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Cabled ocean observatory networks (COON) are used for long-term all-

weather observation of submarine scientific data, which contribute to low-

carbon ocean energy research. Autonomous underwater vehicles (AUV) with

clean energy can provide active search capabilities by connecting with the

docking station (DS) on the COON to complete energy and data transmission in

long-term detection tasks. The AUV is guided by optical active landmarks and a

vision system for short-range docking. In this study, we propose an active

landmarks tracking framework to solve the problem of detecting failure caused

by incomplete observation of landmarks. First, a two-stage docking algorithm

based on CNN is used to estimate the 3D relative position and orientation

between DS and AUV during docking, including detect phase and PnP pose

estimator. Then extended Kalman filter and Hungarian matching algorithm are

introduced to improve the robustness of the algorithm. The reliability of the

vision-based short-range docking algorithm is verified in the pool, and the

robustness of the algorithm to the field environment is shown in the lake field

experiment combined with long-range guidance. The experimental results

indicate that the algorithm framework can effectively leverage the landmarks

information and enhance the scope of the visual guidance algorithm.
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Introduction

Cabled ocean observatory networks (COON) can realize all-weather, in situ, long-

term, continuous, real-time, high-resolution, and high-precision observations of the

ocean from the seabed to the sea surface, and the observations can be used to study

scientific problems such as sea-air exchange, climate change, ocean circulation, low-

carbon ocean bioenergy, and ecosystems (De Leo et al., 2018; Seyfried et al., 2022).

While the observation range of the COON is limited by cable, scholars have proposed

that the use of autonomous underwater vehicles (AUV) in the COON to combine the

advantages of AUV and COON (Manalang and Delaney, 2016; Liu et al., 2021; Deeb et al.,
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2019). AUV are not limited by cables and can provide more

powerful and flexible solutions for long-term missions of

exploring underwater renewable energy, deep-sea minerals,

and acquiring natural data. When applying AUV in the

COON, the main factors restricting AUV are the limited

energy carrying capacity and information transmission

capacity, which can be solved by underwater docking

(Palomeras et al., 2018; Yazdani et al., 2020; Lin et al., 2022).

It is of great significance for the application of AUV in COON to

provide a reliable docking and recovery system in the actual use

scenario.

The main sensors of the AUV docking are acoustic,

electromagnetic, and optical sensors. For the short-range

guidance in the recovery task, Deltheil et al. (2000) compared

various sensing methods and proposed that the optical sensor has

excellent robustness and flexibility and is the best scheme for

AUV recovery. Numerous research have successfully completed

the short-range docking and recovery task through visual

detection algorithm and active landmarks, which has verified

the feasibility of this technology. Optical landmarks are mainly

divided into active landmarks and passive landmarks. Passive

landmarks do not emit light actively, identified by their own

texture features. They have a close range of visibility and have

high requirements for water quality (Maire et al., 2009; Wang

et al., 2021). The active landmarks have higher visibility than the

passive ones, and an effective terminal guidance scheme can be

provided by arranging appropriate light landmarks (Li D. J. et al.,

2015; Li Y. et al., 2015; Ghosh et al., 2016; Sans-Muntadas et al.,

2019).

Park et al. (2009) used five light landmarks for guidance and

successfully completed docking within 15 m in the pool

environment. However, the detection failed as part of DS

entered the blind area of vision at close range, resulting in

docking failure. Zhou et al. (2014) Proposed a video tracking

algorithm to solve the problem of landmarks loss. However, the

landmarks layout and docking method limit the applicable scene

and guiding distance of the algorithm.

The aforementioned experiments are carried out in the pool

environment, and different water quality and optical interference

in the natural environment have a great impact on the detection

and segmentation algorithm. Liu et al. (2019) proposed a two-

stage docking framework of detection and pose estimation, which

successfully completed the guidance in the lake environment.

The experimental results show that the two-stage framework can

detect docking stations and estimate their relative pose more

efficiently and successfully, compared with the state-of-the-art

baseline systems. However, limited by the framework, the

detection fails in the absence of enough landmarks.

