158 3.091 0.004

MA (1) 0.428 0.168 2.547 0.016

Oil model C 3.557 2.954 1.204 0.238

AR (6) 0.331 0.130 2.539 0.017

MA (10) 0.564 0.286 1.976 0.057
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TABLE 6 Actual and residual values of the VAR model.

Coal model Gas model Oil model

Year Actual value Predicted value Actual value Predicted value Actual value Predicted value

2010 3298.286 3081.626 31.2631 32.97048 59.69654 70.73683

2011 3738.643 3260.812 44.90924 41.97803 59.03182 75.48626

2012 3755.838 3437.098 45.52839 46.92644 68.11364 80.94506

2013 4026.316 3610.376 48.04628 51.68831 83.47544 87.02337

2014 3996.477 3780.464 55.02207 58.13641 93.71664 93.69099

2015 3942.563 3947.14 68.8911 65.36717 108.4021 100.9305

2016 3991.116 4110.158 77.72435 73.16031 123.5707 108.7325

2017 4226.292 4269.263 83.8746 81.55672 120.7689 117.0932

2018 4534.499 4424.203 88.95166 89.9754 128.4015 126.0138

2019 4606.215 4574.732 95.96873 98.07298 143.417 135.499

TABLE 7 Actual and residual values of the ARIMA model.

Coal model Gas model Oil model

Year Actual value Predicted value Actual value Predicted value Actual value Predicted value

2010 3298.286 3098.594 31.2631 26.21613 59.69654 62.16665

2011 3738.643 3289.894 44.90924 29.14733 59.03182 65.41825

2012 3755.838 3403.149 45.52839 30.9542 68.11364 71.6497

2013 4026.316 3548.166 48.04628 33.29499 83.47544 76.53861

2014 3996.477 3681.818 55.02207 36.18054 93.71664 84.68916

2015 3942.563 3810.925 68.8911 39.09573 108.4021 89.34158

2016 3991.116 3938.214 77.72435 41.46349 123.5707 97.6763

2017 4226.292 4064.777 83.8746 44.09121 120.7689 105.614

2018 4534.499 4191.048 88.95166 46.98417 128.4015 108.4819

2019 4606.215 4317.204 95.96873 49.89155 143.417 114.8871

TABLE 8 Comparing the power of both ARIMA and VAR model in predicting CO2 emissions.

Model RMSE MAE MAPE Smape Theil
U1

Theil
U2

Selected
model

CO2

Coal
ARIMA 129.7897 56.27165 1.451,081 1.508,488 0.026986 0.360,476 ARIMA

VAR 133.7077 55.81578 1.451,521 1.513,455 0.027796 0.371,787

CO2 gas ARIMA 15.79207 7.510,291 10.87788 13.68461 0.266,092 0.352,678 VAR

VAR 1.516,784 0.752,196 1.296,965 1.294,572 0.020509 0.046997

CO2 oil ARIMA 8.723,121 3.911,894 3.559,546 3.804,302 0.065435 0.544,169 VAR

VAR 5.148,574 2.291,167 2.82309 2.667,351 0.037203 0.486,747
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4.6 CO2 emissions forecast

For oil and natural gas models, the prediction criterion is the

VARmodel and for the coal model, the prediction criterion is the

ARIMA model. Therefore, using these methods, we have

predicted CO2 emissions from combustion of coal, oil and

natural gas over the 2020–2030 period. The results of these

forecasts are presented in Figure 2, which shows that CO2

emissions have increased over the relevant years.

As Figure 2 shows, CO2 emissions are increasing for all

power plants, but from 2025 the rate of the increase in the coal-

fired power plant will be slower. In 2029 and 2030, the gap

between CO2 emissions will be at a minimum, and this could be

a promise to reduce CO2 emissions from power generation in

China’s coal-fired power plants, which make a very large share

of coal-fired electricity generation.

