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In recent years, offshore wind farms have boomed all over the world. It is essential to
manage the energy dispatch of the offshore wind power systems to reduce transmission
losses. This article proposes an optimization method for the optimal power flow of
offshore wind power systems based on the convex–concave procedure. First, the
nonlinear variables in the power flow constraints of the offshore wind power system
are relaxed with newly defined variables. Second, the non-convex constraints are
reconstructed according to the variables’ characteristics so that the optimization method
satisfies all constraints at the same time. Meanwhile, by applying the Taylor series
expansion, the relaxation variables’ gaps are changed dynamically, and the convex
relaxation is tightened to ensure the effectiveness of the proposed method. Finally, the
feasibility of the relaxation and the optimized solution is verified by the simulation to realize
the power optimization in the real offshore wind system.

Keywords: offshore wind systems, optimal power flow, convex optimization, convex–concave procedure,
quadratic relaxation

1 INTRODUCTION

With the steady progress of energy reforms around the world, the proportion of renewable energy
sources, such as wind energy and solar energy, is increasing (Zhang et al., 2017). It is estimated that
by 2035, the installed capacity of wind power will reachmore than one billion kilowatts, of which the
offshore wind power is about 350million kilowatts. Wind power will become one of the main power
sources affecting each country’s energy structure and security. At the same time, considering the
vigorous development trend of offshore oil and gas platforms, and their complex network format, it
is very significant to carry out energy management for offshore wind power systems (Shafiee, 2015).

In energy management, how to reduce system losses is the top priority of optimization
(Khan et al., 2016; Li Z. et al., 2020). The loss of offshore wind power is usually caused by line
losses of the submarine transmission cable (Apostolaki-Iosifidou et al., 2019).Therefore, it is of great
significance to propose an effective solutionmethod to reduce the line losses on the basis of ensuring
energy conservation and satisfying the corresponding physical relationship on the basis of how to
carry out refined physical modelling for offshore wind power systems.

The offshore wind system is a typical nonlinear system. In the optimization of nonlinear systems,
since the problem is non-convex and NP (HardKonar and Sidiropoulos, 2017), the commonly
used solution methods are the linear programming method based on the approximate fitting
(Bourguignon et al., 2015), gradient (Guirguis et al., 2016; Neftci et al., 2019) and Newton method-
based algorithm (Li et al., 2020a), Lagrange multiplier method (Ruan et al., 2020; Xie et al., 2022),
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interior pointmethod (Fazlyab et al., 2017), and various heuristic
and intelligent algorithms (Rokbani et al., 2021; Goli et al., 2021;
Li et al., 2022). In these algorithms, the approximated method
has high solving efficiency, but it will lead to some errors in the
process of linearization, which affects the feasibility of the optimal
solution. Gradient and Newton-based algorithms require a high-
quality initial value in the iterative calculation and may fall into
the ill condition. Lagrange multiplier and interior point method
have certain requirements for the value of obstacle function.
Therefore, it is difficult to solve the nonlinear and non-convex
problem using the common analytical solution algorithm. When
using the heuristic algorithm, it needs a lot of running time and
storage space, and it is hard to find the global optimal solution.

In order to find the global optimal solution of the optimization
problem, the convex optimization-basedmethods have gradually
entered the field of power system management. This is because
if an optimization problem can be written in a standard convex
optimization format, the local optimal solution is the global
one. In addition, convex optimization can be solved efficiently
by many analytical methods (Boyd et al., 2004). Therefore, to
apply the convex optimization technique into non-convex and
nonlinear problems, some relaxationmethods should be imposed
to reshape the non-convex solution domain.