Considering a DS with n landmarks, a minimum of n-1

landmarks is required, which leads to a narrow entrance angle

required in the early stage of docking.

Most visual methods are tested in the pool; however, the

interference of the field environment reduces the control

performance of the AUV, which puts forward higher

requirements for the robustness of the guidance algorithm.

Our method improves on real-world usage, expanding the

workspace of the system. Using the information more

effectively of the landmarks to improve the guidance

performance in the field environment is the main research

goal of this study. There are the following main problems in

the guidance of underwater recovery docking using active

landmarks:

1) Image variance is caused by different water quality and

environment, and landmarks intensity changes caused by

different distances and angle, which makes detection more

difficult.

2) In the docking process, only part of the landmarks of the

docking DS can be observed due to short distance or large

pose deviation, failing the target detection algorithm.

3) The identification of the landmarks cannot be correctly

matched when the coordinates of the landmarks are not

completely observed.

In order to solve the aforementioned problems, we propose

active landmarks tracking algorithm for docking tasks. The main

contributions of this study are as follows:

1) A tracking framework combined with a two-stage docking

algorithm of detection and pose estimation is proposed to

make full use of landmarks information in docking tasks.

Compared with the original one, the tracking algorithm can

work effectively despite the failure of target detection and

incomplete observation.

2) Field experiments were carried out in the water pool and lake,

providing the first angle of view data for the successful

docking of underwater landmarks.

In this study, we introduce the system overview in the second

section. In the third section, the framework of the tracking

algorithm for active landmarks will be introduced. In the

fourth section, we show the docking experimental results of

the pool and lake environment, which verifies the reliability

and robustness of the algorithm.

Docking system overviews

In this section, an overview of our recycling system will be

introduced. Our recycling system includes DS and AUV, as

shown in Figures 1A, B. DS includes acoustic guidance

module, light landmarks, and electromagnetic tightening

devices. The length and width of the funnel-shaped entrance

of the DS is 1.2 m, the acoustic guidance system is arranged above

the funnel, and the landmarks are arranged around the opening

of the funnel for the visual guidance system, as shown in
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Figure 1C. Considering the underwater absorption of light, a

460 nm blue LED light source is used to make the landmarks

better spread in the underwater environment. In addition, the

landmarks lamp is added with a 60° angle convex lens to enhance

the effective guiding distance. The intensity of the light is

adjusted to a suitable range for the capture of the camera, in

order to avoid the fusion of the boundary of the two lights on the

image.

Our AUV is a small torpedo-shaped vehicle called Portable

AUV(PAUV). The PAUVhas an air weight of 80 kg, a length of 2 m,

a diameter of 240mm, and a maximum speed of 5 knots. Equipped

with two tail thrusters, two culvert thrusters, and two tail rudders.

PAUV mainly includes a control computer, Doppler velocity

log(DVL), inertial measurement unit (IMU), GPS, acoustic sensor,

optical sensor, battery units, and motors. Ultra-short baseline system

(USBL) is used as acoustic guidance for long-distance navigation

tasks, which can work effectively within 2 km and provide ranging

and direction-finding functions. It is switched to the optical guidance

method at a short range to complete the final precise docking. A

NanoSeaCam monocular color camera and embedded computer

NVIDIA Jetson TX2 are used for optical guidance. The camera with

20fps is installed at the bow of the PAUV, and an embedded

computer is installed in the middle of the PAUV, as shown in

Figures 1C,D. Jetson TX2 is an excellent embedded edge computing

platform with 256 CUDA cores. The computing performance

reaches 1.33 TFLOPS and only 15W power consumption is

required when running. The first view color image of the PAUV

is captured by the camera and sent to Jetson TX2 for calculation.

Then, the obtained guidance information is sent to the main control

computer for control. Data exchange between eachmodule is realized

through LAN.