5 Main results of the study

Before estimating the models, we need to find out the long-

run relationship between the variables of each model using the

bounds test. The value of the F-statistic of this test is compared to

the criteria of the Narayan and Smyth (2005) study. If it is above

the upper limit of the Narayan and Smyth (2005) criteria, it

shows the long-run co-integration relationship between the

variables. However, if it falls below the lower limit of the

criterion, it does not show any long-run co-integration

relationship. Finally, if it falls between the lower and upper

limits, the value of the F-statistic will not be definitive. The

results of the bounds test of all models in Table 9 show that there

exists a long-run co-integration relationship between variables in

each model.

After finding a long-run co-integration relationship between

the variables within eachmodel, we estimate the short- and long-

run impacts of each variable on CO2 emissions. Table 10 shows

FIGURE 1
Conceptual framework of the study.

FIGURE 2
Predicted trends of CO2 emissions created by different power plants during 2020–2030.
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the short and long-runresults for thecoalpowerplant.Theresults

show that GDP has a positive and significant impact on CO2

emissions from coal power plants in the short- and long-run. It

shows that if real GDP increases by 1%, CO2 emissions from coal

powerplants increase by 0.98 and0.99%respectively in the short-

and long-run. The population also has a positive impact on the

coal power plant in both the short- and long-run, while its

coefficient is not statistically significant. The coefficient of the

energy efficiency in the coal power plants shows a negative and

statistically significant impact onCO2 emissions fromcoal power

plants in the short and long run. Thismeans that with an increase

of 1% in energy efficiency, CO2 emissions from coal power plants

decline by 0.34 and 0.36%respectively in the short- and long-run.

The coefficient of the dummy variable has a negative sign and is

statistically significant only in the long run. It shows that the

emissions trading scheme can reduce theCO2 emissions from the

coal power plant in the long run.

Table 11 reports the short- and long-run results for the

natural gas power plants. The results show that GDP has a

positive and statistically significant impact on the CO2

emissions from the combustion of natural gas in power

plants in the short- and long-run. It shows that if real GDP

increases by 1%, CO2 emissions from natural gas power plants

increase by 1.53 and 0.76% in the short- and long-run,

respectively. The coefficient of the population has a negative

impact on natural gas power plants in the short- and long-run,

but it is not statistically significant. The coefficient of the

energy efficiency in the natural gas power plants shows a

negative and statistically significant impact on the CO2

emissions of natural gas power plants in the short- and

long-run. This means that with an increase of 1% in energy

efficiency, CO2 emissions of natural gas power plants decline

by 0.003% in the short- and long-run. The coefficient of the

dummy variable has a negative sign and is statistically

significant in the short and long run. It shows that the

TABLE 9 Results for the bounds tests of all three models.

Model F-value Result

LnCO2_C = f (LnGDP, LnPOP, EEF_C) 30.456 Cointegration

LnCO2_G = f (LnGDP, LnPOP, EEF_G) 16.635 Cointegration

LnCO2_O = f (LnGDP, LnPOP,
EEF_O)

5.032 Cointegration

Critical value bounds

Level of significant Lower limit (I(0)) Upper limit (I(1))

10% 2.922 4.061

5% 3.559 4.841

1% 5.064 6.659

TABLE 10 ARDL results for the Coal power plant (dependent variable = CO2_C).

Variable Coefficient Std. Error t-Statistic p-value

Long-run

C −0.852 9.472 −0.090 0.929

LnGDP 0.981a 0.127 7.705 0.000

LnPOP 0.134 1.464 0.091 0.928

LnEEF_C −0.338a 0.119 −2.833 0.008

DUMa(COALFa109) −2.39 × 10–13a 5.38 × 10–14 −4.432 0.000

Short-run

D (LnGDP) 0.993a 0.019 51.907 0.000

D (LnPOP) 0.011 0.124 0.091 0.928

D (LnEEF_C) −0.363a 0.016 −22.703 0.000

DUMa(COALFa109) −3.08 × 10–16 3.26 × 10–15 −0.094 0.925

ECTt-1 −0.085a 0.006 −14.426 0.000

Diagnostic tests

Test Statistic Value Prob

Normality Jarque-Bera 2.924 0.232

Serial Correlation Chi-square (1) 0.008 0.928

Heteroskedasticity Chi-square (25) 41.649 0.172

Functional form Chi-square (1) 0.555 0.457

CUSUM test Stable

CUSUM of square test Stable

adenotes level of significance at 1% level.
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emissions trading scheme can reduce the CO2 emissions from

natural power plants in the short and long run.

