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As China cannot achieve its emission reduction target without cooperating with

other countries, the international carbon trading market has become a part of

China’s carbon trading market system. The Belt and Road Initiative (BRI) has

brought many development opportunities to countries participating, but critics

have also voiced concerns about the environmental and climate degradation it

might bring. Thus China is making a great effort towards building a green and

low-carbon BRI, part of which is a joint effort with other countries to cut

greenhouse gas emission and achieve the 2,030 sustainable development

goals. The estimation of abatement costs is the basis of regional carbon

emission reduction cooperation and a prerequisite for establishing a regional

carbon trading market. Taking into account the technological heterogeneity,

this paper uses linear programming to estimate inefficiency level for China and

BRI countries, and further calculates the marginal abatement cost (MAC) of

carbon dioxide for each country. The results show that after considering

technological heterogeneity, the average inefficiency level for China and BRI

countries is 2.410%, which is about 26.526% lower than the traditional

geographic grouping approach, indicating that the technological

heterogeneity among BRI countries is significant and cannot be ignored.

Most countries have a low inefficiency level, some countries show a clear

trend. China has an average marginal abatement cost of 1440.183 USD/ton. As

the marginal abatement cost varies greatly among countries, a large amount of

abatement cost could be saved for China and BRI countries if the cost

difference is exploited.
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1 Introduction

Economic development has always inevitably brought about environmental and

climate degradation. The Fifth Assessment Report published by the United Nations

Intergovernmental Panel on Climate Change (IPCC) states that almost every region of the

world has experienced an increase in temperature, and that the increase in carbon dioxide
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emissions is the most important cause of this phenomenon

(IPCC, 2014). To control the deterioration of the

environment, countries around the world have taken various

measures. In December 2015, the Paris Agreement was adopted

at the Paris Climate Change Conference. The long-term goal of

the Paris agreement is to limit the increase in global average

temperature to 2°C compared to the pre-industrial period, and to

try to limit the temperature increase to 1.5°C. According to a

report released by the IPCC, the world’s CO2 emissions would

need to be reduced by at least 20 percent of 2010 emissions in

2030 to meet the Paris agreement’s target (Rogelj et al., 2018). As

one of the world’s major CO2 emitters (Sun et al., 2019), China

has also introduced many policies to encourage the reduction of

CO2 emissions, such as limiting the output of heavily polluting

enterprises and even closing them (Wang et al., 2021b). In 2020,

China first proposed that carbon dioxide emissions should peak

by 2030 and work toward carbon neutrality by 2060. In the

2021 session of the National People’s Congress, “carbon peaking”

and “carbon neutrality” were also included in the government

work report for the first time, reflecting China’s determination to

save energy and reduce emissions. As the core policy tool to

achieve “carbon peaking” and “carbon neutrality”, China’s

carbon emission trading market was launched on 16 July 2021.

However, China cannot achieve its emission reduction target

without cooperating with other countries, it requires a joint effort

by all countries to achieve the long-term goal set by the Paris

Agreement. The international carbon trading market is a part of

China’s carbon trading market system. Recently, China set up

Hainan International Carbon Emission Trading Center, which

will become China’s first carbon market characterized by

internationalization and the intersection of domestic and

foreign carbon markets. China has issued a variety of policies

to promote carbon emission reduction, of which the carbon

emission reduction cooperation with the Belt and Road countries

is the most important. The Belt and Road Initiative (BRI) formed

by the concept of “Silk Road Economic Belt” and “Maritime Silk

Road” in 2013 provides an important channel for participating

countries to help each other to jointly achieve energy saving and

emission reduction goals. Today, China has made significant

progress in facilities construction and trade cooperation with the

countries covered by the Belt and Road Initiative. However, some

critics have point out that the construction of the Belt and Road

will on the one hand lead to economic development of the

countries involved, but on the other hand, it will also result in

greenhouse gas emissions, especially carbon dioxide emissions,

being on the rise, which will lead to environmental degradation

(Ascensão et al., 2018). Therefore, how to control greenhouse gas

emissions while enabling countries along the Belt and Road to

achieve their development goals, build a green Belt and Road, and

jointly achieve the 2030 sustainable development goals has become

an important issue in the process of building the Belt and Road.

Most of the countries covered by the BRI are low to middle-

income countries. Figure 1 shows the changes in the share of

GDP and energy consumption of the Belt and Road countries

from 2006 to 2018. As can be seen in the graph, BRI countries

only contribute about 30%–40% of world GDP, but use up to 60%

of energy. Both percentages have been rising during this period,

but energy consumption rises faster than GDP. This shows that

most of the countries involved in the Belt and Road Initiative are

still in the stage of rough growth, characterized by high energy

use but low output due to inefficient energy use. Most of the

countries are trading the environment for their economic growth.