Underwater docking algorithm

In this section, we introduce the two-stage docking algorithm

and landmarks tracking method. The main task of the underwater

docking algorithm is to accurately identify the DS within the visual

range of active landmarks and give the 3D relative position and

orientation information for docking navigation. Then the AUV uses

FIGURE 1
Docking systems. (A)Docking station (B) Active landmark (C) Portable AUV (D) JetsonTX2.
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the relative attitude information to update the endpoint of the line

tracking task, so as to achieve the docking mission.

Two-stage docking algorithm

The two-stage docking algorithm divides the underwater

docking task into two parts: target detection and poses estimation.

Target detection computes the size and position of the underwater

DS obtained from the color image during the docking process, then

the 2D image coordinates of each landmark are obtained through

image segmentation and clustering algorithm. Pose estimation gives

the relative position and orientation from the landmarks 2D

coordinates by using different PnP algorithm considering the

different light numbers.

Target detection
The difficulty of target detection is that the image of the

underwater environment will appear blurred, noise, color shift,

contrast reduction, and interference light source and occlusion in

the actual environment. The above problems can be effectively

solved by introducing a convolutional neural network (CNN),

which has surpassed the traditional method in many target

recognition tasks. A CNN called Docking Neural Network

(DoNN) (Liu et al., 2019) inspired by the YOLO (Redmon

et al., 2016) is used to detect DS. We first briefly introduce

YOLO so that the improvement of the DoNN algorithm on

docking datasets can be explained intuitively.

YOLO divides the input image into S × S grid cells, each cell

predicts B bounding boxes. The bounding box is denoted by

B � (x, y, w, h, confidence), where (x, y) denotes the center

coordinate of the box and (w, h) is the width and height of

the box. Confidence refers to the IOU between the predicted box

and ground truth. Moreover, Pr(Classi|Object) · Pr(Object) is

used as the class score for the category distribution. The loss of

YOLO is as follows:

lcoord(θ) � ∑S2
i�0

∑B
j�0
1objij [(xi − x̂i)2 + (yi − ŷi)2]

+∑S2
i�0

∑B
j�0
1objij [( 		

wi
√ − 		̂

wi

√ )2 + ( 		
hi

√ −
		̂
hi

√ )2] (1)

FIGURE 2
(A) Output of DoNN (B) Binary image (C) Landmarks with identification.

FIGURE 3
Coordinate frames used in underwater docking.
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lobj(θ) � ∑S2
i�0

∑B
j�0
1objij (Ci − Ĉi)2 (2)

lnoobj(θ) � ∑S2
i�0

∑B
j�0
1noobjij (Ci − Ĉi)2 (3)

lclasses(θ) � ∑S2
i�0

1obji ∑
c∈classes

(pi(c) − p̂i(c))2 (4)

lYOLO(θ) � λcoord lcoord(θ) + lobj(θ) + λnoobj lnoobj(θ) + lclasses(θ)
(5)

where θ denotes the network parameters (weights), 1obji denotes

if an object appears in the cell i and 1objij denotes that the j th

bounding box predictor in the cell i is used for that prediction.

Parameters λcoord , λnoobj are used to control the contribution of

different parts of the loss function.

The major difference between DoNN and YOLO is the loss

function. DoNN redesigned the loss function used in YOLO and

remove both the class loss and the confidence partial of class is

compatible with docking datasets which contain only one object

class. Relatively, the class score using Pr(Dock) to reduce the

FIGURE 4
(A) Complete observation; (B) Incomplete observation.

FIGURE 5
Tracking framework combing two-stage docking and SORT algorithm.

FIGURE 6
(A) Tracking results in close incomplete observation (B) Tracking result in big deviation incomplete observation.
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instability introduced by Pr(Classi|Object) in one sure target

class. The loss of DoNN is shown in the formula.

lDoNN(θ) � λcoord lcoord(θ) + λobj lnoobj(θ) + λnoobj lnoobj(θ) (6)

The experiment shows that DoNN can effectively obtain the

2D position of the DS from the pictures of the complex

environment for the underwater DS image. The neural

network runs on the Jetson TX2, and each image takes 0.17s.

