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The aim of the article is two-fold. We first analyze and investigate free

convective, unsteady, MHD blood flow with single- and multiwalled carbon

nanotubes (S&MWCNTs) as nanoparticles. The blood flow has been taken

across an upright vertical plate, oscillating in its own plane, and engrafted in a

porous medium with slip, radiation, and porosity effects. Nanofluids consist of

human blood as the base fluid and SWCNTs and MWCNTs as nanoparticles.

The second aim is to discuss the three different definitions of fractional

derivatives, namely, Caputo (C), Caputo–Fabrizio (CF), and Atangana–Baleanu

(ABC), to obtain the solutions of such proposed models by the Adomian

decomposition method. The impact of fractional and physical parameters

on the concentration, velocity, and temperature of human blood in the

presence of the slip effect is studied and projected diagrammatically. The

article ends by providing numerical results such as the reliableness, efficiency,

and significant features that are simple in computation with eminent accuracy

of the process for non-Newtonian Casson nanofluid fractional ordermodels. It

is observed that the velocity of the fluid decreases with SWCNTs’ andMWCNTs’

volume fraction, and an increase in the CNTs’ volume fraction increases

blood temperature, which ultimately enhances heat transfer rates. The results

acquired are in excellent correspondence with the reported results.

KEYWORDS

heat and mass transfer, radiative heat transfer, Atangana–Baleanu derivative, Caputo–Fabrizio

derivative, slip condition

Introduction

Recently, the contemplation of fractional calculus has been broadened with
eminent implication because of its diverse applications in physical sciences,
hydraulics, mathematical physics, electric electronic network, wave theory, nuclear
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and chemical industries, etc. (Podlubny, 1999; Tarasov, 2010;
Uchaikin, 2013; Herrmann, 2014; Li and Zeng, 2015;
Povstenko, 2015; Li and Cai, 2019). It is notable that the
classical derivative (integer-order operator) is local while the
noninteger operators specified as Riemann–Liouville, Caputo,
Caputo–Fabrizio, andAtangana–Baleanu are nonlocal operators.
The nonlocality enables us to foresee the advanced stage of
the system and reckons the present and its continuing phases.
It is always a challenging task for researchers to accomplish
analytical or exact solutions of nonlinear models by fractional
operators due to their complexity. In the past couple of years,
several investigators have worked to inquire about the fractional
differential operators in varied aspects. Caputo and Fabrizio
(Caputo, 1967) modified the existing Caputo operator in a
new conformation, and Atangana and Baleanu evoked a new
fractional manipulator labeled Atangana–Baleanu derivative
by combining Riemann–Liouville and Caputo differential
operators.

In this article, we have concentrated on convective heat
conveyance, which plays a critical role in the working of non-
Newtonian fluid streams. The mechanics of non-Newtonian flux
exhibits an exceptional challenge for mathematicians, physicists,
and engineers. This is due to the fact that non-Newtonian fluids
(NNFs) because of their complex behavior cannot be described
mathematically using a single constitutive equation catering to
all parameters. For this, a dedicated constitutive model is needed
to describe such flows, for instance, in the case of Brinkman fluid
(Ali et al., 20201094), viscoplastic fluids (Hassan et al., 2013),
second-grade fluid (Ali et al., 2016; Imran et al., 2017b),
Walter’s-B fluid (Ali et al., 2014; Imran et al., 2018), Bingham
plastic (Kleppe and Marner, 1970), and Maxwell fluids
(Tahir et al., 2017). Among the non-Newtonian fluidmodels, the
Casson model is highly recommended by numerous researchers.
Let us consider that such nonlinearity is expressed in numerous
domains such as food processing, oil suspensions of pigments to
predict flow behavior, mud drilling processors, blood flow in the
circulatory system, and other fields of bioengineering.

It should be pointed out that Casson initiated these models
for the nonlinear flow of pigment–oil suspensions. The Casson
fluid is a pseudoplastic, also termed shear thinning. It possesses
infinite viscosity and acts like solids at zero shear rate, termed
as yield stress, below which no flow occurs. If yield stress is more
than shear stress, i.e., viscosity (η = 0), the fluid behaves as a solid.
In other situations, when shear stress is higher than yield stress,
the fluid starts to accelerate.

Many researchers have considered the Casson fluid
model and investigated its behavior in different situations;
Bhattacharyya investigated the boundary layer stagnation point
flow of a Casson-type fluid with heat transfer along a stretching
or shrinking sheet of infinite length (Bhattacharyya, 2013). In
another research article, he figured out the exact results for
boundary layer flux of a Casson liquid flowing across a porous

stretching/shrinking sheet (Bhattacharyya et al., 2014). Hayat
et al. (Hayat et al., 2012) studied the boundary layer flux of
MHD Casson liquid across an elongated sheet. Nadeem et al.
(Nadeem et al., 2012) investigated the influence of electricity on
the boundary layer flux of a Casson liquid flowing across an
exponentially contracting canvas.

Raju et al. (Raju et al., 2016) reckoned the Casson liquid to
analyze the significance of magnetic flux by an elongated canvass
and comprehended the fact that an induced magnetized field
possesses the tendency to increase the heat transferal rate. Kumar
et al. investigated the combined effect of magnetic flux and
heat source and worked out the numerical results for a Casson
liquid flowing through two parallel plates (Kumar et al., 2018a).
In another study, Kumar et al. investigated the conjugate impact
of mass and heat transferal rate of MHD Casson fluid under
Brownian motion, and thermophoresis demonstrated that the
fluid’s temperature is manipulated by the Casson parameter
(Kumar et al., 2018b).