Improving the energy efficiency of the Belt and Road countries

will make a vital contribution to achieving international

environmental protection goals. China, as the initiator of the

Belt and Road Initiative, has proposed to support countries to

improve energy efficiency and the environment by strengthening

communication on ecological and environmental policies and

enhancing environmental cooperation mechanisms and

platforms. However, improving efficiency and reducing CO2

emissions has a cost, as the technological advances needed to

improve efficiency will require investment. And without

estimating abatement costs, cooperation in emission reduction

among BRI countries would not be possible. The estimation of

abatement costs is the basis of regional carbon emission

reduction cooperation and a prerequisite for establishing a

regional carbon trading market, as it will identify the proper

emission target for each country and allow them to trade in the

market to minimize their total emission reduction costs.

One important aspect that needs to be taken into account

when estimating abatement costs is the economic and

technological development levels of the countries in the BRI.

The Belt and Road Initiative covers developing countries as

well as developed countries, and naturally the economic and

technological development levels will be different. Ignoring this

difference would be to assume that countries with underdeveloped

technologies can reach the production frontier of more developed

countries by simply improving efficiency, which is not realistic. If

the unbridgeable technological gap is ignored, it will result in an

overestimation of inefficiency levels and abatement costs for

underdeveloped countries. And therefore, to more accurately

estimate abatement costs, it is crucial to consider the

technological heterogeneity among BRI countries.

In this context, both for China’s goal of “carbon peaking” and

“carbon neutrality,” and for other countries’ goal of sustainable

development, it is better to promote inter-regional cooperation in

carbon emission reduction than to reduce emissions

independently by individual countries. A cross-regional

carbon trading market can take advantage of the differences

in emission reduction costs among countries along the Belt and

Road, thus reducing the costs of emission reduction in each

country and enabling each country to achieve sustainable

development goals with minimal costs. This paper calculates

the marginal abatement cost of each country by taking into

account the difference in technological level of each country, and

proposes some policy recommendations based on this.
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The rest of the paper is organized as follows: Section 2

reviews the literature related to this paper, Section 3 focuses

on the methods used in this paper, Section 4 presents the data

characteristics, Section 5 discusses the results as well as the

implications, and Section 6 concludes with policy

recommendations.

2 Literature review

Many methods have been proposed for the measurement of

marginal abatement cost, including cost function, model-based

methods, distance function and so on. Among them, the distance

function method requires only input and output data, which is

less demanding than other methods, and therefore has become a

more widely used method in recent years [(Zhou et al., 2014; Lee

and Zhou, 2015)]. The estimation of marginal abatement costs

using distance functions first requires the establishment of a

representative energy output function, and the two most

commonly used functions are the Shepard distance function

and the directional distance function (DDF). The

corresponding estimation methods include parametric and

non-parametric methods. The non-parametric method, which

mainly refers to the data envelopment analysis (DEA) method

proposed by Charnes and Cooper (Charnes et al., 1978), does not

require the assumption of a specific form of production function,

but rather creates a segmented frontier to estimate the

production frontier based on the data. Many papers thus

choose to combine DDF and DEA to estimate marginal

abatement costs [(Boyd et al., 1996), (Battese GE, 2002), (Lee

et al., 2002)]. Parametric methods, on the other hand, include two

main types: deterministic methods and stochastic frontier

analysis (Zhou et al., 2014). For deterministic methods, the

linear programming method proposed by Aigner and Chu,

1968 can be used to estimate the parameters in the

production function, but the deterministic method does not

take into account the random errors in the data. The

stochastic frontier analysis method does take into account the

random errors, but the production function it yields sometimes

fails to satisfy the monotonicity assumption (Zhou et al., 2014).

Despite the drawbacks of both methods, they are still very widely

used in practice [(Du et al., 2016), (Tang et al., 2016), (Wang

et al., 2020)].

However, all the above approaches assume that for all

decision-making units (DMU), their optimal production

technology is the same, i.e., all decision-making units face the

same production frontier. In practice, however, due to differences

in infrastructure, education levels, etc. there are often

insurmountable technological differences between different

decision-making units, which do not decrease over time. The

Malmquist-Luenberger productivity index proposed by Oh (Oh,

2010) takes into account the heterogeneity among individuals.

Further, Zhang and Choi, 2013 proposed the Meta-frontier Non-

radial Malmquist Carbon index (MNMCPI). The above-

mentioned applications that take into account heterogeneity

are mostly in productivity measurement, and this

consideration of heterogeneity is mostly based on geographical

location. However, if only geographical location is used as a

measure of heterogeneity, it may lead to biased results. Therefore,

in Wang et al. (Wang et al., 2021c), three indicators related to the

level of economic development were used as the measure of

heterogeneity instead of simply grouping by geography, and a

program was used to group the DMUs to avoid the possible bias

of manual grouping.

FIGURE 1
BRI countries’ GDP and energy consumption shares.
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As The Belt and Road Initiative rapidly expands in recent years,

the amount of literature on energy efficiency and carbon emissions in

countries involved in the initiative has gradually increased. Sun et al.