With the bounding box given by DoNN, a threshold-based

segmentation is used to obtain the 2D coordinates of the

landmarks. The output box of the DoNN is considered the

segmented target region, which effectively shields the impact

of ambient light on the landmarks division of the DS. The

coordinates and numbers of lights are given by a clustering

algorithm. Under the condition of observation with at least

5 landmarks, the prior knowledge is used to obtain the

identification number corresponding to each landmark

coordinate required by the PNP algorithm. The detection

process is shown in Figure 2.

Pose estimation
Pose estimation in underwater docking refers to recovering

3D relative position and orientation between docking stations

and AUVs from 2D images. The basic principle of the pose

estimation algorithm considers that the 2D coordinates of the

landmarks are the projection of the real landmarks on the visual

plane, so the real 3D pose can be restored from the 2D image. In

this case, the PNP algorithm estimates through several pairs of

control points, one of which is in the 2D plane and the other in

3D space.

The pose referred to in this study is the position and orientation

of the AUV relative to the DS, we employ Euler angles to represent

rotation between the camera and the landmarks as shown in Figure 3.

We denote pose vector as p � (t1, t2, t3, r1, r2, r3), where ti is the
positionXc, Yc, Zc, and ri refer to the orientationYaw, Pitch, andRoll.

Non-iterative 3D pose estimation methods based on control

points mainly include DLT (Abdel-Aziz and Karara, 1971), EPnP

(Lepetit et al., 2009), R-PnP (Li, S et al., 2012). For a small

number of control points, the EPnP method remains the best

choice. However, as the AUV approaches or deviates greatly from

the DS, it may cause incomplete observation of landmarks.

Considering that the landmarks are arranged in a uniform

circle, there may be only three pairs of effective control points

when half or less of DS are observed, which is also common in the

practical scenario, the problem will degenerate to P3P.

Although the P3P problem has four solutions, considering the

continuity of video, we can still get an effective solution sequence.

Intuitively, we propose to find the best solution by finding a pose

vector pn
m that minimizes the pose error with the last pose.

argminPn
m
⎛⎝λx∑3

1

∣∣∣∣∣tPn
m

i − tp
n−1

i

∣∣∣∣∣ +∑3
1

∣∣∣∣∣rPn
m

i − rp
n−1

i

∣∣∣∣∣⎞⎠ (7)

FIGURE 7
Docking process image in water pool.

FIGURE 8
Trajectories of the five recovery processes in water-pool.
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where pn−1 is the last pose and denotes the m th possible pose in

frame n. λx is used to balance the weight between position and

orientation error.

Landmark tracking algorithm

The two phases tracking algorithm remain some problem. For

example, once the first stage of target detection fails, the image

cannot be used for segmentation even if the image meets the

estimation conditions. As shown in Figure 4, during the docking

process of AUV, with the gradual reduction of the distance from the

DS, it is easy to enter the blind area of the camera. Similarly, under

the large initial error condition, AUV will enter the camera blind

area and lose guidance too early. The larger the error in the early

stage of docking, the more eager guidance information is needed

(Xie et al., 2021). If we can effectively use the observation

information of the landmarks in a short distance to give the

estimated relative position and orientation can effectively

improve the reliability of terminal guidance.

The aforementioned problems can be effectively solved by

introducing the landmarks tracking method. SORT was

proposed as a classic multi-target tracking framework (Bewley

et al., 2016). Referring to this algorithm, a landmarks-based

tracking framwork is proposed. The proposed tracking

framework combining two-stage docking and SORT is shown

in Figure 5.

Based on the two-stage algorithm, Hungarian matching and

Kalman filter in the SORT algorithm are introduced for tracking.

For the tracking part, we retain the IOU loss function in SORT

and delete the targets with large IOU loss. In addition,

considering that the DS is a whole, instead of predicting multi

landmarks, the Kalman filter is applied directly to the final

detection results to estimate the pose of the next frame. The

predicted result is then projected on the 2D coordinate plane so

that it can be matched with the current incomplete observation to

obtain the match of control points, which is required in the PnP

algorithm. Considering the continuity of the docking process, we

believe that there will not be much change in a continuous

sequence of images, so the neural network method can be

FIGURE 9
Docking process image in the lake (success).