Kataria and Patel established the effluence, thermic, and
mass transmit characteristics of Casson MHD liquid and
ascertained that modified magnetic flux decays its speed and
boundary layer heaviness (Kataria and Patel, 2018). Casson
fluid’s stagnancy point has been illustrated by Shaw et al.
(Shaw et al., 2019) to determine encroachment of radiation,
thermic dissemination, and diffusion thermal effectuates due
to chemical reactions. Hussanan et al. (Hussanan et al., 2016)
demonstrated unsteady invariant warmth transferal flux of
Casson-type fluid bearing the checks of Newtonian heating
and thermal radiation across an oscillating upright erect plate
of infinite dimensions. They concluded that the velocity of
Casson fluid decreases due to the Casson parameter and it
shows an oscillating turnover for dissimilar phase angles. More
research in this area has been conducted by various researchers
(Kameswaran et al., 2014; Animasaun et al., 2015; Ramesh
and Devakar, 2015; Ahmed et al., 2016; Imran et al., 2016;
Ahmad et al., 2019; Rehman et al., 2019; Sheikh et al., 2020;
Aleem et al., 2021).

In this article, our major objective is to demonstrate free
convective, MHD unsteady blood flow with single (SWCNTs)
and multiwalled carbon nanotubes (MWCNTs) as nanospecks.
The blood flow is considered over an oscillating vertically
upright plate engrafted in a porous medium with slip, radiation,
and porosity effects. Nanofluids consist of human blood as
the base fluid and SWCNTs and MWCNTs as nanoparticles.
Three fractional approaches Caputo (C), Caputo–Fabrizio
(CF), and Atangana–Baleanu (ABC) are used to develop the
fractional blood flow model, which is solved using the Adomian
decomposition method (ADM). Equations of dimensionless
temperature, velocity, and concentration fields have been solved
analytically, and the results are compared.The graphical analysis
is performed to envision the effect of fractional and tangible
flow parameters on velocity u, concentration C, and temperature
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θ using MathCad and Mathematica software packages. This
article is structured as follows. In section 1, latest research
related to Casson fluid and its application in the industry
are presented, and in Section 2, problem formulation and
assumptions are illustrated. In section 3, we have developed
a fractional model for Casson nanofluid and its solution with the
Adomian decomposition method with Caputo, Caputo Fabrizio,
and Atangana–Baleanu fractional operators that are given in
Sections 4 and 5.The obtained results are analyzed and discussed
in Section 6. Solutions obtained via ADM are compared with
existing literature results and are presented in Section 6.

Problem formulation

We investigate an unsteady viscoelastic incompressible
Casson nanofluid containing human blood as the base liquid and
CNTs as nanoparticles. It flows across an infinite vertical upright
plate located in the xy-plane implanted in a porous medium and
is fixed in the x-direction, whereas y− axis is normal to the plate.
Consequently, the rate of flow is enclosed only in the half plane
where y > 0. At t = 0, the nanofluid and plate are at rest with the
set temperature T∞ and concentration C∞. The base fluid, which
is human blood, and nanoparticles (SWCNTs and MWCNTs)
are considered to be in thermal equilibrium. As time increases
t = 0+, the plate starts its sinusoidal oscillation with slip effect at
the boundary, and its velocity at the boundarywall isV = u(0, t) −
η ∂u(y,t)

∂y
|y=0 = Uo f(t), where η is the slip parameter, which is always

positive since negative values of η have no physical sense, Uo
is the characteristic velocity, and f(t) is a piecewise continuous
general function satisfying f(0) = 0. When the plate moves in the
x-direction, its concentration and temperature change to Cw and
Tw, respectively. The physical model of our problem is shown in
Figure 1. Furthermore, assumptions are as follows:

1) The plate is assumed to be electrically conducting and
bearing uniform magnetic flux Bo, which is applied in the
direction perpendicular to the plate.

2) The slip boundary condition at the wall is considered, and
the relative velocity between the wall and fluid is directly
proportional to the shear rate or the rate of deformation at
the wall.

3) Since the flow is unidirectional, all tangible variables are
functions of time t and space coordinate y.

4) The impression of enforced magnetic flux is negligible,
referring to a really small magnetized Reynolds’ number Re.

5) The Casson nanofluid consists of SWCNTs and MWCNTs
of invariant kinematic viscosity νnf occupying a semifinite
space y > 0.

Under these assumptions and using Boussinesq’s
approximation, the governing equations for energy, diffusion,

FIGURE 1
Model orientation.

and momentum are (Imran et al., 2017a; Khalid et al., 2018).

ρnf ∂tu (y, t) − μnf(1+
1
γ
)∂yyu (y, t)

+ (σnf B2
0 +

φμnf
κ1
)u (y, t) = g(ρβT)nf (T−T∞)

+ g(ρβC)nf (C−C∞) , (1)

(ρCp)nf∂tT (y, t) = κnf ∂yyT (y, t) − ∂yqr,

(2)

∂tC (y, t) = D∂yyC (y, t) . (3)

Under Rossenold approximation for radiative heat flux, by
assuming that the temperature difference between fluid T and
ambient T∞ is very small, Eq. 2 becomes (Imran et al., 2017a)

∂tT (y, t) =
κnf
(ρCp)nf

(1+
16σ∗T3

∞

3κnf κ∗
)∂yyT (y, t) , (4)

where u, C, T, qr , σ∗, κ∗, g, γ, D, μnf , κnf , Cpnf , βCnf , βTnf
are velocity, concentration, temperature, radiative heat flux,
Stefan–Boltzman constant, mean absorption coefficient, gravity,
Casson parameter, molecular diffusion constant, dynamic
viscosity of Casson nanofluid, thermal conductivity, heat
capacitance, and diffusion and thermal expansion coefficients
of nanoparticles, respectively.

