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Currently, traditional electricity consumers are now shifting to a new role of

prosumers since more integration of renewable energy to demand side.

Accurate short-term load demand forecasting is significant to safe, stable,

and reliable operation of a renewable energy-dominated power system. In

this paper, a short-term load forecasting model based on a bidirectional long

short-term memory network (Bi-LSTM) using kernel transfer operator is

proposed to achieve short-term load demand forecasting. To consider the

influence of seasonality, holiday effects and weather on load demand

forecasting, and simultaneously to improve the accuracy and performance

of the forecastingmodel, this paper implements the dimensionality reduction of

the input data by introducing an improved kernel transfer operator based on the

Perron-Frobenius method. On this basis, a Bayesian Bi-LSTM for short-term

load demand forecasting is formulated to obtain the probability prediction

interval of load demand. To verify the validity of the proposed method, the

actual historical load demand in a certain region in China was used for model

training and verification. The forecasting results are compared with several

conventional load demand methods using probability prediction technics.

Simulation analysis shows that the proposed method can effectively reflect

the short-term uncertainty of load demand, and is superior to the conventional

methods in terms of forecasting accuracy and computational performance.
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1 Introduction

To date, a large amount of renewable energy has been integrated

to the demand side of power system. Due to the essential stochastic

nature of load demand plus the drastic uncertainties of renewable

energy connecting to the demand side, it has become a difficult task

to obtain accurate net load demand forecasting results (Kaur et al.,

2016). In order to cope with the severe challenges brought by the

increasing uncertainty of the demand side and ensure the safe,

reliable and stable operation of power systems, it is still urgent to

further improve the short-term forecasting accuracy of net load

demand under the premise of comprehensively considering the

influencing factors (Lu et al., 2019).

Currently, the mainstream methods of short-term net load

demand forecasting can be divided into mathematical-statistical

methods and machine learning-based forecasting methods (Zhu

et al., 2021).

Mathematical-statistical methods are generally simple and

efficient in calculation, but it is difficult to meet the application

requirements of short-term load demand forecasting when

considering strong uncertainty and nonlinearity. Those

forecasting methods based on machine learning can deal with

nonlinear relationships and feature extraction of different factors

on load demand, effectively improving the accuracy of

forecasting results and overcoming the weakness of

conventional mathematical-statistical methods (Hahn et al.,

2009).

In reference, short-term net load demand forecasting methods

using machine learning can be divided into deterministic

forecasting and probabilistic forecasting. Deterministic

forecasting usually adopts methods such as Recurrent Neural

Network (RNN) (Kong et al., 2019), Support Vector Machine

(SVM) (Pai and Hong, 2005), and Extreme Gradient Booster

(XGBoost) (Zheng et al., 2017). Zhao et al. (2022) introduced

temporal convolutional network (TCN) into short-term load

forecasting. The TSCN-based forecasting model can extract

features from very large samples of time series and provide an

effective solution to degradation issues of deep neural networks.

Sudheer and Suseelatha (2015) proposed a hybrid method based

on wavelet transform, Triple Exponential Smoothing (TES) model

and weighted nearest neighbor (WNN) model for STLF. This

method uses Haar wavelet to convert the load demand series into

deterministic and fluctuation series filters, which are fitted by the

TES model and WNN model, respectively. Mei et al. (2019)

implemented the phase space reconstruction of the net load

time series data via C-C method and then established a deep

neural network-based ultrashort-term forecasting model using the

reconstructed data. Tan et al. (2020) constructed combined

forecasting model of electricity, heat, cooling and gas loads

based on the multi-task learning and least square SVM.

However, forecasting results of deterministic forecasting are

definite values, and it is difficult to fully characterize the

uncertainties of load demand (Liu et al., 2020).

Probabilistic forecasting commonly uses methods such as

quantile regression and Bayesian method, which generally

reflect the uncertainty characteristics of load demand better

than deterministic forecasting. Li D. et al. (2021) combined

the long short-term memory neural network (LSTM) with

quantile regression and added multiple quantile results of the

generated forecasting results into the forecasting model to

achieve probabilistic forecasting of load demand. Xu et al.