(2020) used stochastic frontier method to estimate the persistent and

transient energy efficiency of 48 countries along the Belt and Road

and found that in general, the persistent energy efficiency of these

countries is lower than the transient energy efficiency, indicating that

the energy problems of the countries along the Belt and Road are

more structural in nature. Qi et al. (2019) measured the total factor

energy efficiency (TFEE) of countries along the Belt and Road to

examine whether inefficient countries are catching up with efficient

countries, and they found that in general, the gap between inefficient

countries and efficient countries is closing, and high-income

countries are catching up with efficient countries faster. Some

literature also explores factors affecting carbon emission amount

of BRI countries. Fan et al. (2019) analyzed the changes in CO2

emissions and the drivers behind the changes in 46 countries along

the Belt and Road. They found that economic development and

potential carbon emissions associated with energy consumption were

the most important factors influencing the growth of CO2 emissions,

while changes in emission reduction technology and potential

emissions were the two most important inhibiting factors. You

et al. (2022) analyzed the interaction effects of income inequality

and democracy onCO2 emissions, and found that there is an inverted

“U” shaped relationship between income equality and CO2

emissions, and that the degree of democracy facilitates this

relationship between income equality and CO2 emissions, with

high income inequality combined with poor democracy leading to

higher CO2 emissions in a countrywhen all else is equal.Muhammad

et al. (2020) explored the relationship between urbanization and

international trade on CO2 emissions in the BRI countries. The

empirical results show that urbanization has an inverted “U”

relationship with CO2 emissions only in high-income countries.

In addition, FDI increases CO2 emissions, which supports the

“pollution paradise” hypothesis.

However, most of the aforementioned literature does not

consider the heterogeneity among countries. Therefore, the

contribution of this paper can be summarized as follows: first of

all, this paper introduces factors measuring national economic

environment differences into the calculation of efficiency, mainly

foreign direct investment (FDI), trade openness, government

expenditure, and institutional quality. FDI can improve the

TABLE 1 BRI Country lists.

Region Countries

Asia UAE, Armenia, Azerbaijan, Bangladesh, Bahrain, Brunei, Bhutan, China, Indonesia, India, Iran, Iraq, Israel, Jordan, Kazakhstan,
Kyrgyzstan, Cambodia, Korea, Kuwait, Laos, Sri Lanka, Maldives, Myanmar, Mongolia, Malaysia, Nepal, Oman, Pakistan,
Philippines, Qatar, Saudi Arabia, Singapore, Thailand, Tajikistan, Turkmenistan, Uzbekistan, Vietnam, Yemen

Africa Algeria, Angola, Côte d’Ivoire, Congo, Cape Verde, Egypt, Ethiopia, Gabon, Guinea, Equatorial Guinea, Jamaica, Kenya, Liberia,
Morocco, Madagascar, Mozambique, Mauritania, Namibia, Nigeria, Rwanda, Sudan, Senegal, Sierra Leone, Chad, Togo, Tunisia,
Tanzania, Uganda, South Africa, Zambia, Zimbabwe

Europe Albania, Austria, Bulgaria, Bosnia and Herzegovina, Belarus, Cyprus, Czech Republic, Estonia, Georgia, Greece, Croatia, Hungary,
Italy, Latvia, Lebanon, Lithuania, Moldova, North Macedonia, Malta, Montenegro, Poland, Portugal, Russia, Serbia, Slovak,
Slovenia, Turkey, Ukraine, Spain, Germany, United Kingdom, the Netherlands

Latin-America Antigua and Barbuda, Bolivia, Barbados, Chile, Costa Rica, Ecuador, Guyana, Panama, Peru, Trinidad and Tobago, Uruguay,
Venezuela

Oceania Fiji, New Zealand

TABLE 2 Summary statistics of the variables.

Variable Unit N Average Std. Error Minimum Maximum

Capital Stock Million 2017US$ 1840 1,993,858 5,618,810 3,116.337 7.26E+07

Labor Million 1840 21.011 84.647 0.035 799.307

Energy Use Quad Btu 1840 2.830 11.180 0.003 147.570

GDP Million 2017US$ 1840 450643.500 1,457,370 849.652 1.88E+07

CO2 Emission Gg 1840 192932.800 882908.300 351.070 1.13E+07

FDI Thousand US$ 1840 49439.030 206625.200 373436 4,565,663

Trade Openness Thousand US$ 1840 485066.500 573018.100 2,333.480 1.00E+07

Government Expenditure Thousand US$ 1840 98460.460 60749.870 1546.662 575579

Institutional quality 1840 0.177 0.980 2.400 2.234
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technological level of the host country by bringing advanced

technology and skilled workers into the country (Fassio et al.,

2019). Meanwhile, the inflow of foreign investment can ease the

financial constraints of innovative activities in the host country,

ultimately leading to the improvement of technology (Chen et al.,

2017). The higher trade openness is, the bigger the market is for

enterprises, thus the more incentive there is for the enterprises to

innovate (GM Grossman, 1994). Government expenditure could act

as an important driver in managing pollution levels (Li et al., 2021).