The appropriate initial and boundary conditions are as
follows:

u (y,0) = 0, T (y,0) = T∞, C (y,0) = C∞, ∀ y ≥ 0,
(5)
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u (y, t) − η
∂u (y, t)
∂y
|y=0 = Uo f (t) ,

T (y, t) = Tw,

C (y, t) = Cw ∀ y = 0, t ≥ 0, (6)

u (y, t) → 0, T (y, t) → T∞, C (y, t) → C∞, as y→∞, t > 0.
(7)

A theoretical model for nanofluids was introduced by Xue
(Xue, 2005) based on Maxwell theory for elliptic-shaped
rotational CNTs with a large axial ratio, and compensating space
distribution impact is used and given as follows:

κnf
κf
−
(1−ϕ) + 2ϕ(

κCNT
κCNT − κf

) ln(
κCNT − κf

2κf
)

(1−ϕ) + 2ϕ(
κCNT

κCNT − κf
) ln(

κCNT + κf
2κf
)
= 0,

where κnf , κf, and κCNT are the thermal conduction
coefficients of the nanofluid, base liquid, and carbon nanotubes
(S&MWCNTs), respectively. The theoretical density values are
described by Yu et al. (Yu et al., 2008) as follows:

ρnf = (1−ϕ)ρf +ϕρCNT,

where ρf is blood density, ϕ is the volume fraction of
nanoparticles, and ρCNT is the density of carbon nanotubes
(S&MWCNTs). The effective dynamic viscosity μnf for
cylindrical nanotubes can be defined in two ways as proposed
by Loganathan et al. (Loganathan et al., 2015) and Rajesh et al.
(Rajesh et al., 2016).

μnf =
μf
(1−ϕ)2.5

,

where μf and μnf are densities of blood as the base fluid and
the nanofluid with CNTs. Heat capacitance for nanofluid is as
follows:

(ρCp)nf = (1−ϕ) (ρCp)f +ϕ(ρCp)CNT.

The thermal and diffusion expansion are defined
by Bourantas and Loukopoulos (Bourantas and
Loukopoulos, 2014) as follows:

(ρβT)nf = (1−ϕ) (ρβT)f +ϕ(ρβT)CNT,

(ρβC)nf = (1−ϕ) (ρβC)f +ϕ(ρβC)CNT,

where ρ is the density; ϕ is the nanoparticle volume fraction;
and (βT)f, (βC)f, (βT)CNT, and (βC)CNT are thermal and mass
expansion coefficients of the base fluid and carbon nanotubes.

σnf = σf(1+
3( σCNT

σf
−1)ϕ

( σCNT
σf
+2)−3( σCNT

σf
−1)ϕ
) and σ = σs

σf
, where the subscripts

f and CNT represent the base fluid and carbon nanotube

nanoparticles. Thermophysical properties of carbon nanotubes
and the carried Casson fluid (human blood) are given in Table 1.

Introducing dimensionless variables

u∗ = u
Uo
, y∗ =

Uo

νf
y, t∗ =

U2
o

νf
t, θ =

T−T∞

Tw −T∞
,

Φ =
C−C∞

Cw −C∞
, η∗ =

Uoη
νf
. (8)

Using dimensionless parameters from Eq. 8 in Eqs.
(1)and(3)––(7), we get

∂tu (y, t) −
b1
b3
(1+ 1

γ
)∂yyu (y, t) + (

b2
b3

M+ 1
K
b1
b3
)u (y, t)

− b4Grθ (y, t) − b5GmΦ (y, t) = 0, (9)

∂tθ (y, t) −
λ
b6

1
Preff

∂yyθ (y, t) = 0, (10)

∂tΦ (y, t) −
1
Sc

∂yyΦ (y, t) = 0, (11)

and dimensionless initial and boundary conditions are as follows:

u (y,0) = 0, θ (y,0) = 0, Φ (y,0) = 0, ∀ y ≥ 0, t = 0,
(12)

u (y, t) − η
∂u (y, t)
∂y
|y=0 = f (t) ,

θ (y, t) = 1,

Φ (y, t) = 1, ∀ t > 0, y = 0, (13)

u (∞, t) → 0, θ (∞, t) → 0, Φ (∞, t) → 0, as t > 0,
(14)

where Sc =
νf
D
, k1 is the permeability of porous medium,

Gr =
gβf (Tw−T∞)νf

U3
o

, Gm =
gβf (Cw−C∞)νf

U3
o

, Preff =
Pr

1+Nr*
, Nr∗ =

Nr
λ
, λ =

κnf
κf
, Nr = 16σ*T3

∞
3κf κ*

, M =
σf νf B

2
o

ρf U
2
o
, K = κ1U

2
o

μ2f φ
, b1 =

1
(1−ϕ)2.5

, b2 = [

[
1+

3( σCNT
σf
−1)ϕ

( σCNT
σf
+2)−3( σCNT

σf
−1)ϕ
]

]
,b3 = [(1−ϕ) +ϕ

ρCNT
ρf
],

b4 = [(1−ϕ) +ϕ
(ρβT)CNT
(ρβT)f
], b5 = [(1−ϕ) +ϕ

(ρβC)CNT
(ρβC)f
],b6 =

[(1−ϕ) +ϕ
(ρCp)CNT
(ρCp)f
], and f∗(t) = f(

νft
∗

U2
o
).

where Sc is the dimensionless Schmidt number, Gr and
Gm are thermal and mass Grashof numbers, respectively,
Preff is the effective Prandtl number depend on radiation-
conduction parametric quantity Nr and Prandtl number
Pr, M is the magnetic field parameter, η is slip, and K
is the porosity parameter. Solving Eqs. (9)–(11) under
conditions (12)–(14) is generalized by adapting Caputo
(Caputo, 1967), Caputo–Fabrizio (Caputo and Fabrizio, 2015),
and Atangana–Baleanu (Atangana and Baleanu, 2016) fractional
operators. The obtained fractional model is solved using ADM
(Stehfest, 1970; Tzou, 1997; Sarwar, 2020).
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TABLE 1 Thermophysical traits of SWCNTs, MWCNTs, and human blood (Casson, 1959; Pramanik, 2014; Imran et al., 2017a).