(2020) introduced a quantile regression lightweight gradient

boosting machine based on convolutional neural network

(CNN) to obtain the probability distribution of load

FIGURE 1
Basic structure of LSTM (Bengio et al., 1994).
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demand. Feng et al. (2019) proposed a two-layer short-term

load forecasting model based on Q-learning, which outputs

both deterministic forecasting and probabilistic forecasting

results. Wang et al. (2019) used the constrained quantile

regression averaging (CQRA) method to establish the

probabilistic load demand forecasting model where the

parameter estimation problem of the CQRA method is

formulated as a linear program with the objective of

minimizing the pinball loss. To consider the uncertainties

in weather forecasts and abnormal peak load, Xu et al. (2019)

created a probabilistic load demand forecasting model for

building, including a probabilistic normal load forecasting

model based on the artificial neural network (ANN) and the

probabilistic temperature forecasts, and a probabilistic

abnormal peak load forecasting model to quantify the

probabilistic occurrence and magnitude of the peak

abnormal differential load. In order to prevent local

optimization in the training process, Liu et al. (2021)

proposes a hybrid CNN model by integrating genetic

algorithm (GA) and a particle swarm optimization (PSO)

to collaboratively optimize the network hyperparameters

and weights. A data-driven load probability density

forecasting method is developed based on Orthogonal

Maximum Correlation Coefficient feature selection and

Convolutional Gated Recurrent Unit (CGRU) quantile

regression to deal with the uncertainties of wind power and

load demand (Liu et al., 2022). Brusaferri et al. (2022)

proposed a probabilistic load forecasting framework using

Bayesian Mixture Density Networks to enhance the mapping

capabilities of neural networks and developed an end-to-end

training method to discover the latent functional relation to

conditioning variables and characterize the inherent load

stochasticity and parameters uncertainty.

The major contribution of this paper is that a novel load

demand forecasting structure is proposed by combining the

modified forward operator and the Bayesian bidirectional long

short-term memory network (Bi-LSTM), where Bayesian Bi-

LSTM is a widely used method of RNN that can effectively

handle time series forecasting, and themodified forward operator

is introduced to improve the accuracy and performance of short-

term net load demand forecasting.

The structure of this paper is organized as follows: Section

2 provides the definition of net load demand. Section 3

presents the proposed load demand forecasting method.

Section 4 conducts a study case to verify the effectiveness

of the proposed method. Finally, Section 5 concludes the

paper.

2 Definition of net load demand

Since nowadays more renewable generation has been

integrated with the demand side, the characteristics of load

profile are fully changed. In order to obtain accurate load

demand forecasting considering such circumstances, we need

to take uncertainties of renewable energy into consideration.

First, we need to define the concept of the net load demand.

The net load demand is generally a term that can reflect the

influences of both load demand and renewable energy, which can

be formulated as the sum of load demand minus renewable

energy power output, that is

PNL,t � PLD,t − PRE,t (1)
where PNL,t, PLD,t, and PRE,t denote the net load demand, total load

demand and renewable energy power output at time t, respectively.

3 Proposed net load demand
forecasting method

3.1 Kernel transfer operator

For short-term load demand forecasting, it is generally

difficult to obtain an accurate and comprehensive probability

distribution because the forecasting results are affected by

multiple complex factors. To solve this issue, the method of

training a generative model can be used to approximate the true

distribution by obtaining a suitable parameter distribution. One

of the commonly used generative models is variational

autoencoder (VAE). Assume that the true distribution p(X) of

the input sample X is unknown while the distribution p(Z) of the

latent variable Z in the generative model is given. Accordingly, we

can have a mapping between X and Z, namely f: Z → X. Thus,

the distribution pf(Z) of f can be approximated by learning

approach p(X). Based on this conception, VAE can use a deep

neural network to minimize the deviation distance between p(Z)

and pf(Z) by using maximum likelihood estimation. The operator

used to optimize the deviation distance of the two distributions

during the training process is called forward operator.