Besides, government expenditure spent on science and technology

could encourage the advancement of technology, which ultimately

could lead to improvement in efficiency and decrease in emissions

(Iqbal et al., 2021). And finally, higher institutional quality leads to

better interaction between authorities and firms, resulting in less risk

of technological expropriation and other undesired outcomes for

firms, and ultimately encourages innovation (Egan, 2013). Adding

factors measuring national economic environment differences will

make the estimation of production frontier more accurate, and the

estimated efficiency will be more accurate compared to models not

considering the differences. Moreover, few previous literatures have

calculated marginal abatement cost on the country level, and this

paper further calculates themarginal abatement cost for each country

based on the estimated efficiency, thus providing some reference for

BRI countries on how to mitigate total abatement cost while

maintaining the amount of emission reduction. This paper has a

new contribution in method. Previous literatures used discrete

variables to classify production technologies, such as geographic

location, whether it is an environmentally friendly city, etc., but

did not use continuous variables to classify production technologies.

In addition, the method in this paper is different from the clustering

TABLE 3 The number of nearest neighbors.

Country Nearest
neighbors

Country Nearest
neighbors

Country Nearest
neighbors

Country Nearest
neighbors

Angola 103 Estonia 107 Sri Lanka 34 Rwanda 52

Albania 52 Ethiopia 39 Lithuania 94 Saudi Arabia 34

United Arab
Emirates

39 Fiji 45 Latvia 101 Sudan 70

Armenia 51 Gabon 64 Morocco 49 Senegal 57

Antigua and
Barbuda

68 The
United Kingdom

69 Moldova 51 Singapore 113

Austria 107 Georgia 44 Madagascar 53 Sierra Leone 61

Azerbaijan 53 Guinea 50 Maldives 42 Serbia 50

Bangladesh 34 Equatorial Guinea 113 North
Macedonia

49 Slovak Republic 112

Bulgaria 74 Greece 36 Malta 110 Slovenia 91

Bahrain 78 Guyana 46 Myanmar 62 Chad 114

Bosnia and
Herzegovina

67 Croatia 60 Montenegro 35 Togo 45

Belarus 108 Hungary 96 Mongolia 77 Thailand 70

Bolivia 34 Indonesia 34 Mozambique 71 Tajikistan 39

Barbados 107 India 52 Mauritania 58 Turkmenistan 108

Brunei Darussalam 68 Iran, Islamic Rep. 58 Malaysia 104 Trinidad and
Tobago

109

Bhutan 39 Iraq 34 Namibia 104 Tunisia 63

Chile 69 Israel 72 Nigeria 50 Turkey 47

China 59 Italy 64 Netherlands 112 Tanzania 50

Cote d’Ivoire 57 Jamaica 62 Nepal 51 Uganda 39

Congo, Rep. 73 Jordan 41 New Zealand 72 Ukraine 66

Cabo Verde 38 Kazakhstan 60 Oman 109 Uruguay 75

Costa Rica 34 Kenya 53 Pakistan 40 Uzbekistan 34

Cyprus 92 Kyrgyz Republic 55 Panama 74 Venezuela, RB 39

Czech Republic 108 Cambodia 73 Peru 41 Vietnam 104

Germany 105 Korea, Rep. 104 Philippines 48 Yemen, Rep. 57

Algeria 35 Kuwait 70 Poland 70 South Africa 44

Ecuador 35 Lao PDR 57 Portugal 68 Zambia 94

Egypt, Arab Rep. 40 Lebanon 35 Qatar 95 Zimbabwe 43

Spain 48 Liberia 45 Russia 34
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method. The clustering method can only group the production

technology level according to the Euclidean distance (or other

distance function) between the exogenous technical variables, and

cannot use the directional distance function and the exogenous

technology at the same time. The information about the variable

is grouped.

3 Models

3.1 Production technology

All the models in this paper are based on the models

proposed in Wang et al. (2021c). First is the modelling of

production technologies. Assume that there are K producers

in the economy, producer k (k = 1,2,. . .,K) uses xk
n amount of

input (n = 1,2,. . .,N) to produce yk units of desirable output and J

types of undesirable outputs, bkj units of each type is produced.

Production technology can be represented using the output set

Pk(x): Pk(xk) � {(yk, bk): xk can produce (yk, bk), k means

that each producer has its own production technology.

The output set must satisfy the following assumptions:

·Pk(0) � {0, 0}
·Null − jointness:

if (yk, bk) ∈ Pk(xk) and bk � 0, then yk � 0

·Strongly disposable of inputs :

if xk < xk′then Pk(xk) ⊆ Pk(xk′)
·Strongly disposable of desirable outputs by itself:

(yk′, bk)≤ (yk, bk) implies (yk′, bk) ∈ Pk(x)
·Weakly disposable of desirable and undesirable outputs

together:

if(yk′, bk) ∈ Pk(xk′) and 0≤ θk ≤ 1 then (θyk, θbk) ∈ Pk(xk′)
(1)

The null-jointness assumption ensures the inevitability of

undesirable outputs in the production process, no production

activities can be carried out without producing undesirable

outputs. And weak disposability suggests that when the

amount of the desirable output is constant or increasing,

FIGURE 2
Time trend of inefficiency for each BRI country.
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the amount of the undesirable output cannot be reduced,

meaning that there is a cost to reducing the undesirable

output.