ρ(Kgm−3) Cp(JKg−1K
−1) κ(Wm−1K−1) σ(Sm−1) β × 105(K−1)

SWCNTs 2,600 425 6,600 106–107 27
MWCNTs 1,600 796 3,000 1.9 × 10–4 44
Human blood 1,053 3,594 0.492 0.8 0.18

TABLE 2 Effect of fractional parameter on skin frictionCf for K = 3,M = 0.5, η = 0.1, Gr = 0.3, Gm= 0.01 γ = 0.2, Pr = 25, Nr = 18, and Sc = 0.22.

t = 0.5 t = 1.0

α ADMABC ADMCF ADMC ADMABC ADMCF ADMC

0.1 4.2029 3.8283 4.0174 4.2585 4.2002 4.5741
0.2 4.1305 3.4472 3.6539 4.3519 4.1450 4.7342
0.3 3.9699 3.075 3.2047 4.4531 4.0530 4.7187
0.4 3.7039 2.7125 2.7294 4.5138 3.9242 4.5582
0.5 3.3323 2.3589 2.2698 4.4894 3.7586 4.2878
0.6 2.8705 2.0147 1.8516 4.3452 3.5562 3.9428
0.7 2.3454 1.6795 1.4875 4.0604 3.3170 3.5554
0.8 1.7903 1.3536 1.1813 3.6294 3.0410 3.1524
0.9 1.2405 1.0369 0.9305 3.0615 2.7283 2.7551
1 0.7293 0.7293 0.7293 2.3787 2.3787 2.3787

TABLE 3 Effect of fractional parameter on Nusselt number Nu for Preff = 0.71.

t = 0.5 t = 1.0

α ADMABC ADMCF ADMC ADMABC ADMCF ADMC

0.1 4.9335 4.1308 4.2673 4.9782 4.3876 4.6468
0.2 5.3846 3.8689 4.0346 5.5883 4.3578 4.7758
0.3 5.6183 3.6124 3.7437 6.1079 4.3081 4.7955
0.4 5.5370 3.3603 3.4299 6.4005 4.2386 4.7231
0.5 5.1355 3.1134 3.1188 6.3766 4.1491 4.5786
0.6 4.5050 2.8714 2.8263 6.0387 4.0398 4.3819
0.7 3.7793 2.6345 2.5615 5.4697 3.9106 4.1518
0.8 3.0742 2.4025 2.3281 4.7822 3.7615 3.9041
0.9 2.4576 2.1755 2.1261 4.0731 3.5926 3.6515
1 1.9534 1.9534 1.9534 3.4037 3.4037 3.4037

TABLE 4 Effect of fractional parameter on Sherwood number Sh for Sc = 0.22.

t = 0.5 t = 1.0

α ADMABC ADMCF ADMC ADMABC ADMCF ADMC

0.1 110.256 84.1198 88.274 111.73 92.3223 100.566
0.2 125.199 75.7107 80.2105 132.01 91.0826 104.047
0.3 132.893 67.5083 70.2508 149.366 89.0165 103.623
0.4 129.869 59.5124 59.7288 158.844 86.124 99.9792
0.5 116.018 51.7231 49.5758 157.155 82.405 93.9026
0.6 94.727 44.1405 40.3619 144.402 77.8595 86.1829
0.7 70.8693 36.7645 32.3699 123.672 72.4876 77.5375
0.8 48.5335 29.595 25.6758 99.1383 66.2893 68.5693
0.9 29.9881 22.6322 20.222 74.3272 59.2645 59.7485
1.0 15.876 15.876 15.876 51.4132 51.4132 51.4132
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FIGURE 2
Temperature comparison of SWCNTs and MWCNTs when
t = 0.28, Pr = 21, Nr = 18, and β = 0.8.

Proposed fractional-order nanofluid
model

Equations 10 and 11 are homogenous and Eq. 9 is
a nonhomogeneous second-order PDE. We construct the
fractional-order Casson nanofluid models by changing time
derivative with Caputo (C), Caputo–Fabrizio (CF), and

FIGURE 3
θ(y, t) with Preff when ϕ = 0.002, t = 0.28, and β = 0.8.

Atangana–Baleanu (ABC) fractional derivatives. We get

Dα
t u (y, t) −

b1
b3
(1+ 1

γ
)∂yyu (y, t) + (

b2
b3

M+ 1
K
b1
b3
)u (y, t)

− b4Grθ (y, t) − b5GmΦ (y, t) = 0, (15)

Dβ
t θ (y, t) −

λ
b6

1
Preff

∂yyθ (y, t) = 0,

(16)

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2022.962086
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Aleem et al. 10.3389/fenrg.2022.962086

FIGURE 4
θ(y, t) with ϕ when Pr = 21, t = 0.5, Nr = 18, and β = 0.9.

Dδ
tΦ (y, t) −

1
Sc

∂yyΦ (y, t) = 0, (17)

where 0 < α,β,δ ≤ 1, q ∈ {α,β,δ}, and Dq
t (⋅) denotes the

fractional Caputo, Caputo–Fabrizio, or Atangana–Baleanu
operators which are defined as follows:.

• the fractional Caputo differential operator of order q ∈ (0,1)
and a function f(t) ∈H1[a,b] is defined (Caputo, 1967) as
follows:

FIGURE 5
C(y, t) with Sc when δ = 0.8 and t = 0.04.

CDq
a,t f (t) =

1
Γ (1− q)

∫
t

a
(t− τ)−qf

′
(τ)dτ, t > a, (18)

• the Caputo–Fabrizio fractional derivative of order q ∈ (0,1)
and a function f(t) ∈H1[a,b] is defined (Caputo and
Fabrizio, 2015) as follows:

CFDq
a,t f (t) =

1
1− q
∫
t

a
exp(−

q (t− τ)
1− q
) f
′
(τ)dτ, t > a, (19)
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FIGURE 6
u(y, t) with ϕ when t = 0.3, K = 3, Gr = 0.55, Gm = 0.01η = 0.15,
α = β = δ = 0.8, γ = 0.95, Pr = 25, Nr = 18, M = 1.4, and Sc = 1.5.

• the new fractional derivative Atangana–Baleanu operator of
order q ∈ (0,1) (Atangana and Baleanu, 2016) is as follows:

ABCDq
a,t f (t) =

M (q)
1− q
∫
t

a
Eq[
−q(t− τ)q

1− q
] f
′
(τ)dτ, t > a, (20)

where Eq(x) = ∑
∞
k=1

xk

(Γ(qk+1))
is the Mittag–Leffler function and

M(q) is the normalization function satisfying the conditions
M(0) =M(1) = 0.