According to the mathematical expression form of the
relaxation, the convex relaxationmethods can be roughly divided
into second-order cone relaxations (Abdelouadoud et al., 2015),
semi-definite relaxations (Jubril et al., 2014), convex hull
relaxations (Li Q et al., 2018), and quadratic relaxations
(Hijazi et al., 2017). Among thesemethods, themethod proposed
by Li Y et al. (2018) showed that the second-order cone
relaxation method is suitable for the network with a radial
topology, of which the recovery of the angle information is
conditional. Ma et al. (2020) pointed out that semi-definite
programming cannot obtain the feasible optimal solution in a
special three-node network. Cremers and Kolev (2010) pointed
out that the constructions of convex hulls lead to different relaxed
regions in the solution domain. Chen et al. (2021) proposed
a quadratic relaxation with certain constraints on the angle
difference in the network, which can only be applied to the
special meshed topology. Therefore, the above methods have
some limitations in the application of power optimization, and it
is difficult to ensure the accuracy of relaxation.

In the current research on the energy optimization of offshore
wind farms, few methods use convex relaxations. The convex
relaxation-based methods will enlarge the solution domain
through the variable replacement, which may cause the loss
of information. Therefore, it is challenging to recover the
complete system information after relaxations, and the feasible
optimal solution cannot be obtained unless the conditions of
exact relaxations are met. The change of topology and system
parameters will result in inexact relaxations. So the generality and
flexibility of the convex relaxation-based method is poor.

In summary, how to use the convex relaxation method to
realize the accurate relaxation is of great significance. To fill
the research gap of the above literature, this article proposes
a convex–concave procedure-based method for the energy
optimization of offshore wind power systems. This method

mainly focuses on the problem of wind turbines’ output and
the energy distribution in the offshore wind power system.
This method inherits the advantages of traditional convex
optimization methods, which can be efficiently solved with
the global optimal solution. In this method, the optimization
problem of the offshore wind power system is first modelled
mathematically, and the second-order cone relaxation method is
used to deal with the non-convex constraints in the optimization.
Then, in order to reduce the relaxation gap, a Taylor series
expansion-based technique is imposed to contract the relaxation
region; that is, the iterative process is imposed with the
convex–concave procedure so that the solution domain is close to
the one before relaxation.Thus, the efficient energy management
of offshore wind power systems can be achieved, and the energy
management problem of the offshore wind power system can be
solved while maximizing the economic benefits of the system.

2 OPTIMIZATION MODEL

Figure 1 is a schematic diagram of offshore wind power systems.
Among them, the wind power system is usually composed
of offshore wind farms and electrical collector systems, which
interconnects multiple wind farms. In order to transfer the power
of the offshore wind power system to the power grid side, the
substation is required.

The research of this article focuses on the offshore wind
power system, that is, the energy management of the offshore
wind farms and collector line systems. The offshore wind power
system is a typical nonlinear system, of which the mathematical
model is non-convex. It is composed of the objective function,
equality constraints, and inequality constraints. The aim of the
optimization is to maximize the transmitted power to the grid.
The constraints are about the power flow, energy, voltage, load,

FIGURE 1 | Schematic diagram of offshore wind power systems.
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and generators’ constraints. In addition, the topology of the
system should be considered as well.

In the optimization model of the offshore wind system, define
the voltage variable of each node i with the complex variable
Ui = Vi∠θi. The generated active and reactive power of node i is
Pg
i and Qg

i . The active and reactive consumption power of node
i is Pc

i and Qc
i . For branch i∼j, the current variable is Iij, the

admittance is Yij, the conductance is Gij, and the susceptance is
Bij. The transmitted apparent power, active power, and reactive
power of the branch i∼j are denoted as Sij, Pij, andQij, respectively.

2.1 Objective Function
The objective function of the offshore wind farm is to maximize
the on-grid electricity, that is, to minimize the transmission loss
of the system. The mathematical expression of the power loss is

f =∑Pg
i −∑Pc

i . (1)

Pg
i and Pc

i are the generated power and consumption power of
node i, respectively.

2.2 System Constraints
Based on the operating conditions and physical relationships of
the offshore wind power system, the constraints are established
as follows:

1) The relationship between the transmitted power and current
with the node’s voltage is

Sij = UiI
∗
ij . (2)

In the abovementioned equation,∗ is the conjugate operator.
Variables Sij, Ui, and Iij are complex variables.

