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This study addresses the consequences of thermal radiation with slip boundary

conditions and a uniform magnetic field on a steady 2D flow of trihybrid

nanofluids over a spinning disc. The trihybrid nanocomposites are

synthesized by the dispersion of aluminum oxide (Al2O3), zirconium dioxide

(ZrO2), and carbon nanotubes (CNTs) in water. The phenomena are

characterized as a nonlinear system of PDEs. Using resemblance

replacement, the modeled equations are simplified to a nondimensional set

of ODEs. The parametric continuation method has been used to simulate the

resulting sets of nonlinear differential equations. Figures and tables depict the

effects of physical constraints on energy and velocity profiles. According to this

study, the slip coefficient enormously decreases the velocity field. For larger

approximations of thermal radiation characteristics and heat source term

boosts the thermal profile. This proposed model will assist in the field of

meteorology, atmospheric studies, biological technology, power generation,

automotive manufacturing, renewable power conversions, and detecting

microchips. In regard to such kinds of practical applications, the proposed

study is being conducted. This study is unique due to slip conditions and ternary

fluid, and it could be used by other scholars to acquire further information about

nanofluid thermal exchanger performance and stability.
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Introduction

Rotating disks are used in a wide range of engineering and

industrial applications such as gas flywheels, spinning disk

electrodes, turbine engines, brakes, and gears (Li et al., 2021;

Zhou et al., 2021; Chu et al., 2022a). The modeling and

simulation of ferrofluid flow with heat transfer induced by an

irregular rotatable disc oscillating upward were investigated by

Zhang et al. (2021). The wavy rotating material increases energy

conversion by up to 15% as compared to a level surface. Waini

et al. (2022) used the bvp4c MATLAB programming to

investigate the chaotic flow over a gyrating disc in nanofluids

with deceleration and suction features. Alrabaiah et al. (2022)

investigated the flow of magnesium oxide, silver, and gyrotactic

microbe-based hybrid nano composites within the cylindrical

space connecting the disc and cone in the context of thermal

energy stabilization. It was discovered that by combining a

rotating disc with an immobile cone, the cone–disk system

may be cooled to its desired temperature, whereas the outer

edge system is in equilibrium. The flow of nanofluids across a

preheated revolving disc has been computationally evaluated as a

result of randommotion, heat conduction, and thermal radiation

by Chu et al. (2021a). They described many features of

momentum and heat transformation using Arrhenius kinetic

energy. The radiation and Prandtl number effect are thought to

promote heat exchange while enhancing the magnetic

component which lowers velocity distribution. Naveen Kumar

et al. (2022) evaluated the nanofluid flow over a spinning,

stretchy disc with an unsteady heat source. The heat

transmission of both fluids accelerates as the ratios of

temperature- and space-related heat supplier factors increase.

Alhowaity et al. (2022) developed the energy transmission over a

moving sheet. It was hypothesized that adding carbon nanotubes

and nanoclusters to water improves its thermophysical and

energy transport capabilities drastically. Sharma et al. (2022)

proposed a spinning disc with temperature-dependent

geothermal viscosity and thermal conductivity, causing the

hydrodynamic flow of magnetized ferrofluid. Kumar and

Mondal (2022) analyzed quantitatively the electrically

radiating unsteady viscous fluid flow due to a stretchy

spinning disc with an externally supplied magnetic field,

looking at both descriptive and analytical aspects of heat

transmission. Recently, many investigators have documented

substantial involvement to the fluid flow across a rotating disc

(Bilal et al., 2022a; Alsallami et al., 2022; Murtaza et al., 2022;

Ramzan et al., 2022).

Hybrid and trihybrid nanofluids combine the metallic, non-

metallic, or polymeric nano-size powder with a conventional

fluid to maximize the thermal efficiency for a wide range of

purposes such as, solar energy, refrigeration and heating,

ventilation, heat transition, heat tubes, coolant in machines,

and engineering. Many experiments have noted that hybrid

nanofluids have a superior energy conduction rate than pure

fluids, both experimentally and statistically (Khan et al., 2020;

