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The demand response (DR) program is a promising way to increase the ability to balance both supply and demand, optimizing the economic efficiency of the overall system. This study focuses on the DR participation strategy in terms of aggregators who offer appropriate DR programs to customers with flexible loads. DR aggregators engage in the electricity market according to customer behavior and must make decisions that increase the profits of both DR aggregators and customers. Customers use the DR program model, which sends its demand reduction capabilities to a DR aggregator that bids aggregate demand reduction to the electricity market. DR aggregators not only determine the optimal rate of incentives to present to the customers but can also serve customers and formulate an optimal energy storage system (ESS) operation to reduce their demands. This study formalized the problem as a Markov decision process (MDP) and used the reinforcement learning (RL) framework. In the RL framework, the DR aggregator and each customer are allocated to each agent, and the agents interact with the environment and are trained to make an optimal decision. The proposed method was validated using actual industrial and commercial customer demand profiles and market price profiles in South Korea. Simulation results demonstrated that the proposed method could optimize decisions from the perspective of the DR aggregator.
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INTRODUCTION
The demand response (DR) program can increase the ability to balance both supply and demand, improving the economic efficiency of the overall system (Kang et al., 2018). The utilization of DR programs can reduce operating costs by reducing additional investments to fulfill high-peak-load situations. DR programs can be classified into two categories: time-based and incentive-based DR programs. Time-based DR programs can change the demand patterns by responding to time-varying electricity prices. Incentive-based DR dispatches a signal to involved customers to reduce their electric usage and provides incentives or penalties from the system operator based on these criteria. Time-based DR fundamentally benefits customers rather than the system operator; however, an incentive-based DR program dispatches a signal to reduce the demand for system operators to manage their demand source more flexibly. Despite the advantages of DR, participating in a DR program renders it difficult for typical customers to access the electricity market because it involves a complex process. Therefore, DR aggregators have emerged in the electricity market. DR aggregators are new entities and counterparties to the electricity market that serve as intermediaries between market operators and customers in DR programs (Abapour et al., 2020; Lu et al., 2020). Therefore, the DR aggregator provides registered customers with an easy access point to the electricity market and can manage their customers’ demand resources; examples include energy storage systems (ESSs).
ESSs are often used to participate effectively in DR programs on the demand side. An ESS can not only respond quickly to system changes but also store and supply its stored energy at a required time (Manz et al., 2012). These abilities of ESS render it an ideal candidate for a wide range of power system applications, such as energy arbitrage, peak shaving, frequency regulation, and renewable integration (Makarov et al., 2012; Gayme and Topcu, 2013; Pandžić et al., 2015; Vargas et al., 2015; Lee et al., 2018). Ref (Pandžić et al., 2015) presented an optimal method for siting and sizing of ESS for energy arbitrage, frequency regulation, and so on. In (Gayme and Topcu, 2013), ESS is used to maintain consistent power of renewable energy sources. The authors included the charge/discharge operations of ESS in power flow formulations and solved the formulations. Makarov at al (Makarov et al., 2012) presented a sizing method of grid-scale ESS to mitigate the variability of renewable energy. ESS was used to handle the over-generation or under generation periods. Congestion management method using ESS was proposed in (Vargas et al., 2015). Lee at al (Lee et al., 2018) proposed a strategy to participate DR program. The authors used the ESS and developed an optimal scheduling algorithm. Existing research provides insight into the attractive benefits of using ESS. Among them, participation in the DR market is attracting attention because of its benefits to obtain economics, system reliability and optimized load profile (Eyer and Corey, 2010).