2) The relationship between node’s voltage and branch current:

Iij = (Ui −Uj)Yij. (3)

where Yij is the complex variable.

3) Power balance law of active and reactive power:

Pi =∑Pij =∑Pg
i − P

c
i . (4)

Qi =∑Qij =∑Qg
i −Q

c
i . (5)

Superscripts g and c denote the generator nodes and load nodes,
respectively. In the offshore wind farm system, a majority of the
nodes are generator nodes.

4) Voltage ranges

Vmin
i ≤ Vi ≤ V

max
i . (6)

θmin
i ≤ θi ≤ θ

max
i . (7)

5) Power ranges

Pcmin
i ≤ P

c
i ≤ P

cmax
i . (8)

Qcmin
i ≤ Q

c
i ≤ Q

cmax
i . (9)

Pgmin
i ≤ P

g
i ≤ P

gmax
i . (10)

Qgmin
i ≤ Q

g
i ≤ Q

gmax
i . (11)

Superscripts min and max are the lower and upper bounds,
which are constants. For the active power and reactive power of
node i, the limited bounds are defined according to the operating
constraints of the equipment. The active power and reactive
power in the abovementioned formula are real variables.

6) Branch constraints:

Pmin
ij ≤ Pij ≤ P

max
ij . (12)

Qmin
ij ≤ Qij ≤ Q

max
ij . (13)

For the active power and reactive power of the transmission line,
according to the operating constraints of lines, the bounds are
limited.

2.3 Optimization Model
Based on the objective function and constraints modelled earlier,
the optimization model can be summarized as

min (1)
s.t. (2) − (13). (14)

In this optimization problem, because of the constraints in Eqs 2,
3, it is a non-convex, nonlinear, and NP-hard problem.

By adjusting the active and reactive power output of the
offshore wind power system, it can provide reactive power
support for the offshore collector systems. Thus, the power loss
and the reactive power configuration of the substations can be
reduced. In view of this, the article proposes a convex relaxation
method to optimize the offshore wind power system efficiently.

3 CONVEX RELAXATION-BASED METHOD
FOR OFFSHORE WIND SYSTEMS

3.1 Slack Variables’ Definition
Six real variables are defined as follows:

ai = V 2
i ⁡cos ⁡θ

2
i , (15)

bi = V 2
i ⁡sin ⁡θ

2
i , (16)

aij = Vi ⁡cos θiVj ⁡cos θj, (17)
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bij = Vi ⁡sin θiVj ⁡sin θj, (18)

sji = VjcosθjVi ⁡sin θi, (19)

sij = Vi ⁡cos θiVj ⁡sin θj. (20)

By substituting Eq. 3 into Eq. 2, we can get the branch power
flow of active power and reactive power as

Pij =R(ViV
∗
i Y
∗
ij ) −R(ViV

∗
j Y
∗
ij ) , (21)

Qij = I(ViV
∗
i Y
∗
ij ) − I(ViV

∗
j Y
∗
ij ) , (22)

where R and I represent the real and imaginary parts of the
complex variables, respectively. By replacing the voltage-related
variables with the newly defined variables, the branch power flow
of each transmission line from the two directions will become

Pij = −(aij + bij)Gij +Bij (sji − sij) +Gij (ai + bi) (23)

Pji = −(aij + bij)Gij −Bij (sji − sij) +Gij (aj + bj) (24)

Qij = −(aij + bij)Bij −Gij (sji − sij) +Bij (ai + bi) (25)

Qji = −(aij + bij)Bij +Gij (sji − sij) +Bij (aj + bj) (26)

Since we have the voltage constraints in Eq. 6 and Eq. 7, the
newly defined six variables have the corresponding ranges as well.