FIGURE 7
u(y, t) with Gm when t = 0.3, K = 2.9, Gr = 0.05, ϕ = 0.02, η = 0.15,
α = β = δ = 0.8, γ = 0.95, Pr = 25, Nr = 20, M = 1.4, and Sc = 1.5.

Formulation of Adomian
decomposition method

As mentioned, ADM is used for approximation. The
algorithm of fractional ADM is as follows:

1) Consider the fractional PDE as follows:
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FIGURE 8
u(y, t) with Gr when t = 0.3, K = 2.9, Gm = 0.05, ϕ = 0.02, η = 0.15,
α = β = δ = 0.8, γ = 0.95, Pr = 25, Nr = 18, M = 1.4, and Sc = 1.5.

Dq
a,tΨ (t, s) + L (Ψ (t, s)) +N (Ψ (t, s)) = F (t, s) n− 1 < q ≤ n,

(21)

where Dq
a,t(⋅) is the fractional derivative in C, CF, or AB

sense; L and N are linear and nonlinear differential operators,
respectively; F is an analytical function; and s is the spatial
dimension. For the sake of simplicity, we use Ψ = Ψ(t, s) in the
following steps.

FIGURE 9
u(y, t) with Preff when t = 0.3, K = 2.9, Gm = 0.05, ϕ = 0.02,
η = 0.15, α = β = δ = 0.8, γ = 0.95, Gr = 0.25, M = 1.4, and Sc = 1.5.

We write Eq. 21 in the form

Dq
a,tΨ = F− L (Ψ) −N (Ψ) . (22)

2) Using the fractional integral Iq on both sides of Eq. 22, we get

Ψ = Iq (F−L (Ψ) −N (Ψ)) . (23)
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FIGURE 10
u(y, t) with Sc when t = 0.3, K = 2.9, Gm = 0.15, η = 0.15, ϕ = 0.02,
α = β = δ = 0.8, γ = 0.95, Pr = 25, Nr = 22, M = 1.4, and Gr = 0.05.

This methods gives the solution Ψ in convergent series form as

Ψ =
∞

∑
n=1

Ψn−1, (24)

and the decomposition of N (Ψ) in Eq. 23 is

N (Ψ) =
∞

∑
n=1

An−1. (25)

In the work by Adomian (Adomian, 1988; Adomian, 1994),
he provided the algorithm to find any kind of nonlinearity. To

FIGURE 11
u(y, t) with K when t = 0.3, Gm = 0.5, η = 0.15, Sc = 1.2, ϕ = 0.02,
α = β = δ = 0.8, γ = 0.95, Pr = 25, Nr = 18, M = 1.5, and Gr = 0.05.

calculate the Adomian polynomials An−1 in Eq. 25, we consider
the following general formula:

An−1 =
1
(n− 1)!
[ d

n−1

dλn−1
(N(

∞

∑
n=1

λn−1Ψn−1))]
λ=0

,n ≥ 1. (26)

3) Substitute Eq. 24 and Eq. 25 into both sides of Eq. 23, we get
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FIGURE 12
u(y, t) with γ when t = 0.3, Gm = 0.05, η = 0.15, Sc = 1.5, ϕ = 0.02,
α = β = δ = 0.8, K = 2.95, Pr = 25, Nr = 18, M = 1.4, and Gr = 0.2.

∞

∑
n=1

Ψn−1 = Iq(F− L(
∞

∑
n=1

Ψn−1)−
∞

∑
n=1

An−1). (27)

4) Using Ψ0 as an initial condition with Eq. 27, we can obtain Ψ1,
Ψ2,⋯.

5) Substituting these Ψ0, Ψ1, Ψ2,⋯ in Eq. 24, Ψ(t, s) is obtained
in a convergent series solution.

FIGURE 13
u(y, t) with η when t = 0.3, Gm = 0.01, γ = 0.95, Sc = 0.55,
ϕ = 0.02, α = β = δ = 0.8, K = 3, Pr = 25, Nr = 18, M = 1.4, and
Gr = 0.55.

Numerical study

In order to solve the model (15)–(17) with Eqs 12–14,
the given initial estimates are recommended to begin the
simulations u0 = t

2e−y, θ0 = e
−y, and C0 = e

−y. We assume that
α = β = δ.
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FIGURE 14
u(y, t) with M when t = 0.3, Gm = 0.05, γ = 0.95, Sc = 0.55,
ϕ = 0.02, α = β = δ = 0.8, K = 2.9, Pr = 25, Nr = 18, η = 0.15, and
Gr = 0.55.

Application of ADM with the caputo
derivative

In problems (15)–(17), we consider Dα
t (⋅) in the Caputo

sense. Following the formulation of Adomian decomposition
method, the following results are obtained.Result of the

fractional concentration field:

C (y, t) = e−y(1+
2tα( Sc

Γ (1+ α)
+ 2tα

Γ (1+ 2α)
)

Sc2
). (28)

Result of the fractional temperature field:

θ (y, t) = e−y(1+
tαλ( tαλ

Γ (1+ 2α)
+

Prb6
Γ (1+ α)

)

Pr2b26
). (29)

Result of the fractional velocity field:

u (y, t) = e−y
2ηt2 + 1

Γ (1+ α)
(e−y(1+yη)tα (ey

2η (1.642Gm

+ 1.741Gr) + 1
K (1+ α) (2+ α)γ

× (1.998eyt2 (−1.006KMγ+ 1.005 (−γ− 2K (1+ γ)

× η +4Ky2 (1+ γ)η2))))) + (3.541374−αe−y(1+yη)

× t2α (1+ α) (2+ α)(1.002ey
2ηK2 (3.28072GmPr

+ 1.741GrSc) × (1+ α) (1+ 2α)γ2 + 0.999999ey
2η

× (1.642Gm+ 1.741Gr)KPrSc (1+ α) (1+ 2α)γ

× (−1.006KMγ+ 1.005 (K+ (−1+K)γ)) + 0.999ey

×PrSct2 (1.01204K2M2γ2 + 2.02206KMγ

× (γ+ 2K (1+ γ)η− 4Ky2 (1+ γ)η2) + 1.01003

× (γ2 + 4Kγ (1+ γ)η+ 4K (1+ γ) (−2y2γ+ 3K

× (1+ γ))η2 − 48K2y2(1+ γ)2η3

+ 16K2y4(1+ γ)2η4))) × Γ (1

+ 2α))/(K2PrScγ2Γ(1
2
+ α)Γ (3+ α)Γ (3+ 2α)) .