Several studies have used reinforcement learning (RL), with significant interest in machine learning, to develop DR strategies that maximize profits. Zamzam et al. (2019) discussed a control method for energy systems comprising an ESS, a renewable energy source, and a load using a deep Q-learning algorithm. Xu et al. (2019) presented a method for obtaining the maximum profit of arbitrage in the real-time electricity market using an ESS. Guan et al. (2015) used a TD-learning algorithm to determine the optimal control policy to minimize the residential customer bill using an ESS. Yu et al. (2020) studied a joint arbitrage of electricity and carbon prices using double Q-learning-based ESS arbitrage. Similarly, a Q-learning-based arbitrage strategy was presented in (Han et al., 2021). The authors utilized an electricity price and customer demand forecasting model to consider their uncertainty. In (Bahrami et al., 2020), the authors proposed the RL-based load control method during peak time periods. Actor-critic algorithm was used to curtail customer’s electrical load while considering the distribution network constraints. Wang et al. (2020) presented RL-based DR management on customer side. The authors formulated a Markov decision process (MDP) to solve RL problem and aimed to reduce the peak load demand and operation costs. Recently, RL-based aggregator operation strategies were presented in (Ghosh et al., 2019; Chuang and Chiu, 2022). Ref (Ghosh et al., 2019) presented a RL-based aggregator decision making method. The RL-based aggregator designed customer’s retail tariff structure by purchasing or selling power in the wholesale market. This aggregator plays like a distribution system operator in local distribution system. In (Chuang and Chiu, 2022), RL-based pricing strategy of aggregators was proposed. In this study, the aggregator plays as an energy trading platform so that energy producer and consumer subscribe to aggregator, and share their energy based on the aggregator pricing strategy.
Most of previous studies have been used RL methods to maximize DR profit, and they considered only the demand-side problem. Although a few aggregator-side studies have been conducted, these studies assumed that the customers could make optimal decisions and directly communicate the whole sale market for DR. Nevertheless, it is difficult not only to make optimal decisions, but also to communicate directly with the whole market for most customers. It may be restricted customers’ participation in the DR program. In fact, customers can effectively participate in the DR program by subscribing to the DR aggregator and pay a certain fee to delegate decision making and communication with the whole market. Therefore, this study presents the aggregator side DR management to reduce the above drawback, contributing the follows:
1) This paper proposes a method for developing a DR strategy from the perspective of a DR aggregator with RL techniques, considering both DR aggregator and customers benefits.
2) Different with conventional DR scheduling methods, this study utilizes a RL based decision making process to obtain the optimal DR strategy. RL is a model free and data-driven method, enabling automatically determines their optimal decisions from the data without prior knowledge for the environment.
3) This study takes into account the DR program model, which sends its demand reduction capabilities to a DR aggregator that bids aggregate demand reduction to the electricity market. In this model, the DR aggregators not only determine the optimal rate of incentives to provide to customers but also makes decisions for customers to ensure optimal ESS operation to reduce demand.
4) Compared to the case of not participating in the DR aggregator, more practical benefits can be confirmed. The reward function in RL is designed in consideration of the benefits for electricity and the whole sale market price, indicating the proposed method can help not only the DR aggregator to procure demand resources but it also shows that it can help reduce costs for customers.
The remainder of this paper is organized as follows. Section 2 provides the fundamental background of this study. Section 3 formulates the RL problem, Section 4 describes Deep Q learning method, Section 5 presents a numerical simulation, and Section 6 concludes the paper.
FUNDAMENTALS
DR aggregator
The fundamental role of the DR aggregator is to communicate between the electricity market and customers. The DR aggregator provides DR services for the market operator, and obtains a settlement based on the electricity market prices. However, the DR aggregator provides an incentive for customers to procure energy resources. The DR aggregator is usually a for-profit organization, so the aggregator aims to maximize its profit and minimize the incentive rate that settles on customers. Therefore, the objective of the DR aggregator is as follows:
[image: image]
where N represents the total number of customers; H is 24 h, which is the last hour of the day; [image: image] is the market price; [image: image] is the incentive price at time [image: image]; and [image: image] is the demand reduction for customer n at time t.
Customers
Customers are registered in the DR aggregator to participate in the DR program. The DR aggregator is an easier access point for customers to obtain information regarding the electricity market. In particular, customers obtain incentive prices from the DR aggregator, and they try to maximize their profits by reducing electricity demand. Customers control their controllable loads, such as heating, ventilation, and air conditioning (HVAC), lighting, and energy storage systems (ESS).
In this study, we assume that the customer participates in the DR program using an ESS, which enables the storage and supply of electrical energy at the required time. An ESS can flexibly control demand and does not induce discomfort while controlling customer demands. Based on the ESS, the customer can purchase power to charge energy to the ESS and discharge the stored energy to the grid in DR situations. The operational energy from the ESS at each time point is denoted [image: image]. If the [image: image] is positive, [image: image] represents the charged energy, and if the [image: image] is negative, it represents the discharged energy. Therefore, the state of charge (SOC) at time step t, [image: image], of the battery can be expressed as follows:
[image: image]
where [image: image] and [image: image] represent the charging and discharging efficiencies, respectively, and [image: image] has maximum and minimum bounds by [image: image]. Moreover, the [image: image] depended on the maximum rate of the battery. Therefore, the bound of [image: image] can be expressed as:
[image: image]
where [image: image] and [image: image] are the maximum charging and discharging rates, respectively. A feasible decision will be made with the above models; if not, it is prevented by the ESS, and it will not play any actions.