Production technology is modeled using the output DDF

in this paper. Setting gk � (gk
y,−gk

b), where the directional

vector gk ∈ Rk1+ × RkJ− , then the output DDF can be

defined as:

�D
k

o(xk, yk, bk; gk) � max{βk(yk + βkgk
y, b − βgk

b) ∈ Pk(xk)}
(2)

Where βk ≥ 0 represents the inefficiency of production. When

βk � 0,then producer k is on the production frontier, the higher

βk is, the lower the energy environmental efficiency is. The

output DDF should satisfy the following properties:

(i)Non − negativity:

�D
k
o(xk, yk, bk;gk)≥ 0 if and only if (yk, bk) ∈ Pk(xk)

(ii)Non − increasing for desirable output:

�D
k

o(xk, yk′, bk;gk)≥ �D
k

o(xk, yk, bk;gk) for (yk′, bk)
≤ (yk, bk) ∈ Pk(xk) (3)

(iii)Non − decreasing for undesirable output:
�D
k
o(xk, yk, bk′;gk)≥ �D

k
o(xk, yk, bk;gk) for (yk, bk′)

≥ (yk, bk) ∈ Pk(xk)

FIGURE 3
Average inefficiency level of China and BRI countries.

FIGURE 4
Inefficiency levels calculated by different approaches.
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(iv)Weak disposability:

�D
k
o(xk, θkyk, θkbk; gk)≥ 0 for (yk, bk) ∈ Pk(xk)

and 0≤ θk ≤ 1

(v)translation property:
�D
k
o(xk, yk + αgk

y, b
k − αgk

b ;g
k)

� �D
k
o(xk, yk, bk;gk) − α, where α is a constant.

3.2 Estimating energy environmental
efficiency and CO2 marginal abatement
cost

After satisfying the above assumptions, this paper follows

Färe et al. (2005), and uses the linear programming method

proposed by Aigner and Chu, 1968 to estimate the parameters of

the DDF.

Assume that every country uses three inputs: capital (x1),

labor (x2), and energy (x3) to produce two outputs: desirable

output and undesirable output, with the desirable output being

GDP(y) and undesirable output being CO2(b1). The DDF of the

kth country can be written as:

�D
k

o(xk
t , y

k
t , b

k
t ;g

k
t ) � α0 +∑

n

αnx
k
nt +

1
2
∑
n

∑
n′
αnn′x

k
ntx

k
n′t + β1y

k
t

+ 1
2
β11(yk

t )2 + γ1b
k
1t

+ 1
2
γ11(bk1t)2 ∑

n

δn1x
k
nty

k
t +∑

n

ηn1x
k
ntb

k
1t

+ μ11b
k
1ty

(4)

Where α0, αn, αnn′, β1, β11, γ1, γ11, δn1, ηn1 and μ11 are

parameters to be estimated, n and n′ = 1,2,3. Setting

(gk
y, g

k
b) � (1,−1), the linear programming method can be

applied to estimate the parameters in Eq. 2 [(Aigner and

Chu, 1968); (Färe et al., 2005)]:

min∑K
k�1

∑T
t�1
( �D

k

o(xk
t , y

k
t , b

k
t ;g

k
t ) − 0) (5)

(i) �Dk

o(xk
t , y

k
t , b

k
t ;g

k
t )≥ 0, k � 1, ..., K, t � 1, ...T

(ii)z �D
k

o(xk
t , y

k′
t , b

k
t ;g

k
t )/zy≤ 0, k � 1, ..., K, t � 1, ...T

(iii)z �D
k

o(xk
t , y

k
t , b

k′
t ; g

k
t )/zb1 ≥ 0, k � 1, ..., K, t � 1, ...T

(iv)β1 − γ1 � −1, β11 � μ11, μ11 � γ11

δn1 � ηn1, n � 1, 2, 3

(v)αnn′ � αn′n for n ≠ n′

FIGURE 5
Average marginal abatement cost and growth rate.
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The objective of this linear programming is to minimize the

distance between each DMU observation and its production

frontier subject to the production technology constraint of Eq.

2. Constraint 1) ensures that each observation is within

boundary. Constraints 2) and 3) ensure the non-increasing

property of desirable output and the non-decreasing property

of undesirable output. The parameter restriction in constraint 4)

assigns the translation property to the directional vector. And

constraint 5) limits the symmetry property of the model. Eq. 5

can be used to estimate the energy environment inefficiency of

each country.

Based on the estimated energy environment inefficiency,

CO2 MAC of each country can be calculated using the

following equation:

q1 � −p ×
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
z �D

k

o(xk
t , y

k
t , b

k
t ;g

k
t )/zb1

z �D
k
o(xkt ,ykt ,bkt ;gkt )

zy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� −p × ⎡⎢⎢⎢⎢⎣γj + γ11b
k
1t + ∑3

n�1ηn1x
k
nt + μ11y

k
t

β1 + β11y
k
t +∑3

n�1δn1xk
nt + μ11b

k
1t

⎤⎥⎥⎥⎥⎦ (6)

where p is the market price of desirable output, and q1 is the

shadow price of CO2. The shadow price is used as an

approximation of MAC in this paper, as the economic

implication of the shadow price is the value of the desirable

output that must be reduced when the DMU is operating at the

production frontier and reduces a unit of undesirable output.