FIGURE 2
Basic structure of Bi-LSTM (Hochreiter and Schmidhuber,
1997).
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Determining forward operators during training often relies

on the empirical performance of generative models. In order to

determine the forward operator, VAE generally adopts an

approximate posterior distribution, which may lead to a

situation that does not completely match the prior

distribution, thereby reducing the forecasting accuracy.

To solve this problem, this paper introduces the Kernel

Transfer Operator (KTO) based on the Perron-Frobenius

method proposed in Huang et al. (2021), and adapts it to

the application scenario of short-term load demand

forecasting.

Let ξ be a one-dimensional convolutional autoencoder and

the training data samples are represented as X � (x1, x2, ..., xn).
The pseudocode of the modified KTO is presented as:

Step 1Calculate the encoded representation of the data X, i.e.,:

Xe � (ξ(x1), ξ(x2), ..., ξ(xn)) (2)

Step 2∀i, j � 1, ..., n, calculate Ki,j � k(Xei, Xej), The k kernel

function can be expressed as:

k(x, y) � e−
‖x−y‖

2 (3)

Step 3Independently sample z from the n-dimensional standard

Gaussian distribution Z, and ∀i, j � 1, ..., n,

calculate Li,j � k(zi, zj);
Step 4CalculateK′ � (K − nI)−1, where I is a unit matrix of

order n;

Step 5Independently sample w from an n-dimensional standard

Gaussian distribution Ω;

Step 6Calculate s � L ·K′ · V, where, ∀i, j � 1, ..., n, each

element of V can be expressed as Vi,j � k(zi, wj);

Step 7. Sort s in ascending order, and extract the original

corresponding serial number H according to this order;

Step 8. ∀h ∈ H, calculate the new sample x* according to Eq. 4.

x*(h) � Xe(h) · s(h)
‖s(h)‖1 (4)

3.2 General long short-term memory
model

By introducing the gating mechanism, LSTM, which is based

on recurrent neural network (RNN), can effectively solve the

gradient explosion and gradient disappearance problems brought

by traditional RNNs (Li et al., 2022). Figure 1 shows the

schematic diagram of the basic principle of LSTM.

The forget gate can be expressed as

TABLE 1 Parameter set for load demand forecasting.

Parameter Unit Description

Time h Range from 1 to 24 for 24 h

Date d Range from 1 to 31 for dates

Month m Range from 1 to 12 for months

Season — Range from 1 to 4 for seasons

Holiday — With 0 for weekdays, and 1 for holidays

Temperature °C Including maximum temperature, minimum temperature, dew point temperature

Relative humidity % Water vapor content in the air

Renewable output power kW Historical renewable generation output

Electricity load kW Historical load profile

FIGURE 3
Flowchart of the proposed method.
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FIGURE 4
Impact of parameters on (A) ACE and (B) PIAW.

FIGURE 5
Load demand forecasting results of (A) typical weekday in summer, (B) typical weekend in summer. (C) Typical weekday in winter and (D) typical
weekend in winter.

TABLE 2 Performance comparison of different forecasting methods.

Method Forecasting performance Time efficiency

ACE (%) PIAW (kW) Training (s) Validating (s) Testing (s) Total (s)

Proposed method 4.92 1857.67 32.34 26.26 264.21 322.81

Bayesian LSTM −0.21 3272.48 49.29 28.16 119.93 197.38

Bayesian Bi-LSTM 1.43 2509.12 60.37 38.16 388.08 486.61

GA-PSO-CNN 3.88 2123.52 122.12 45.87 514.39 682.38
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ft � σ(wf,xxt + wf,hht−1 + bf) (5)

The candidate state and the input gate are expressed as

~Ct � σ(w ~C,xxt + w ~C,hht−1 + b ~C) (6)
it � σ(wi,xxt + wi,hht−1 + bi) (7)