Through the ESS model above, customers participate in the DR program and aim to maximize the profit received from the DR aggregator. Therefore, the objectives of the customers can be represented as follows:
[image: image]
where [image: image] is the difference in SOC at time t. On the customer side, the [image: image] is only considered in the case of the discharging operation because the charging operation naturally increases customer demand and thus cannot participate in the DR program.
DR program model
Figure 1 shows the overall DR program model. As mentioned previously, the DR aggregator communicates with both the wholesale electricity market and customers. In this model, customers send their reduction to DR aggregator and the DR aggregator, which bids the aggregated reduction to the wholesale electricity market, receiving the wholesale settlement based on the wholesale electricity market price. The wholesale settlement is distributed to customers according to the incentive price determined by the DR aggregator. However, the decision to reduce the number of customers can be made by itself or by the DR aggregator. However, not all customers can make optimal decisions to participate in the DR program; therefore, this study assumes that the DR aggregator can assist customer decision-making. Therefore, customers can also send their controllable device specification (ESS in this case), and the DR aggregator can decide to maximize both the wholesale settlement and the customer’s incentive settlement.
[image: Figure 1]FIGURE 1 | DR Program model.
REINFORCEMENT LEARNING FORMULATION
RL is a domain of machine learning concerned with how agents make a sequence of decisions in a complex environment to maximize profit. Figure 2 shows the architecture of RL. The agent interacts with the environment to find an optimal policy by trial and error, without explicitly modeling the system dynamics. In the interacting process, the agent modifies its action strategy to obtain the maximum return in the long run.
[image: Figure 2]FIGURE 2 | Architecture of RL.
Markov decision process
In this study, the operational objective of the DR aggregator is to maximize both the wholesale settlement and customer incentive settlement. Although we designed the objective function for the DR aggregator and customers, the functions cannot be directly used in the RL framework. To use the objective function in the RL framework, we must formulate the objective function as a MDP framework, including state, action, and reward for the DR aggregator and customers. In other words, the agent is provided with its surrounding environment state [image: image] and executes a control action [image: image] that causes a state transition to [image: image]. Once the state transition is completed, the agent receives reward [image: image], for the control action. Therefore, the RL problem consists of ([image: image]), where:
[image: image] is the state space of the DR problem with finite number of states. In this study, the state space of the DR aggregator consists of the following components: wholesale electricity market price and aggregated reductions at time t ([image: image], The state space of each customer consists of the time of use (TOU) price, wholesale electricity market price, average TOU price, average wholesale electricity market price, and state of charge of the ESS at time t ([image: image]. n represents the customer index. Average prices are used in the reward function design, which is more detailed in the reward section.
[image: image] is the action space. Given the state, the agent is required to find the most suitable action for DR programs. Action spaces were composed of discrete action spaces. Specifically, the action space of the DR aggregator consisted of seven discrete linear spaces in the range [0.3, 0.8], [image: image]. The action of the DR aggregator determines the ratio of the incentives provided to customers from the wholesale electricity market price. In addition, the action space of customers consists of 21 discrete linear spaces in the range [−1, 1], [image: image]. Negative actions refer to the discharge actions, and positive actions indicate the charge action. The zero action is that the ESS does not perform any actions, so the agent does not receive any reward.
[image: image] is a reward function. It is used to predict the next reward by considering the RL agent’s control action. We designed this reward function for both the DR aggregators and customers as follows:
[image: image]
where [image: image] and [image: image] represent the rewards of the DR aggregator and customer, respectively. [image: image] is the current market price and [image: image] is the current incentive price. [image: image] is the aggregated reduction, and N is the number of agents. N prevents revenue from being concentrated in the DR aggregator. [image: image] represents the average market price in the previous n hours. [image: image] represents the average daily energy charge price. [image: image] is the difference between [image: image] of the ESS at time [image: image], and a penalty term is introduced to further control the undesirable operation of the ESS. A penalty is assigned when the agent chooses an action that results in a violation of the ESS operating constraints. The rationale for the penalty is to avoid unnecessary battery operation. In other words, the penalty is imposed when an agent chooses to act in violation of ESS operating limit. The denominator 10 was applied to change the penalty value to a data scale like the reward value.