3.3 Modeling with economic proximity

And finally, this paper incorporates the economic

environment of each country into the production technology

to solve the heterogeneity problem. The effect of the environment

is determined through multidimensional variables representing

economic proximity. This paper selects four representative

variables to measure economic proximity, which are FDI,

trade openness, government expenditure, and institutional

quality. These variables are represented by zh, h � 1, 2, 3, 4.

The first step is to determine the nearest neighbors of each

country. The nearest neighbors are defined as the η provinces

with the smallest square of Euclidean distance from the reference

province calculated according to environmental variables. The

larger the year, the greater the weight given. Therefore, the

weighted Euclidean distance square of each country k with

respect to other countries m during the sample period can be

calculated as:

Ω � t

∑t
× ∑

h

(zhk − zhm), h � 1, ..., 3 ,

k � 1, ...K,m � 1, ...k − 1, k + 1, ..., K

(7)

Where t = 1, 2, . . ., T represents the sample year.

After ranking the nearest neighbors for each country, the

following criteria is used to determine the optimal number of

nearest neighbors for country k (represented by ηp):

First of all, the optimal number of nearest neighbors should

satisfy the null-jointness hypothesis. Specifically, for each

country in each period of observation, null-jointness

hypothesis is satisfied when �D
k
o(xk

t , y
k
t , 0;g

k
t )< 0 (Färe et al.,

2005). The share of observation that satisfies the null-jointness

hypothesis is denoted as s1 �
∑γ+1
k�1
∑T
t�1

n1kt

K × T , where η is the optimal

number of nearest neighbors selected, T is the sample time span.

n1kt � 1 if �D
k
o(xk

t , y
k
t , 0;g

k
t )< 0, otherwise n1kt � 0.

Second, shadow prices are generally considered to be non-

negative, thus samples with negative estimated shadow prices are

often removed [(Färe et al., 2005); (Ji and Zhou, 2020)]. As can be

seen in Eq. 6, shadow price is connected to the monotonicity of

both desirable and undesirable outputs, therefore, samples with

negative shadow prices do not fit the production technology

defined before. The share of non-negative shadow prices is

denoted as s2 � ∑η+1
k�1∑T

t�1n21kt
K × T . n21kt � 1 if q1 ≥ 0, otherwise n21kt �

0. Combining the above two constraints, the optimal number of

nearest neighbors of reference country k is defined as the η* that

will maximize s � s1+s21
2 . The method used in this paper defines

the production technology in line with its own economic

environment for each country, incorporating the heterogeneity

created by different economic environment in different country,

thus a more accurate MAC of CO2 can be obtained compared to

traditional methods, and more accurate information can be

provided to policy makers.

4 Data

The paper uses data of 115 countries along the BRI, including

China, from 2006 to 2018. The majority of previous researches

select 50 to 60 countries to study. However, as the BRI expands,

the number of countries participating is increasing, thus a more

accurate production frontier can be estimated by using data of

more countries, in turn the estimation of MAC will be more

accurate. In addition, since developed countries such as Germany

and UK opened the China Railway Express with China after

2011, and the China Railway Express is an important part of the

BRI, we will also include the countries that have opened the

China Railway Express in the sample. Some researchers have

pointed out that the development of BRI countries vary greatly,

for example Zhang et al. (2020) divided BRI countries into

5 groups, and discovered significant differences of CO2

emissions and GDP among groups. Thus, for comparison

purposes, the countries are divided into 5 groups according to

the continent they are in. Countries used and the groups are

shown in Table 1.
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Three inputs are considered in this paper: capital, labor, and

energy. Capital and labor are generally considered to be essential

inputs of production, and the addition of energy is because the

usage of energy during production is the main reason of the

production of undesirable outputs. Capital stock of each country

as well as labor data come from the Penn World Table, and the

consumption of energy of each country comes from the U.S.

Energy Information Administration (EIA).

Two kinds of outputs from production activities are

considered. One is desirable output, which is the product that

the enterprise wants to produce by engaging in production

activities, measured by GDP. The other one is undesirable

output, which is environmentally harmful outputs that are

inevitable when a company produces desirable output, which

is CO2. GDP data comes from the Penn World Table, while CO2

emission data comes from EDGAR (Emissions Database for

Global Atmospheric Research).