(Vmin
i )

2 ≤ ai + bi ≤ (V
max
i )

2 (27)

min{ViVjcos(θij)} ≤ aij + bij ≤max{ViVjcos(θij)} , (28)

min{sin(θij)} ≤ sji − sij ≤max{sin(θij)} , (29)

where θij ∈ [θmin
ij ,θ

max
ij ]. The limits of θij can be obtained from

the ranges of θi and θj. Therefore, min{ cos(θij)}, max{ cos(θij)},
min{ sin(θij)}, and max{ sin(θij)} are known in advance according
to the relationship of trigonometric functions. The six variables
defined in Eqs 15–20 have the following four series of equality
constraints.

s2ij = aibj (30)

s2ji = ajbi (31)

a2ij = aiaj (32)

b2ij = bibj (33)

With the slack variables added, the optimization problem in
Eq. 14 can be rewritten as

min (1)
s.t. (4) − (5), (8) − (13), (23) − (33). (34)

The non-convexity of Eq. 34 comes from the constraints of
Eqs 30–33, which are in standard quadratic formats. To deal with
this non-convexity, the convex–concave procedure is imposed in
the next subsection.

3.2 Convex–Concave Procedure
For the constraints in Eqs 30–33, we can reconstruct them with
the two groups of inequality constraints as

(ai + aj)
2

4
−[

[
a2ij +
(ai − aj)

2

4
]

]
≤ 0, (35)

(bi + bj)
2

4
−[

[
b2ij +
(bi − bj)

2

4
]

]
≤ 0, (36)

(ai + bj)
2

4
−[

[
s2ij +
(ai − bj)

2

4
]

]
≤ 0, (37)

(ai + bj)
2

4
−[

[
s2ji +
(aj − bi)

2

4
]

]
≤ 0, (38)

(ai + aj)
2

4
−[

[
a2ij +
(ai − aj)

2

4
]

]
≥ 0, (39)

(bi + bj)
2

4
−[

[
b2ij +
(bi − bj)

2

4
]

]
≥ 0, (40)

(ai + bj)
2

4
−[

[
s2ij +
(ai − bj)

2

4
]

]
≥ 0, (41)

(ai + bj)
2

4
−[

[
s2ji +
(aj − bi)

2

4
]

]
≥ 0. (42)

It can be found that the constraints in Eqs 39–42 are second-
order cone relaxations, which are convex, and the convex
optimization problem is defined as

min (1)
s.t. (4) − (5), (8) − (13), (23) − (29), (39) − (42). (43)

Set the convex solution domain of convex optimization Eq. 43
with the convex set Ω. In addition, all the variables in Eq. 43 are
defined with the convex set X. Then Eq. 34 can be equivalently
written as

min f0 (X) ,
s.t. fk (X) − gk (X) ≤ 0. X ∈Ω. (44)

In Eq. 44, fk(X) refers to the first term in Eqs 35–38, and gk(X)
refers to the second term in Eqs 35–38. It can be found that both
fk(X) and gk(X) are convex functions.
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Due to the policy of first-order Taylor expansion series at
X(t), where t is the index number of the iteration times, gk(X) in
Eqs 35–38 can be linearized as

gk(X;X(t))
(a)′ = a2ij +

(ai − aj)
2

4
Δ
=a2(t)ij + 2a

(t)
ij (aij − a

(t)
ij )

+
(a(t)i − a

(t)
j )

2

4
+
a(t)i − a

(t)
j

2
× (ai− a

(t)
i − aj+ a

(t)
j ) (45)

gk(X;X(t))
(b)′ = b2ij +

(bi − bj)
2

4
Δ
=b2(t)ij + 2b

(t)
ij (sij − b

(t)
ij )

+
(b(t)i − b

(t)
j )

2

4
+
b(t)i − b

(t)
j

2
× (bi− b

(t)
i − bj+ b

(t)
j ) (46)

gk(X;X(t))
(c)′ = s2ij +

(ai − bj)
2

4
Δ
=s2(t)ij + 2s

(t)
ij (sij − s

(t)
ij )