The reward functions implicitly represent the DR profits of the DR aggregator and customers. In the reward functions, the DR aggregator simply determines the ratio of incentives to make profits, whereas customers consider the appropriate ESS operation. More specifically, the ESS should be charged when the electricity prices are low or discharged when the electricity prices are high to provide operational benefits. For this purpose, [image: image] and [image: image] were introduced in [image: image]. Charging the ESS naturally increases the energy charge, so that the profit of the customer is imposed as a negative profit at the charged time. This leads to the avoidance of charge action, rendering the ESS unable to operate properly. By introducing [image: image] and [image: image] to the agent as relative prices, the agent can perceive the current price as relatively low or high compared to the average prices. Therefore, they are used to train RL agents effectively. Furthermore, ESS operations can affect energy bills; therefore, both [image: image] and [image: image] have been considered to maximize DR profits and reduce energy bills.
With the above formulations, the RL agents receive the reward with a discount factor and the sum of all discounted rewards, which is called the return. The return can be used as a measure of how good the policy is, so the optimal policy is the policy that maximizes the return.
DEEP Q LEARNING
Deep Q-Network
The deep Q-network (DQN) uses a neural network and overcomes the shortcomings of conventional RL algorithms. For example, DQN has been shown to be successful in playing Atari and Go games, and it is a powerful method for solving complex control problems (Mnih et al., 2013). Q-learning implemented with a DQN is called a deep (DQL). When selecting the actions, DQL considers the value of the actions. This value is called a Q-value, which is defined as the expected return of action in the state. It measures how good the action is in the given state for a specific action for a specific policy [image: image]. Mathematically, the Q-value of the action-value function is represented as follows:
[image: image]
Moreover, we aim to obtain the maximum expected return, which can be represented using the optimal action-value function. The optimal action value can be calculated recursively using the Bellman equation as follows: In DQN, the action-value function [image: image] can be updated as
[image: image]
where DQL has two networks, Q-network [image: image] and target network [image: image]. The optimal [image: image] can be one of many cases in the environment. In DQL, target network [image: image] plays as a Q-value approximator of optimal [image: image] for a given reward function. The result of DQL could be a global optimum for specific reward function, but a local optimum for the environment. Therefore, the DQL agent can select the best action at a given state using a Q-network and update the Q-value using the target network at the given reward.
In this study, we applied the Bellman equation to update the action-value function during the RL training process. This update eventually converges to the optimal action-value function. Furthermore, experience replay techniques have been used to store past experiences in replay memory. A mini-batch randomly drawn from the replay memory was chosen to perform gradient updates in the neural network at each update. Moreover, the DQL agent explores the environment under [image: image]-greedy policy to avoid getting stuck in suboptimal solutions and to consider the unknown state transition probability in the environment.
Training procedure
DQL has received considerable attention and has shown successful performance in many fundamental control problems. However, in our problem, a single DQL struggled to explore the environment and obtain rewards. In our environment, the DR aggregator and customers have different states and action spaces. This makes it difficult for the agent to explore its actions for the DR aggregator and the customer. Therefore, multiple DQL agents have been used to create more appropriate interactions with the environment.
A two-stage procedure is used, consisting of an aggregator agent and two customer agents. The aggregator agent receives the state [image: image] {[image: image] [image: image]} and selects an incentive action [image: image]. The customer agent then selects action [image: image] from [image: image] {[image: image]}and [image: image]. The [image: image] provides [image: image]as an additional observation to the customers so that one can recognize more appropriate actions for the current state [image: image]. In our problem, different rewards are responsible for evaluating the actions of agents. That is, the aggregator agent aims to maximize the cumulative [image: image] and the customer agent aims to maximize the cumulative [image: image]. Therefore, each agent has replay memory to store its transitions. The aggregator stores the transition [image: image] and the customer store transition [image: image]. With these transitions, the agents replay their experiences to update their policies, which can be optimized using the gradient. The overall training procedure is shown in Table 1.
TABLE 1 | Training algorithm.