Table 12 provides the short- and long-run results for the oil

power plants. The results show that GDP has a positive and

statistically significant impact on the CO2 emissions from the

combustion of oil in power plants in the short- and long-run. It

shows that if real GDP increases by 1%, CO2 emissions fromoil

power plants will increase by 1.56 and 1.29% in the short- and

long-run, respectively. The coefficient of the population has a

negative and statistically significant impact onoil power plants

in both the short- and long-run. It shows that if the population

increases by 1%, CO2 emissions from oil power plants declines

by 9.80 and4.27% in the short- and long-run, respectively. This

may occur due to the increase in the use of more clean energies

like natural gas in the combined oil and natural gas power

plants. The coefficient of the energy efficiency in the oil power

plants shows a negative and statistically significant impact on

CO2 emissions from oil power plants in the short- and long-

run. This means that with an increase of 1% in energy

efficiency, CO2 emissions from oil power plants decline by

0.01% in the short- and long-run. The coefficient of the dummy

variable has a negative sign and is statistically significant only

in the long run. It shows that the emissions trading scheme can

only reduce the CO2 emissions from the oil power plants in the

long-run.

6 Discussion

The level of energy consumption cannot be significantly

reduced through the increase in energy prices due to the low

elasticity of demand for energy. Therefore, economic and

population growth are the main contributors to high

demand for energy and electricity (Solaymani et al., 2015).

Therefore, other policies and motivation methods aimed at

increasing energy efficiency and the use of renewable energy

sources can help to use fossil fuel power plants in China and

other countries.

One of the China’s most important sources of CO2

emissions is its GDP. The results show that GDP positively

and significantly increases CO2 emissions in the short- and

long-run. This means that economic growth and its

components, such as trade, due to more use of fossil fuels

increase CO2 and other pollutants in the environment. This is

consistent with the study conducted by Solaymani (2020),

Mohsin et al. (2022) and Solaymani and Shokrinia (2016). The

TABLE 11 ARDL results for the Gas power plant (dependent variable = CO2_G).

Variable Coefficient Std. Error t-Statistic p-value

Long-run

C 4.601 11.671 0.394 0.696

LnGDP 1.531a 0.159 9.615 0.000

LnPOP −1.992 1.808 −1.102 0.278

LnEEF_G −0.003a 0.000 −10.749 0.000

DUMa(GASFa109) −2.29 × 10–12a 3.42 × 10–13 −6.692 0.000

Short-run

D (LnGDP) 0.758a 0.200 3.791 0.001

D (LnPOP) −0.986 0.993 −0.994 0.327

D (LnEEF_G) −0.003a 0.000 −28.307 0.000

DUMa(GASFa109) −1.13 × 10–12a 2.30 × 10–13 −4.933 0.000

ECTt-1 −0.495a 0.047 −10.628 0.000

Diagnostic tests

Test Statistic Value Prob

Normality Jarque-Bera 2.924 0.101

Serial Correlation Chi-square (1) 2.634 0.105

Heteroskedasticity Chi-square (27) 30.990 0.272

Functional form Chi-square (1) 2.61 × 10–5 0.996

CUSUM test Stable

CUSUM of square test Stable

adenotes level of significance at 1% level.
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population has a negative impact on CO2 emissions from

natural gas power plants. This is because more use of natural

gas instead of other fossil fuels in the economy, particularly by

households, reduces the level of CO2 emissions. This is not

consistent with the overall finding of studies that have shown

that the population increases CO2 emissions in the overall

economy, such as Li and Solaymani (2021). Improving energy

efficiency in all power plants reduces CO2 emissions from the

combustion of coal, oil and natural gas in related power plants.