(30)

Application of ADM with the
Caputo–Fabrizio derivative

In problems (15)–(17), we consider Dα
t (⋅) in the

Caputo–Fabrizio sense. Following the formulation of the
Adomian decomposition method, the following results are
obtained.Fractional concentration field’s result is as follows:

C (y, t) =
e−y (4+ 2Sc+ Sc2 + 2 (4+ Sc) (−1+ t)α+ 2 (2+ (−4+ t) t)α2)

Sc2
.

(31)

Fractional temperature field’s result is as follows:

θ (y, t) =
e−y ((2+ 4 (−1+ t)α+ (2+ (−4+ t) t)α2)λ2 + 2Prb6 ((1+ (−1+ t)α)λ+Prb6))

2Pr2b26
. (32)

Frontiers in Energy Research 12 frontiersin.org

https://doi.org/10.3389/fenrg.2022.962086
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Aleem et al. 10.3389/fenrg.2022.962086

Fractional velocity field’s result is as follows:

u (y, t)

= e−y
2ηt2 + 1

Kγ
(0.333e−y(1+yη) (3.003ey

2η (1.642Gm

+ 1.741Gr)K (1+ (−1+ t)α)γ+ eyt2 (3+ (−3+ t)α)

× (−1.006KMγ+ 1.005 (−γ− 2K (1+ γ)η

+ 4Ky2 (1+ γ)η2)))) + 0.0832502e
−y(2+yη)

K2PrScγ2

× (6.01201ey(1+yη)K2 (3.28072GmPr+ 1.741GrSc)

× (2+ 4 (−1+ t)α+ (2+ (−4+ t) t)α2)γ2

+ 5.99999ey(1+yη) (1.642Gm+ 1.741Gr)K

×PrSc(2+ 4 (−1+ t)α+ (2+ (−4+ t) t)α2)

× γ (−1.006KMγ+ 1.005 (K+ (−1+K)γ))

+ 0.999e2yPrSct2 (6+ (−6+ t)α) (2+ (−2+ t)α)

× (1.01204K2M2γ2 + 2.02206KMγ (γ+ 2K (1+ γ)η

− 4Ky2 (1+ γ)η2) + 1.01003(γ2 + 4Kγ (1+ γ)η

+ 4K (1+ γ) (−2y2γ+ 3K (1+ γ))η2 − 48K2y2(1+ γ)2η3

+ 16K2y4(1+ γ)2η4))) . (33)

Application of ADM with the
Atangana–Baleanu derivative

In problems (15)–(17), we consider Dα
t (⋅) in the

Atangana–Baleanu sense. Following the formulation of the
Adomian decomposition method, the following results are
obtained.Fractional concentration field’s result is as follows:

C (y, t) = e−y(1+
2 (tα + Γ (α) − αΓ (α))
Sc (α+ Γ (α) − αΓ (α))

+
4Γ (α)

Sc2(α+ Γ (α) − αΓ (α))2Γ( 1
2
+ α)

× (4−α√πt2αα+ (−1+ α) (−2tα + (−1+ α)Γ (α))Γ( 1
2
+ α))). (34)

Fractional temperature field’s result is as follows:

θ (y, t) = e−y(1+
4−αλ2Γ (α)(√πt2αα+ 4α (−1+ α) (−2tα + (−1+ α)Γ (α))Γ (1/2+ α))

Pr2(α+ Γ (α) − αΓ (α))2Γ (1/2+ α)b26

+
λ (tα + Γ (α) − αΓ (α))

Pr (α+ Γ (α) − αΓ (α))b6
). (35)

Fractional velocity field’s result is as follows:

u (y, t) = e−y
2ηt2 + e

−y(1+yη)

BKγb3
( t−1+αα ( 1

Γ (3+ α)
(2t3 (2Kη

× (−1η) + 2y2 + γ(−1+ 2Kη(−1+ 2y2η)))
× (cosh (y) sinh (y))b1 )

−
2KMt3γ (cosh (y) + Sinh (y))b2

Γ (3+ α)

+
Ktγ(cosh(y2η) + sinh(y2η))b3 (Grb4 +Gmb5)

Γ (1+ α)
)

− (−1+ α) (eyt2 (2Kη(−1+ 2y2η)

+ γ(−1+ 2Kη(−1+ 2y2η )))b1
+ Kγ(−eyMt2b2 + ey

2ηb3 (Grb4 +Gmb5))))

+ (e−y(2+yη) (tαα(GrK2Scγ2λΓ (α)Γ (3+ α)

× (cosh (y (1+ yη)) + sinh (y (1+ yη)))b23b4
−GrK2Scαγ2λΓ (α)Γ (3+ α)

× (cosh (y (1+ yη)) + sinh (y (1+ yη)))b23b4

+
GrK2Sctαγ2λΓ(1+ α)2Γ (3+ α) (cosh (y (1+ yη)) + sinh (y (1+ yη)))b23b4

Γ (1+ 2α)
− 2PrSct2 (−1+ α)Γ (α)Γ (1+ α)

× (cosh (2y) + sinh (2y)) ((γ2 + 4Kγ (1+ γ)η

+ 4K (1+ γ) (−2y2γ+ 3K (1+ γ))η2

−48K2y2(1+ γ)2η3 + 16K2y4(1+ γ)2η4)b21
+ 2KMγ(2Kη(1− 2y2η) + γ(1+ 2Kη(1− 2y2η)))