+
(a(t)i − b

(t)
j )

2

4
+
a(t)i − b

(t)
j

2
× (ai− a

(t)
i − bj+ b

(t)
j ) (47)

gk(X;X(
t))(d)

′
= s2ji +
(aj − bi)

2

4
Δ
=s2(t)ji + 2s

(t)
ji (sji − s

(t)
ji )

+
(a(t)j − b

(t)
i )

2

4
+
a(t)j − b

(t)
i

2
× (aj− a

(t)
j − bi+ b

(t)
i ) . (48)

FIGURE 2 | Solving process of the proposed method.

To drive the Taylor expansion series be exactly equal to the
equality before the expansion, the penalty term is involved.
R(X) = 𝜏(t)∑wk=1dk is defined, where w is the total number of
constraints (35)–(38) in the system, and 𝜏(t) indicates the penalty
factor in the tth iteration whose limit is from 𝜏min to 𝜏max. dk
is an introduced non-negative variable, which is intended to be
the slack variable for constraints in Eqs 35–38. Considering the
sum of dk is ∑

w
k=1d
(t+1)
k , which is expected to be around zero, the

solution obtained fromEq. 44will be exactly the one fromEq. 34.
Therefore, the penalty term is added into the objective function
to drive dk to be zero.

With R(X) as penalty terms in the objective function, the
objective function differences between the tth and the t+ 1-
th iteration with R(X)(t) −R(X)(t+1) are recorded. Substituting
gk(X;X

(t))′ to replace gk(X), optimization Eq. 44 will be

min f0 (X) + 𝜏
w

∑
k=1

dk,

s.t. fk (X) − gk(X;X(
t))′ ≤ dk, X ∈Ω

dk ≥ 0. k = 1,2….,w (49)

Since the convex–concave procedure method is an iterative
algorithm, the stopping criterion will be no more the
improvement of the objective function or∑wk=1d

(t+1)
k , which tends

to be zero. Moreover, 𝜏 is set with limited constant 𝜏max, and a
step length of 1.5 is set for 𝜏 in the iteration. Thus, the algorithm
allows a low penalty on violations which in turn permits an
enlarged solution region with a lower objective value. Consider
a very small positive δ ≈ 0 as the stopping signal. Therefore, the
total stopping criterion of the convex–concave proceduremethod
will be all of the inequalities. Thus, ∑wk=1d

(t+1)
k > δ,𝜏

(t) < 𝜏max and
|R(X)(t) −R(X)(t+1)| > δ are violated. The whole solving process is
shown in Figure 2.

Thus, with the convex–concave procedure applied, the non-
convex offshore wind system’s optimization problem in Eq. 14 is
transferred to Eq. 49. In each iteration, the convex optimization
is solved efficiently and the sum of gaps is considered. Thus,
when the iteration is stopped, the total violations are punished
and the relaxation gap will closely be zero. In summary, both
the solving efficiency and the optimization precision can be
guaranteed.

4 CASE STUDY

In this article, a real offshore wind farm in China is used as the
testing system. The system consists of 91 wind turbines in 14
loops. The topology is shown in Figure 3.

In this system, the length of the submarine cable between
most of the circuit is 735 m. In the circuit between No. 77 and
No. 83 wind turbines and the circuit between No. 84 and No.
90 wind turbines, the length of the submarine cable is 1715 m.
The selection of submarine cables between the wind turbines is
decided according to themultiple factors such as the line’s current
carrying capacity, thermal stability, and voltage drop. The length
of the high-voltage submarine cable between the wind turbine
and the offshore substation is shown in Table 1.
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FIGURE 3 | Topology of the offshore wind farm system.