And finally, as mentioned before, this paper covers

115 countries from 5 different continents who have varying

levels of development, and in turn varying levels of

production technology. Thus indicators are needed when

determining production frontier of each country to identify

countries with similar level of development to the reference

country, allowing for a more accurate estimation of the

production frontier than traditional methods. This paper

chooses four indicators: foreign direct investment, total

imports and exports, total government spending, and a

composite measure of institutional quality. FDI reflects a

country’s attractiveness to foreign investment. FDI inflows can

directly promote technological progress in the host country

through technology spillover effects, while FDI inflows can

also increase the capital available to enterprises and indirectly

promote technological progress in the host country. Total

imports and exports is used as a proxy of a country’s

openness (Wang et al., 2021a), the more open a country is,

the bigger the market is, and the greater the incentive for firms to

innovate. Government expenditure spent on science and

technology could promote innovation. Finally, institutional

quality is measured from six aspects: voice and accountability,

political stability and absence of violence/terrorism, government

effectiveness, regulatory quality, rule of law, and control of

corruption. Generally speaking, the higher a country’s

institutional quality is, the more the government promotes

development of the private sector, and the better the

protection of intellectual property is, resulting in more

incentive for enterprises to innovate. Data on FDI, import and

export, and government expenditure comes from the World

Development Index, score of institutional quality comes from

WGI (The Worldwide Governance Indicators), which covers six

aspects as outlined before, with a score between –2.5 and 2.5 for

each aspect. This paper takes the average of the scores as a

composite measure of institutional quality. Table 2 details the

statistical characteristics of the variables, and the statistical

characteristics based on geographical subdivisions is shown in

Supplementary Datasheet S1.

As can be spotted from the statistical characteristics, variables

such as GDP and capital stock vary greatly among regions.

Oceania possesses the lowest average of capital stock, labor,

and energy use, with the averages being 7.656%, 2.720%, and

8.215% of the highest averages respectively. Asia possesses the

highest average in labor and energy use. As most Asian

countries are developing countries, production technology

is relatively underdeveloped, thus they tend to use more

energy when producing. The regional differences in the

three inputs are considerably big and therefore cannot be

ignored in the calculation of marginal abatement costs. The

two outputs are similar to the inputs. Oceania possesses the

lowest average GDP, which is 10.622% of the highest average

possessed by Asia. CO2 emissions exhibit a similar pattern,

with a vast difference between the lowest average and the

highest. It follows that there is a gap in production technology

between regions, and that this gap does not decrease over time.

If the efficiency is estimated using the normal DDF without

taking into account the technology gap, the efficiency of the

less developed countries will be lower than the real value

because it includes the technology gap that cannot be

eliminated. Therefore, it is necessary to include variables

that measure the economic environment of different

countries to ensure the accuracy of the estimates of

efficiency and shadow prices.

5 Empirical results

5.1 Nearest neighbors

Table 3 shows the number of nearest neighbors for all countries.

Due to the number of countries involved, the paper will not give a

detailed list of all the nearest neighbors selected for each reference

country. The nearest neighbors chosen for every country differ

significantly from the results from geographic division. For

example, among the nearest neighbors of Azerbaijan there are

many countries that are not in Asia but have a similar level of

development, such as Fiji, Togo, etc. For European countries

such as Poland, other countries in Europe are mostly chosen as

nearest neighbors, but among its nearest neighbors there are

also countries that are not in Europe but are also more

developed, such as Qatar. It can also be noted that only one

country has a number of nearest neighbors equal to the

number of countries remaining after removing it, which is

114. This result also confirms the previous hypothesis that

there are differences in the technological levels of countries at

different levels of development, and this gap is significant for

most countries. If this unbridgeable gap is not taken into

account, then the final measured efficiency levels and marginal

abatement costs of countries will also be biased.
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5.2 Estimation of environmental
inefficiency

After determining nearest neighbors of each country, this paper

proceeds to estimate the environmental inefficiency of every country

using Eqs 4, 5. The estimated energy environmental inefficiency for

each country is presented in Supplementary Datasheet S1, the time

trend for each country is shown in Figure 2, and the time trend of

average inefficiency level is shown in Figure 3. Several conclusions

can be drawn from the result: first of all, the average inefficiency of the

whole sample is 2.410%, which indicates an efficiency loss of 2.410%

for BRI countries. The average efficiency loss remained below or

slightly higher than the average except for 2006, 2009, and 2018.

Second, among the 115 countries, Russia displays a significant

downward trend of inefficiency. After hitting a peak in 2009,

Russia has been improving its energy efficiency since. Russia’s

economy is one of the most energy-intensive ones among the

industrialized countries, fuel and energy sector is one of the

biggest sectors in the country (Lobova et al., 2019). Russia was

identified by the International Energy Agency (IEA) in 2011 as

having very high energy saving potential, as is evident in our result

since Russia reached an inefficiency level of more than 50% in 2009.

Since then, several state policies have been introduced to increase

efficiency, such as the “energy efficiency and energy development”

program, technological regulations, etc. (Lobova et al., 2019) The

implementation of relevant policies has seen some result, but in

2018 the inefficiency level of Russia was still at 16.697%, significantly

higher than the majority of countries covered, meaning that existing

mechanisms do not fully exploit the energy saving potential that

Russia has, consistent with existing literature [(Lobova et al., 2019),

(Strielkowski et al., 2021)]. Thus more work still needs to be done by

Russian authorities to reach full energy saving potential.