The output gate is expressed as

ot � σ(wo,xxt + wo,hht−1 + bo) (8)

According to it and ft and the state value of the memory cell at

time t-1, the state value of thememory cell at time t can be updated as

ct � f°
tct−1 + it°~Ct (9)

The hidden layer output value can be updated as

ht � ot+tanh(ct) (10)

where, xt, ct, and ht are the input value, memory cell state value,

and hidden layer output value at time t, respectively; w is the

corresponding weight, b is the bias term; σ(·)represents the

Sigmoid function, tanh (·) represents the hyperbolic tangent

function; + represents the Hadamard product.

3.3 Bidirectional long short-term memory
model

According to Figure 1, the standard LSTM model can only

process the historical information of time series sequence. In order

to consider the future information to increase the forecasting

accuracy, the standard LSTM is extended by adding a backward

layer to realize the preservation of historical and future information,

thus forming a bidirectional LSTM (Bi-LSTM). The basic structure

of Bi-LSTM is shown in Figure 2.

The input-output relationship of each layer of bidirectional

LSTM can be expressed as Eqs 11–13.

�ht � Η(W1xt +W2
�ht−1 + �b) (11)

h
←

t � Η(W3xt +W4 h
←

t−1 + b
←) (12)

yt � W4
�ht +W6 h

←
t + by (13)

where, �ht, h
←

t, and yt represent the output values of the forward,

backward, and output layers at time t, respectively;H represents a

single LSTM calculation model; W and b represent the weight

and bias terms, respectively.

FIGURE 6
R-squared plots of (A) proposed method, (B) Bayesian LSTM. (C) Bayesian Bi-LSTM and (D) GA-PSO-CNN.
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3.4 Back propagation Bayesian

Back propagation Bayes (BBP) is a variational reasoning

method used to learn the posterior distribution of neural

network weights (Fortunato et al., 2019). Due to page

limitation, this paper does not expand the specific principle of

BBP, but only discusses its application to Bi-LSTM.

Generally, sample ε according to the distribution ε ~ N(0, I)
and let w � μ + ε · σ. To speed up the training process and the

proc(ess of handling long sequences, mini-batch methods and

truncated sequences are hence introduced. The gradient g of w is

calculated by forward and backward propagation. Then, calculate the

gradients g′w, g′μ, and g′σ corresponding to w, μ and σ in

logΝ(w|μ, σ2) − logp(w). Finally, update step μ and σ using Eqs

14, 15 until the variational free energy of the bi-LSTM is minimized.

μ: � g + g′
w/N

M
+ g′

μ

MN
(14)

σ: � g + g′
w/N

M
ε + g′

σ

MN
(15)

where, M is the total number of mini-batches, and N is the total

number of truncated sequences.

3.5 Kernel transfer operator-based
bidirectional long short-term memory
forecasting method

By combining the KTO and Bayesian Bi-LSTM models, we

propose a short-term load forecasting method based on the

KTO-based Bi-LSTM. The flowchart of the proposed method

is shown in Figure 3. Themajor steps of the proposedmethod can

be summarized as:

Step 1Raw Data Collection. Collect historical data, such as load

profile, temperature, relative humidity, precipitation, etc. as input

samples, and the data sampling interval is set to be 1 h;

Step 2. Data Pre-processing. Perform data cleaning on the input

sample data and normalized the input data after eliminating bad data;

Step 3. Set the model parameters for the proposed method;

Step 4. Data Feature Extraction. After passing the input sample

data through a one-dimensional convolutional autoencoder

(including convolutional layer and pooling layer), the proposed

KTO method is used to obtain the representation of the latent

variable, and the results are used as the inputs to the lower layer;

Step 5. Load Forecasting. Train the Bayesian Bi-LSTM

forecasting model. Output approximate posterior distribution

parameters after the maximum iterations are reached, and

accordingly, calculate the load forecasting results;

Step 6. Forecasting Result Evaluation. Calculate the quantitative

evaluation indices of the forecasting results: if evaluation indices

are not satisfied, return to step 3 to adjust the forecasting model

according to the evaluation results to improve the forecasting

accuracy; or output the forecasting results.