× b1b2 +K2M2γ2b22)b6 + 1/Γ(3+ 2α)
2PrSct2+α

× αΓ (α)Γ (1+ α)Γ (3+ α) (cosh (2y) + sinh (2y))

× ((γ2 + 4Kγ (1+ γ)η+ 4K (1+ γ)

× (−2y2γ+ 3K (1+ γ))η2 − 48K2y2(1+ γ)2η3

+ 16K2y4(1+ γ)2η4)b21 + 2KMγ(2Kη(1− 2y2η)

+γ(1+ 2Kη(1− 2y2η)))b1b2 + K
2M2γ2b22)b6

+ 2GmK2Prγ2Γ (α)Γ (3+ α) (cosh (y (1+ yη))

+ sinh (y (1+ yη)))b23b5b6 − 2GmK2Prαγ2Γ (α)Γ

× (3+ α) (cosh (y (1+ yη)) + sinh (y (1+ yη)))b23b5b6

+
2GmK2Prtαγ2Γ(1+ α)2Γ (3+ α) (cosh (y (1+ yη)) + sinh (y (1+ yη)))b23b5b6

Γ (1+ 2α)

+ 1

Γ( 1
2
+ α)
(4−αK√πPrSctααγΓ (α)Γ (3+ α)

× (cosh (y (1+ yη)) + sinh (y (1+ yη)))
× ((K− γ+Kγ)b1 −KMγb2)b3 (Grb4 +Gmb5)b6)

+ 1
Γ (1+ α)

× (KPrScαγΓ(α)2Γ (3+ α)

× (cosh (y (1+ yη)) + sinh (y (1+ yη)))
× ((K− γ+Kγ)b1 − KMγb2)b3 (Grb4 +Gmb5)b6)

− 1
Γ (1+ α)

(KPrScα2γΓ(α)2Γ (3+ α)

× (cosh (y (1+ yη)) + sinh (y (1+ yη)))
× ((K− γ+Kγ)b1 −KMγb2)b3 (Grb4 +Gmb5)b6))

+ (1− α) (e2yPrSct2Γ (α)Γ (1+ α) (2tαα− (−1+ α)

× Γ (3+ α)) ((γ2 + 4Kγ (1+ γ)η + 4K (1+ γ)

× (−2y2γ+ 3K (1+ γ))η2 − 48K2y2(1+ γ)2η3

+16K2y4(1+ γ)2η4)b21 + 2KMγ (γ+ 2K (1+ γ)η

−4Ky2 (1+ γ)η2) b1b2 +K2M2γ2b22)b6 + e
y(1+yη)

×KPrScαγΓ (α) (tα + Γ (α) − αΓ (α))Γ (3+ α)
× ((K+ (−1+K)γ)b1 −KMγb2)b3 (Grb4
+ Gmb5)b6 + ey(1+yη)K2γ2 (tα + Γ (α) − αΓ (α))

× Γ (1+ α)Γ (3+ α)b23 (GrScλb4 + 2GmPrb5b6))))

/(B2K2PrScγ2Γ (α)Γ (1+ α)Γ (3+ α)b23b6) . (36)
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Nusselt number, Sherwood number, and
skin friction

Heat and mass transfer rates and skin friction for ADMC,
ADMCF, andADMAB are obtained using results from Section 5.1,
Section 5.2, and Section 5.3.

Nu = −∂yθ (y, t) |y=0,

Sh = −∂yC (y, t) |y=0,

(Cf) = −∂yu (y, t) |y=0.

The numerical analyses for Nusselt number, Sherwood
number, and skin friction under the influence of fractional
parameters are given in Tables 2–4 for all three models.

Results and discussions

In the present study, a fractionalmodel is articulated utilizing
three different differential approaches, i.e., Caputo (C), Caputo–
Fabrizio (CF), and Atangana–Baleanu (ABC). ADM is used
to obtain semianalytical solutions for compactness, velocity,
and temperature domains. The received upshots are projected
graphically to present the influence of fractional and flow
parameters.

General approximative numerical solutions for unfirm
incompressible, viscoelastic Casson nanofluid carrying human
blood as the base fluid and CNTs (SWCNTs/ MWCNTs) as
nanoparticles were obtained by ADM. It was reckoned that
the upright plate was translating in its plane having velocity
U0f(t), where U0 is the characteristic velocity and f(t) is a
piecewise continuous function specified on [0,∞) satisfying the
condition f(0) = 0. In the present study, f(t) = t2 was presumed,
which makes us speculate that the plate is rendered with
unvarying apparentmotion and hence also the fluid.Thephysical
characteristics of blood and CNTs (SWCNTs/ MWCNTs) are
acquired from Table 1 for numeric calculation.

The temperature for SWCNT and MWCNT human blood-
based nanofluid is compared in Figure 2. It is evident that
the MWCNT Casson fluid depicts more heat conduction
as compared to SWCNT nanoparticles. This is due to the
differences between the thermal conductivities of both types
of nanoparticles. the thermal conductivity for MWCNTs is
3000Wm−1K−1 while for SWCNTs it is 6600Wm−1K−1, which
clearly shows that the temperature ofMWCNTshas higher values
as compared to SWCNTs. A similar behavior can be seen for all
three models, which was described by Imran et al. (2020).

Figure 3 Plots revealing the impact of Preff on temperature
fields obtained by the three fractional approaches. It can be
clearly seen from the graph that temperature and boundarylayer

thickness are reduced by maximizing Preff . The value of
Preff depends on the radiation–conduction parametric quantity
Nr and Prandtl number Pr. Graphically, as the Preff value
intensifies, the fluid temperature is minimized. When the
Preff value is increased, it reduces thermal conductivity and
enhances liquid viscosity leading to an abbreviation of the
thickness of the thermic boundary layer. Nonetheless, the
ADMAB model delineates this deportment better due to
the presence of Mittag–Leffler kernel when equated with
ADMCF and ADMC models. All models demonstrate a similar
pattern.