The majority of countries’ inefficiency averages are below the

total sample mean, the lowest of which is Maldives with an average

inefficiency of only 0.063%. It can also be seen from the estimation

results that the inefficiency value of Maldives has basically remained

around 0 during the sample time period, which shows that Maldives

has basically been producing on its production frontier. There are

42 countries above the mean value of the total sample, the highest of

which is Nigeria with 20.517%. The inefficiency level of Nigeria has

fluctuated significantly during the sample period, but remained at

around 30% for most of the sample period. This implies that the

authority needs to do more to achieve sustainable development, and

they have to ensure that the policies implemented have a consistent

effect on the energy efficiency.

Finally, we divided the sample countries into 5 groups according

to the continent on which the country is located (Table 1). Assume

that these countries have the same technological frontier and use Eq.

4 to calculate the inefficiency. Figure 4 gives a comparison of

inefficiency estimates from two approaches: the proposed

approach in this paper and the approach with geographic

grouping. The average inefficiency level of geographic grouping

approach is 3.280%, whereas the average inefficiency level of the

proposed approach is only 2.410%. As can be seen in the graph,

estimates with geographic grouping is consistently higher than

estimates in this paper, proving again that the technological

heterogeneity among BRI countries cannot be measured simply

by geographic location, and ignoring it will result in

overestimation of inefficiency levels.

5.3 Estimation the marginal abatement
cost of CO2

Finally, based on the above estimated inefficiency level, this paper

estimates the CO2 MAC of each country using Eq. 6. The average

MAC of each country is shown in Supplementary Datasheet S1, units

are in USD per ton. The average MAC of the entire sample is

6,274.722 USD/ton. As can be seen in the result, Ethiopia possesses

the highest average MAC of 4,9401.200 USD/ton. The average MAC

of only 27 countries is above 10,000 USD/ton, and the country with

the lowest average MAC is South Africa, with an average of only

224.127 USD/ton. It can be seen from the result that the cost of

emission reduction varies greatly from country to country, so if

carbon trading can be achieved between countries, it will be possible

to minimize the total cost while maximizing the amount of emission

reduction. Figure 5 illustrates the average marginal abatement cost

and its growth rate for each year from 2006 to 2018. As can be seen in

the graph, the growth rate has remained relatively close to 0 during

the sample period except for 2009 and 2010.

Among the 115 countries, China ranks 53, with an average

MAC of 1440.183 USD/ton. Many countries whose averageMAC

are lower are underdeveloped countries, such as Pakistan,

Moldova, Costa Rica, etc. On average, the MAC in these

countries is 342.040 USD/ton lower than in China. If China-

BRI international trade market can be set up, a large saving in

abatement costs could be achieved.

6 Conclusion

As China cannot achieve its emission reduction target

without cooperating with other countries, the international

carbon trading market is a part of China’s carbon trading

market system. The estimation of abatement costs is the basis

of regional carbon emission reduction cooperation and a

prerequisite for establishing a regional carbon emission market.

Most of the previous literature does not take into account the

heterogeneity of production technologies when measuring the

environmental efficiency for China and BRI countries.

Therefore, this paper estimates the energy efficiency and the

marginal abatement cost of CO2 in China and BRI countries

while considering the heterogeneity of production technologies.

The conclusions are as follows: First, FDI, trade openness,

government expenditure, and institutional quality are selected to

measure economic proximity. And, the selection of nearest
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neighbors shows that there are indeed unbridgeable technological

differences between countries, and such unbridgeable differences

should be excluded from the efficiency measurement. Second, the

average inefficiency of the countries along the Belt and Road is

2.410%. Although the inefficiency of most countries is low and does

not change significantly during the sample time, some countries

show a clear trend. The average inefficiency level of the proposed

approach is about 26.526% lower than the traditional geographic

grouping approach, indicating that the technological heterogeneity

among BRI countries is significant and cannot be ignored. Finally,

the marginal abatement costs of the countries along the Belt and

Road show a large difference. China ranks 53, with an averageMAC

of 1440.183 USD/ton. If China- BRI international trade market can

be set up, a large saving in abatement costs could be achieved.

One of the goals of the Belt and Road Initiative is to construct a

green BRI and jointly achieve the 2030 Sustainable Development

Goals. But emissions reduction, a hot topic that has been mentioned

repeatedly in recent years, is not the same for every country.

Therefore, China, as the initiator of the Belt and Road Initiative,

should not only lead by example, but also help other countries to

achieve the goal of energy saving and emission reduction. The analysis

in this paper can, on the one hand, help the Chinese government

identify the countries most in need of help, and thus help solve their

problems through policy assistance, facility construction, etc. On the

other hand, it can also identify the differences in the difficulty of

emission reduction among countries, so as to help them achieve their

own emission reduction goals within their capacity, and to minimize

the total cost of emission reduction while maximizing the amount of

emission reduction. The analysis in this paper includes only carbon

dioxide due to data limitations, but the greenhouse gases produced by

energy use include not only carbon dioxide, but also sulfur dioxide,

nitrogen oxides, and so on. The reduction of carbon dioxide emissions

often affects the emissions of other pollutants as well. Therefore, if

other pollutants are also taken into account, the marginal abatement

cost of carbon dioxide can be estimated more accurately.
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