[image: Table 1]NUMERICAL SIMULATION
Customer demand profiles
The real industrial and commercial demand for 1-year datasets were collected for the simulation. The demand profiles were sampled with a 1-hour frequency. Figures 3, 4 show the monthly average demand profiles for the target customers. The industrial customer profile shows an M-shaped pattern. This shape is representative of the demand profile of the customers in the manufacturing industry. The commercial customer profile, on the other hand, shows a relatively stable pattern, except for an increase in working hours (9 am–6 pm). This shape represents a typical demand profile for office customers.
[image: Figure 3]FIGURE 3 | Monthly average industrial demand profile.
[image: Figure 4]FIGURE 4 | Monthly average commercial demand profile.
Wholesale market price profile
The same period as the demand profile of the wholesale market price dataset is used for the simulation (EPSIS, 2022). This profile was also sampled with a 1-hour frequency. Figure 5 shows the monthly average market price profiles. This profile shows a generally stable pattern, with relatively high price points in January-March and June-August, correlating to when heating and cooling demand may increase.
[image: Figure 5]FIGURE 5 | Monthly average market price profile.
Electricity tariff system
Industrial and commercial customers in South Korea follow the electricity tariff system (Korean Electricity Bill, 2022). The industrial customer pays electricity bills based on the industrial load (B), high voltage (B), and option II rate plan. Commercial customers pay electricity bills based on commercial load (A) II, high voltage (A), and option I rate plan, as shown in Table 2. Table 3 shows the time of use (TOU) electric rate schedule for season and time. In Table 2, non-bracket values represent the industrial rate plan and bracket values represent the commercial rate plan.
TABLE 2 | Electricity rate plan
[image: Table 2]TABLE 3 | Electricity rate schedule
[image: Table 3]ESS specification on demand-side
The installed ESS is connected to both the demand side and power grid. A 500 kWh and 20 kWh lithium-ion battery connected to an ESS with a power conversion system (PCS) was used to simulate the proposed method. A total of 500 kWh is used on the industrial side, and 20 kWh is used on the commercial side. The batteries were considered to operate at an operate 1.0C-rate in the experiment. The charge/discharge amount was defined as that operating within the maximum rate of the ESS. The battery is assumed to operate between the lower SOC bound (0%) and upper bound (100%) of the rated capacity, and the efficiency of the ESS charging, and discharging is assumed to be 95%. Table 4 summarizes the ESS specifications for the target customers, and this information is provided to the DR aggregator.
TABLE 4 | Summary of ESS specification
[image: Table 4]Simulation results
Multiple DQL agents have been developed to make decisions for both the DR aggregator and customers. Figure 6 shows the hyperparameters and structure of agents used to model RL agents. In the simulation, we used the same parameters for each agent; however, the parameters could be tuned for better results. Each agent was trained for 500 iterations. For ε-greedy, the agents used the linear annealing method with ε-decay value, 3e-3, and minimum ε is set as 1e-2.
[image: Figure 6]FIGURE 6 | DQL agent structure and hyperparameters.
Furthermore, we compare the proposed method with the conventional DR strategy (Kang et al., 2018; Lee et al., 2018). The conventional DR strategy designed to maintain its self-consumption at a minimum so that the ESS can participate in the DR program as much as possible on the demand side. For aggregator side, we utilized conventional ZI (zero intelligence) strategy (Friedman, 2018). ZI strategy set its incentive price as a random value from its valuation, based on a uniform distribution from a specified range. ZI is a fundamental and popular strategy adopted in market environment. By combining these two strategies, conventional algorithm can response to both DR aggregator and customers. Thus, this conventional algorithm can be used as a baseline model to demonstrate the superiority of the RL algorithm.
Figure 7 shows the expected returns for each episode. The shaded area represents the reward per episode, and the solid line represents the 5-rolling average. Total rewards per episode represent the sum of all agents, while others represent the cumulative rewards of individual agents. Base in parentheses indicates the baseline model. In the figure, the reward received by the DQL agent gradually increased according to the episode, and the accumulated reward after 300 episodes stably converged. The figure shows that the proposed method has a higher expected return than the baseline. This implicates that agent can properly learn about the DR aggregator and customer decisions.
[image: Figure 7]FIGURE 7 | Performance of RL agents.