3.6 Data Preprocessing

Due to the existence of different units in input data samples, it is

necessary to normalize them in the common scale to accelerate the

convergence of the proposed method, which can be formulated as:

d′ � d − d min

d max − d min
(16)

FIGURE 7
Boxplots of R-squared values of each forecasting methods with 100 sampling experiments.
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where, d is the original input data samples; dmax and dmin are the

maximum and minimum values of the original data, respectively;

d′ is the normalized input data samples.

For historical data such as load profile, temperature, wind speed,

etc., data loss or data distortion may occur. For single-point-missed

data, the average value of the two sampling points before and after the

missing sampling point can be used as a supplement data point; for

continuous multi-point-missed data, the average values of the two

measurement periods before and after the missing sampling points

are used to create supplement data points; for data distortion, it is

recommended to directly eliminate the distorted data, and use the

two approaches mentioned above to create supplement data points.

In addition, for parameters that are hard to quantify, such as

seasons and holidays, we use the digital coding technic to label

and distinguish them (Li Y. et al., 2021).

3.7 Evaluation indices

To verify the effectiveness of the proposed method, this paper

uses two indices, namely Average Coverage Deviation (ACE) and

Prediction Interval Average Width (PIAW), the details of which

can be found in Pang et al. (2022).

Let the significance level be α, then the confidence level is

(1 − α) × 100%, and the upper and lower bounds of the

prediction interval can be expressed as:

{ �yt � μy + Zσy
y
t
� μy − Zσy

(17)

where, Z is the Z-score.

ACE can be calculated according to Eq 18:

ACE � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑T

t�1εt
T

− 1 + α
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ × 100% (18)

where, εt is a binary variable, εt ∈ [y
t
, �yt] takes the value 1,

otherwise it is 0. If ACE is less than 0, it means that the

forecasting result is less reliable.

PIAW can be calculated according to Eq 19:

PIAW � ∑T
t�1(�yt − y

t
)

T
(19)

4 Case study

4.1 Data description

This paper uses the historical load profile and renewable

energy generation data from 1 January 2017 to 31 December

2021 in a certain area in Guangdong, China, to perform load

forecasting, with the sampling interval of 1 h. The data from

2017 to 2019 are used as the training data set, the data of 2020 is

used as the validation data set, and the data of 2021 is used as the

test data set.

The basic parameters affecting net load demand considered

in this paper include date (including months, holidays, working

days and seasons), relative humidity, precipitation, temperature

(including maximum temperature and minimum temperature),

as shown in Table 1.

4.2 Model parameter selection

The number of network layers as well as the number of

neurons in the Bayesian Bi-LSTM has a great influence on

forecasting accuracy of the proposed model. To identify the

suitable model parameters, we choose the number of network

layers ranging from 1 to 4, and the number of neurons ranging

from 10 to 100 at an interval of 10, separately, to compare the

ACE and PIAW of the forecasting results, which are shown in

Figure 4 and Figure 5.

If the number of neurons is fixed, and the number of

network layers is selected as one to two, the forecasting

results have lower ACE values and larger PIAW deviations,

indicating poor forecasting performance. The cases with the

layer number of 3 or 4 exhibit nearly the same the forecasting

performance. If we fix the number of network layers, as the

number of neurons increases, the ACE value is effectively

improved, and the PIAW deviation is gradually reduced. In

general, the forecasting performance is better when the number

of neurons is more than 50. In summary, this paper, making the

trade-off between the computational efficiency and forecasting

accuracy, set the number of network layer to 3 and the number

of neurons to 50.

4.3 Result analysis

To evaluate the effectiveness of the proposed method, the

confidence level (1 − α)% is set to 95%, and the proposed

KTO-based Bi-LSTM forecasting method is used to forecast

the load profile in 2020. For the convenience of presentation,

the load demand forecasting results of typical working days

and holidays in summer and winter and the evaluation of the

forecasting results are selected respectively, as shown in

Figures 5A–D.