Ponce and Khan, (2021) and Mahi et al. (2021) showed that

energy efficiency reduces CO2 emissions significantly. Peng

et al. (2021) also showed that energy efficiency improvement

reduces CO2 emissions. Evidence also showed that the

emissions trading scheme has a significant and negative

impact on CO2 emissions from the combustion of coal, oil

and natural gas in relevant power plants. This finding supports

the results of the study conducted by Huang et al. (2021)

argued that this policy can reduce CO2 emissions while it may

have a negative impact on the economic performance of

China. Mo (2021) also showed that the emission trading

scheme (ETS) has been promoted as a cost-effective

market-based reduction tool.

7 Conclusion and policy implications

This purpose of this study was to predict the impact of the

emissions trading scheme on CO2 emissions from the

combustion of coal, oil and natural gas in electricity

generation in power plants using annual data from 1985 to

2019. For this purpose, this study first chooses the best

technique between ARIMA and structural Vector

Autoregression (SVAR) techniques to predict CO2 emissions,

electricity generation from coal, oil and natural gas, efficiencies of

coal, oil and natural gas and other relevant variables over the

2020–2030 period. Then by employing the ARDL methodology

and using the predicted values of the study variables, we

estimated the short- and long-run impacts of the policy on

CO2 emissions from the combustion of coal, oil and natural

gas in electricity generation over the projected period

(2020–2030). To estimate the impact of the policy on CO2

emissions, we used a dummy variable for the forecast period,

which is multiplied by the average threshold value of the policy.

The results of this study showed that real GDP has a

significant and positive impact on CO2 emissions from the

combustion of all fuels (coal, oil and natural gas) in the short-

TABLE 12 ARDL results for the Oil power plant (dependent variable = CO2_O).

Variable Coefficient Std. Error t-Statistic p-value

Long-run

C 62.102a 8.385 7.407 0.000

GDP 1.558a 0.105 14.768 0.000

POP −9.802a 1.287 −7.615 0.000

EF_O −0.011a 0.001 −9.564 0.000

DUMa(OILFa109) −2.39 × 10–13 5.38 × 10–14 −4.431 0.415

Short-run

D (GDP) 1.291a 0.131 9.862 0.000

D (POP) −4.265a 1.401 −3.044 0.004

D (EF_O) −0.012a 0.001 −20.187 0.000

DUMa(OILFa109) 1.94 × 10–13 2.35 × 10–13 0.825 0.415

ECTt-1 −0.085a 0.006 −14.426 0.000

Diagnostic tests

Test Statistic Value Prob

Normality Jarque-Bera 4.547 0.103

Serial Correlation Chi-square (1) 0.441 0.506

Heteroskedasticity Chi-square (19) 23.185 0.229

Functional form Chi-square (1) 0.908 0.341

CUSUM test Stable

CUSUM of square test Stable

adenotes level of significance at 1% level.
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and long-run. Energy efficiency also has a negative and

significant impact on CO2 emissions from all power plants in

the short- and long-run. The results also suggest that the ETS

policy is effective in reducing the CO2 emissions from the

combustion of all fuels in electricity production in the long-

run. These results suggest that improving the efficiency of all

fuels can significantly reduce the level of CO2 emissions from

coal, oil and natural gas in electricity generation in the short- and

long-run. This is because of the increase in the level of CO2

emissions from these power plants in the long-run, which exceed

the threshold value. But it has a negative and statistically

significant impact only on the CO2 emissions from the

natural gas power plants in the short-run. The results of the

study enable Chinese energy policymakers to update the ETS

policy in its next phases.

It is recommended that the China’s ETS policy needs to be

expand to the majority of industries, particularly those with high

carbon emissions. Since China has other environmental policies and

regulations, a master plan for all need to be prepared and combined.

The government’s programs for environmental protection must

stimulate clean and high-tech industries. The government needs to

paymore attention to the differences between industries and regions

and prepare effective and appropriate policies and programs for

each. The main limitation of the emission trading scheme

investigation is the availability of microdata on the amount of

emission of major carbon emitting industries and their economic

performance. Improvements in the availability of microdata are also

recommended.

For future studies, we recommend the use of more

appropriate and relevant variables in the modeling to predict

the impact of the ETS policy on CO2 emissions. the use of other

econometric methods, such as panel data, is also recommended

to predict the impact of the ETS policy on different region or

industry.
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