Figures 8, 9 show the results of the actions of trained agents. The customer demand and electricity prices were normalized to show the graph in similar scale. In these figures, the incentive price is determined by the DR aggregator agent. Figure 10 shows the probability distribution of the prices. In this figure, Incentive prices, unlike market prices, have a skewed distribution pattern to the right. This is because the incentive price is determined based on the DR aggregator action space, and the incentive price is distributed with a minimum value of 0.3 × market price and a maximum value of 0.8 × market price. Incentive distribution is more distributed at lower price points. This is because the agent’s action tends to set incentives low for their own benefit. The ESS operation can be determined by the customer agent provided by the DR aggregator. In the reward function [image: image], the agent considers the TOU and electricity market prices. Therefore, the agent seeks to charge at a lower TOU price and market price, and discharge at a higher TOU price and market price. The figures show the operating patterns of the ESS. During off-peak times, the customer’s agent repeatedly charges and discharges the ESS to obtain profits through incentives. However, when the TOU and incentive prices are high, it refrains from charging and tries discharging. Consequently, customer agents make decisions that reduce energy bills and maximize DR benefits.
[image: Figure 8]FIGURE 8 | Industrial Customer operation profile.
[image: Figure 9]FIGURE 9 | Commercial customer operation profile.
[image: Figure 10]FIGURE 10 | Probability distribution of the prices.
Furthermore, we analyzed the effect of the economic benefits and action results that can be achieved when participating in the DR program. Table 5 shows the overall DR benefits. A total profit of aggregator was obtained 61,550,864 KRW through the DR program during the simulation period. Industrial customers earned 46,083,785 KRW of DR profit and saved 17,459,190 KRW in electricity bills. In the case of commercial customers, 2,412,555 KRW of DR profit was obtained, and 1,342,46 KRW of the electricity bill was saved. Base in parentheses indicates the baseline model. The proposed method outperforms baseline in terms of economic evaluation overall.
TABLE 5 | Overall DR benefits (in KRW).
[image: Table 5]Figure 11 shows the distribution of DR benefits for each agent. The benefits of the DR aggregator account for the largest portion, followed by that of industrial customers. Commercial customers are the least profitable, as they have less capacity to participate in DR programs. Aggregators seem to generate tremendous profits because they want to offer as few incentives as possible to increase profits. Notably, the energy bill savings of customers are relatively small, and the DR benefits are large. As the main purpose of the agent is to maximize profits through DR participation, the agent is viewed as making an appropriate decision.
[image: Figure 11]FIGURE 11 | The distribution of the DR benefits for each agent.
Overall, the simulation results show that the proposed method makes optimal decisions for the DR programs. Hence, the proposed method can be utilized to operate DR programs from the perspective of DR aggregators. Even if the aggregator supports the customer’s decision-making as in this paper, sufficient profits can be obtained. This is expected to motivate customers to engage with the aggregator and attract more customers.
CONCLUSIONS
This study presents a method for developing a DR strategy from the perspective of a DR aggregator. Customers use the DR program model, which sends its demand reduction capabilities to a DR aggregator that bids aggregate demand reduction to the electricity market. DR aggregators not only determine the optimal rate of incentives to provide to customers but can also induce the customers to make an optimal ESS operation to reduce their demands. This study formalized the problem as an MDP and used the RL framework. In the RL framework, the DR aggregator and each customer are allocated to each agent, and the agents interact with the environment and are trained to make the optimal decision.
The simulation results show that A total profit of aggregator was obtained 61,550,864 KRW through the DR program during the simulation period. Industrial customers earned 46,083,785 KRW of DR profit and saved 17,459,190 KRW in electricity bills. In the case of commercial customers, 2,412,555 KRW of DR profit was obtained, and 1,342,46 KRW of the electricity bill was saved. In addition, the distribution of DR profit is 48.6% for the DR aggregator and 51.4% for customers, showing a suitable profit-sharing structure. Overall, the simulation results show that the proposed method makes optimal decisions for the DR programs. Therefore, the proposed method can be utilized to operate DR programs from the perspective of DR aggregators.
In the future, we will develop a demand and market price forecasting model. Current state information includes customer demand and market prices. In a real system, the market price and customer demand are unknown values at the time the agent makes a decision. To address this uncertainty, an accurate forecasting model should be developed in future studies. Furthermore, we plan to develop a bidding strategy for the DR programs. In this study, the probability of winning a bid was assumed to be 100%, which does not equal the actual winning rate. Therefore, there is a need for developing a detailed bidding strategy for DR.
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