Observed from the forecasting results of summer and winter,

the actual values of load demand are between the upper and

lower bounds of the forecasting interval whether it is a working

day or a holiday, indicating that the method proposed in this

paper can better obtain the load demand characteristics

regarding seasonality and holidays. Hence, the forecasting

results can effectively reflect the real situation of the load profile.
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4.4 Performance comparison

To further evaluate the validity and performance of the

proposed method, we evaluate the same study case using the

proposed method, the conventional Bayesian LSTM, Bayesian

Bi-LSTM and GA-PSO-CNN (Liu et al., 2021) methods. The

confidence level is set to 95%. The comparison results are shown

in Table 2 and Figures 5, 6.

From Table 2, in terms of ACE, the proposed method and the

Bayesian Bi-LSTM method have positive values of ACE, which

implies that the forecasting results are more reliable. Additionally,

the ACE value of the proposed method is greater than the ones of the

Bayesian Bi-LSTM method and the GA-PSO-CNN method, which

means that the forecasting results of the proposed method is closer to

the actual values. However, the ACE value of the Bayesian LSTM

method forecasting result is negative, indicating low reliability of its

forecasting results.

In terms of PIAW, the proposed method has the lowest value

of PIAW among the four methods, indicating that the intervals

between the upper and lower forecasting bound are smaller.

Hence, the proposed method can better reflect the uncertainty of

load profile variation.

From Figure 6, we can see that the scatter points derived by

the proposed method centre more tightly around the perfect

prediction line than the other methods and the proposed

method has the highest R-squared value (0.9277), which

also demonstrates that the forecasting results of the

proposed method can better track the true response.

Additionally, we conducted 100 sampling experiments to

investigate the stability of the forecasting results of each

method, as shown in Figure 7. The quantile range of the

proposed method is much smaller than the other methods,

indicating the better stability of its forecasting results. The

forecasting results of Bayesian Bi-LSTM method and the GA-

PSO-CNNmethod present similar stability performance while

the Bayesian LSTM method has mediocre performance to

generate stable forecasting results.

When it comes to running time, with the introduction of the

Perron-Frobenius-based KTO, the training and validating

process of the proposed method has been reduced compared

with the Bayesian LSTM method and the Bayesian Bi-LSTM

method. Regarding the testing process as well as the total running

time, the Bayesian LSTM method has the fastest computing

speed among the four methods due to its simpler RNN

structure. The GA-PSO-CNN method consumes more time to

generate forecasting results since it requires extra time to use the

GA and PSO algorithms to fine-tune the network parameters.

To sum up, the proposed method has better performance

than the conventional Bayesian LSTM method, the Bayesian Bi-

LSTM method as well as the GA-PSO-CNN method, and its

forecasting results demonstrate that it can effectively and stably

reflect load profile uncertainties.

5 Conclusion

In this paper, a short-term net load demand forecasting method

using KTO-based Bi-LSTM is proposed. We introduced the KTO

based on the Perron-Frobenius method to the Bayesian Bi-LSTM,

and compared the proposed method with the Bayesian LSTM, Bi-

LSTM andGA-PSO-CNNmethods to verify the performance of the

proposed method. The conclusions are stated as follows:

• From the experimental results, the method proposed in

this paper can comprehensively consider the parameters

such as date, temperature, and humidity that affect load

profiles, and properly reflect the characteristics of load

profile variation according to seasonality and holiday

effects.

• From the performance comparison, the proposed method

has higher ACE and lower PIAW with fine computational

performance, which indicates that the proposed method

outdoes the three conventional forecasting methods.

In the future, the proposed forecasting method can be

modified to serve renewable generation forecasting and the

correlation and interactivity of variables associated with power

outputs of renewable energy need to be investigated to further

enhance the accuracy and stability of the forecasting results.
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