The relaxation model established above is built and written
into Matlab through the Yalmip (Lofberg, 2004) toolbox,
and solved by the IBM commercial solver CPLEX (Shinano
and Fujie, 2007). The CPLEX is called to solve the convex
optimization in the iterative process. In this case, the active
power, reactive power, node voltage of each wind turbine node,
and current and power on the lines between wind turbines are
the variables to be optimized. At the same time, the upper and
lower limits of the active power and reactive power of the wind
turbine node, the upper and lower limits of the nodes’ voltage,
and the upper and lower limits of the active power and reactive
power transmission of the line are known quantities. In this
optimization, the output of the active power and reactive power
of the wind turbine will affect the node voltage and the current of
the line connected to it, thereby affecting the line loss, resulting

in the change of the on-grid power of the wind farm. If the line
loss is reduced, the on-grid power will increase. Conversely, if the
line loss increases, the on-grid power will decrease.

In the test, by setting the wind turbines’ output level with 25,
50, 75, and 100%, the optimized power loss is shown in Figure 4.
From this, it can be found that within four times of the iterations,
the objective function will no longer be changing in all scenes.
In addition, in the iteration, the power loss will be smaller. That
is to say, with the convex–concave procedure implemented, the
objective function changes toward a better result.

As mentioned earlier, Eq. 43 is a standard convex
optimization, whose equality constraints are linear and the
inequality constraints are all convex. To compare the relaxation
gap of Eq. 43 and the one in Eq. 44, we have conducted the
following tests when the output level of the wind turbine is 100%.

TABLE 1 | Information of the connected wind turbines and their offshore submarine cables.

Loop no. Wind turbine no. Length of cables (km) Cross section of cables (mm)

1 18 13,581 3 × 300
2 12 17,413 3 × 300
3 6 22,178 3 × 300
4 31 5,339 3 × 500
5 46 5,303 3 × 500
6 72 22,190 3 × 300
7 77 1,609 3 × 500
8 24 9,773 3 × 300
9 38 1,117 3 × 500
10 39 1,609 3 × 500
11 53 9,753 3 × 500
12 66 18,067 3 × 300
13 84 12,783 3 × 500
14 60 14,217 3 × 300
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FIGURE 4 | Optimization results under different wind turbine output level
during iterations.

FIGURE 5 | Relaxation gap’s change during iterations.

The relaxation gap is defined as

Gaps1 =
∑

ij∈E
(|s2ij − aibj|)

n
(50)

Gaps2 =
∑

ij∈E
(|s2ji − ajbi|)

n
(51)

Gapa =
∑

ij∈E
(|a2ij − aiaj|)

n
(52)

Gapb =
∑

ij∈E
(|b2ij − bibj|)

n
(53)

In the aforementioned equations, set E denotes all the branches
of the system and n is the total number of transmission lines in
the power system. Thus, Gaps1, Gaps2, Gapa, and Gapb are the
average gap of four sets of the relaxed cones, respectively. In each
iteration, the value of Gaps1, Gaps2, Gapa, and Gapb are shown
in Figure 5. From this figure, it can be found that the second-
order cone relaxation gap is reduced during iterations. Without
the convex–concave procedure implemented, the initial value of
the relaxation gap is around 0.5.With iterations, the gap is driven
to be less than 10e− 6 and can be regarded as zero.

In summary, the proposed method is tested on a real
offshore wind system. Both the power loss of the transmission
lines and the relaxation gap are reduced by iterations of the
convex–concave procedure.

5 CONCLUSION

In this article, a convex–concave procedure-basedmethod for the
optimal power flow of offshore wind farms is proposed.

1) It is established with the relaxation variables.
2) Two sets of the inequality constraints are implemented to

replace the nonlinear and non-convex equality constraints.
3) To drive the gap of the second-order cone relaxations to

be zero, the first-order Taylor expansion-based iteration is
imposed.

From the test results of the real wind farm, the superiority of
the proposedmethod is verified. It can be found that the proposed
method can optimize the power loss of the transmission lines
and improve the power transmitted to the power grid. Moreover,
the relaxation gap is tested to be around zero with the proposed
iterations.

In the future work, this method will be improved with high
solving efficiency.
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