Figure 4 shows the effect of nanoparticle volume fraction
ϕ on the temperature domain. Temperature enhances upon
increasing the value of nanoparticle volume fraction ϕ;
physically, it occurs because of the addition of MWCNT
nanoparticles into the Casson fluid, leading to elevated thermic
conduction and, therefore, increasing temperature. The plots in
Figure 5 help us understand the upshot of Sc on concentration
by taking other parameters to be fixed. It is determined, that with
an increase of Sc the thickness of the liquid decreases, which is
due to a reduction of molecular diffusivity.

The plots in Figure 6 help us envision the impact of SWCNTs
andMWCNTs inCasson fluid, which in our case is human blood,
on velocity domains obtained by the three fractional approaches.
Graphically, it can be envisioned that MWCNTs’ nanoliquid
moves faster than SWCNTs’ nanofluid. Physically, this occurs due
to the density of carbon nanotube nanoparticles. The density of
MWCNTs is (1600Wm−1K−1) whereas the density of SWCNTs is
(2600Wm−1K−1), which makes SWCNT-based nanofluid thick,
resulting in slower motion of the fluid. Similar behavior can be
seen in the work by Imran et al. (2020). Dispersing MWCNT
nanoparticles into the Casson liquid decreases its velocity due
to increased thickness. Similar patterns can be seen for all three
fractional models.

Figures (7––14) show numerical traits of MWCNTs’
nanospecks and human blood presented in Table 1. Figures 7, 8
determine the outcome of mass and thermal Grashof numbers,
i.e., Gm and Gr, respectively. The fluid speed in both cases is
enhanced with Gr and Gm. The fluid flow is simply imputable
to buoyant pressures. When this force is zero, the fluid will not
be no displaced. For Gr > 0, the natural convection is imputable,
and heat is channelized to the fluid through the plate; afterward,
the plate is tranquilized. When the Grashof number is increased,
the buoyant force originates and becomes less glutinous, which
institutes liquid flow faster as seen in these graphs for both
frameworks. Moreover, Figure 9 is plotted for Preff versus y by
keeping other parameters fixed. It is pertinent to mention that
by invoking Preff, the fluid speed decreases and the boundary
layer thickness is reduced. The reason for this is the increased
value of Preff leads to acquiring fluid viscosity, and the reduced
caloric boundary layer leads to slower apparent motion.This can
be further elaborated from the graphical analysis; the ADMABC
model describes the behavior of the function in the best possible
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way because it holds Mittag–Leffler kernel, which stores the
memory factor, and is therefore better in describing the fluid’s
flow fields when compared with ADMCF and ADMC. When the
fractional parameter approaches 1,ADMABC gives velocity values
closer to the classical results.

The plots in Figure 10 probe the invasion of Schmidt number
Sc on liquid velocity by confining the parametric quantities
constantly. It is observed that an increase in Sc leads to a
decrease in the speed. Figure 11 is diagrammed to ascertain
the impression of porosity parameter K on velocity. For large
values of K, speed and boundary layer thickness are increased.
The reason behind this phenomenon is that by increasing the
permeability of the porous medium its resistance is decreased,
which contributes to increasing the momentum of the flux
regime. Figure 12 is diagrammed to project the impression of the
Casson parameter γ, which unveils tangible traits of plasticity.
When γ decreases, blood plasticity increases, which ultimately
deaccelerates the motion of the fluid.

Figure 13 is diagrammed to ascertain the effect of the slip
parameter on Casson MWCNTs’ nanofluid. By increasing the
value of η, velocity is deaccelerated as displayed in Figure 13
for increasing three fractional models. Figure 14 shows the plots
for magnetic field parameter M, which produces a magnetic
field during the fluid’s flow. An increase in the magnetic flux
parametric quantity decreases the velocity. An increase in the
magnetic field parameter engenders the drag force to the stream,
termed as Lorentz force. These retarding forces understate the
velocity profiles and reduce the thickness of MBL.

Table 2 presents fractional parameters’ impact on skin
friction for small and large durations by keeping other parametric
quantities fixed. By increasing the fractional parametric
value, skin friction decreases for all models for small and
large durations. However, for small duration, results are
ADMCF < ADMC < ADMABC, and for large durations, ADMC
and ADMABC show reverse behavior. The effect of the fractional
variable on Nu, the Nusselt number, and Sherwood number Sh
is given in Tables 3 and 4. For large and small durations, Nu
and Sh for ADMABC first increase by increasing α and then show
a decreasing behavior. For ADMC and ADMCF, Nusselt number
and Sherwoodnumber decrease by increasingα. All threemodels
show a similar result for α = 1.

Conclusion

This study was performed to investigate free convective,
unsteady, MHD blood flow with single (SWCNTs) and
multiwalled carbon nanotubes (MWCNTs) as nanoparticles.
The blood flow is considered over an oscillating vertically
upright plate engrafted in a porous medium with slip, radiation,
and porosity effects. Three fractional approaches Caputo (C),
Caputo–Fabrizio (CF), and Atangana–Baleanu (ABC) are used

to develop a fractional blood flow model, which is solved by the
Adomian decomposition method (ADM). Some key findings are
as follows:

1) Fractional parameter controls the rates of heat and mass
transfer and maximum rates can be achieved for smaller
values of the fractional parameter for small and large
durations.

2) Fractional parameters can be used to control the thermal,
diffusion, and momentum boundary layers, respectively, and
are applicable in some experimental work where needed.

3) Fluid properties can be enhanced by increasing the
concentration of nanoparticles and decreasing the velocity.

4) SWCNTs’ nanoparticles are more reliable and efficient in the
heating process such as in electronics devices due to the
higher value of thermal conductivity.

5) ADMABC model described the behavior of the function
in a better way because it holds Mittag–Leffler kernel,
which stores memory factors, and therefore is better in
describing the fluid’s flow fields when comparedwithADMCF
and ADMC. When the fractional parameter approaches 1,
ADMABC gives velocity values closer to the classical results.

6) Nusselt number and skin frictions are decreasing
functions of α. However, for small durations, results are
ADMCF < ADMC < ADMABC, and for large durations,ADMC
and ADMABC show reverse behavior.
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