FIGURE 10
Docking process image in the lake (failed).
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independent of the segmentation method after the DS is detected.

Through this structure, the segmentation algorithm can continue

to work, using the information of the previous frame in the case

of detection failure. Figure 6 shows that the algorithm can still

effectively match control point pairs when only three landmarks

are observed.

Experimental analysis and results

In this part, we compared and verified the algorithm by

only executing optical guidance in the pool environment. In

the lake experiment, the acoustic guidance system was used

for long-distance guidance, and the robustness of the

algorithm was verified in combination with short-range

optical guidance.

Water pool experiment

Our goal in the pool experiment is to verify the feasibility of

close-range guidance and evaluate the performance by using only

the visual guidance algorithm. The pool experiment provides the

basis for the real environment experiment on the lake. We

experimented with a 10 m wide, 25 m long, and 7 m deep

pool, and the water quality was clear. The center of the DS is

hoisted to a position 2 m underwater from the water surface.

When the AUV is 20 m away from the DS radially, it performs

the underwater docking task from the water surface. The forward

speed is 0.5 m/s. The whole docking process is only completed by

the visual method. A successful docking is shown in Figure 7. In

the pool environment, five docking operations were carried out

with different initial positions and angles, all the docking was

successful. The trajectories of the five recovery processes are

shown in Figure 8.

Field experiment

The purpose of the outfield test is to verify the robustness of

the algorithm in the field environment based on the pool

experiment and to verify the system stability of the acoustic

system for correct optical terminal guidance. The field test was

carried out in Fuxian Lake, China. The elevation of Fuxian Lake is

1722.5 m, the average water depth is 95.2 m, and the water

quality is relatively clear. We selected a relatively flat terrain

and placed the DS at the bottom of the lake in advance to ensure

its stability. The center of the DS is about 15 m underwater away

from the water surface. The AUV dives from the water surface at

a distance of 1000 m from the DS and starts the homing and

docking mission. First, rough guidance is carried out through

acoustic guidance, and then switched to optical guidance when it

is 15 m away from the DS.

When performing short-range optical docking, the forward

speed is 0.5 m/s. We conducted 4 docking tests on the lake,

including 3 successes and 1 failed docking. Figures 9, 10 show a

FIGURE 11
Trajectories of the four recovery processes in the lake.
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successful and a failed docking process. Data show that the

docking distance on the lake has been reduced, accompanied

by more disturbances.

As shown in Figure 10, when the DS is seen, the optical

module gives a correct estimation. It can be seen from the image

that AUV is deflecting towards DS. However, AUV cannot

enormously adjust pose within a short distance owing to

inherent mobility, and it missed the DS.

It is noteworthy that in the failed run4 as shown in Figure 11,

the prediction of P3P accounted for 33% of the effective output and

lasted for 1.6 m in the final stage. If the position and attitude

information provided by P3P is missing, AUV will lose guidance

information earlier with a large deviation. It can be seen that the P3P

algorithm can still provide final help at the boundary of the visual

blind area, to expand the workspace of the docking algorithm.

Conclusion

In this study, an underwater active landmark tracking algorithm

is proposed to complete the terminal optical guidance. The beneficial

characteristics of the neural network are used to effectively identify

the DS in the field environment. By introducing the tracking

framework, observation failure caused by short-range and large

observation angles is improved, and good docking accuracy and

robustness are shown in the water pool and field experiments.

Acoustic guidance is the pre-step of optical landmarks

guidance in the outfield experiment. It is found that if the

USBL system cannot effectively bring the vehicle into the

visual range of landmarks for optical guidance, the whole

docking process will fail no matter how accurate the optical

guidance algorithm is. Therefore, if the effective working scopes

of optical guidance can be effectively improved, it will be of great

significance to the whole guidance system. In the future, further

research will be carried out on how to improve the directivity and

working range of optical guidance.
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