Alhowaity et al., 1002; Elattar et al., 2022). The working fluid in

this study contained Al2O3, ZrO2, and CNT. Sahu et al. (2021)

analyzed the free convection steady-state and loop’s transient

features utilizing a variety of water-based trihybrid (Al2O3 + Cu

+ CNT/water) nanofluids. Ramadhan et al. (2019) examined the

instability of trihybrid nanofluids. The tri-hybrid nanocomposite

was successfully synthesized and displayed excellent

compatibility. Muzaidi et al. (2021) addressed the physical

parameters (crystallite size, surface shape, and density) of

SiO2/CuO/TiO2 trihybrid nanofluids. The trihybrid solution

exhibited the best thermal characteristics, based on thermal

production, at roughly 55°C. Al-Mubaddel et al. (2022)

documented the model for generalized energy and mass

transfer comprising magnetized cobalt ferrite. The influence of

permeability factor, inertial element, and buoyant ratio on the

fluid velocity has been reported, while the temperature

conversion curve improves dramatically with the increasing

values of Eckert number, Hartmann number, and heat

absorption/generation. Ullah et al. (2021); Ullah et al. (2022)

used an elongated substrate to describe the convective flow of

Prandtl–Eyring nanofluids, taking into account the important

factors including activation energy, chemical reaction, and Joule

heating. Safiei et al. (2021) used a newly created metal fabrication

fluid called ZrO2-SiO2-Al2O3 trihybrid ferrofluid in the cutting

zone to produce a good surface quality on manufactured items

while also reducing the cutting forces. Gul and Saeed (2022)

worked on improving thermal flow for trihybrid nanofluid flow

across a nonlinear extending plate. It was discovered that as the

volumetric fractions of NPs enhance the nonlinearity index of the

sheet and velocity profile decreases. Lv et al. (2021) examined the

Hall current and the heat radiation effect on hybrid nanofluid

flow over a whirling disc. Their endeavor was motivated by the

desire to improve the thermal energy transmission for

mechanical and manufacturing uses. The heat transfer rate

decreases with Hall current and increases with the radiative

component, according to the findings. Palanisamy et al.

(2021) investigated the characterization and thermophysical

characteristics of trihybrid oxide nanostructures, including

SiO2, TiO2, and Al2O3, produced at 0.1 per concentration in

three distinct ratios. Furthermore, many scholars have reported

on the uses and applications of ternary nanofluid (Sohail et al.,

2019; Ahmed et al., 2020a; Sohail et al., 2020a; Ahmed et al.,

2020b; Chu et al., 2021b).

When viscosity effects at the wall are insignificant and mesh

size is substantially larger than the boundary layer thickness, the

slip wall condition is used. Hussain (2022) statistically and

numerically assessed to capture the flow characteristics of

hybrid nanofluid flow across an enormously extensible sheet

with thermal and velocity slip conditions. The results show that a

little increase in the thermal slip factor generates a significant

change in the thermal transfer rate when compared to the

radiation impact. Swain et al. (2022) addressed the uniform
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chemical reaction and magnetic field effect on the water-based

hybrid nanofluid passing over a dwindling permeable sheet with

slip boundary conditions. The suction and injection component

enhances the skin friction ratio; however, the velocity slip factor

has the opposite trend. Ullah (2022) demonstrated the flow of a

hydromagnetic hybrid nanofluid in a 3D nonlinear convection

layer in the existence of microorganisms and different slip

circumstances across a slandering substrate. Many scholars

have recently hugely reported on thermal and velocity slip

conditions (Khan et al., 2017; Sohail et al., 2020b; Ahmed

et al., 2020c; Saeed et al., 2021; Algehyne et al., 2022).

The purpose of this research is to elaborate the consequences

of slip boundary conditions on ternary hybrid nanofluid flow in

the presence of heat source and thermal radiation over a rotating

disc. The thermophysical properties of ternary nanoparticles

(Al2O3, ZrO2, and CNT) and base fluid (H2O) are

investigated in this study. To numerically resolve the

dimensionless system of ODEs, the parametric continuation

method has been applied using MATLAB’s software. The

current study’s unique findings are useful and valuable in

academic studies and other fields.

Mathematical formulation

A steady two-dimensional trihybrid nanofluid flow with

nano composites (Al2O3, ZrO2, and CNT) over a disc in the

presence of thermal radiation and slip boundary conditions is

studied. The (r, ϕ, z) cylindrical coordinate system is

considered as elaborated in Figure 1. The disc rotates with

fixed angular velocity Ω . The magnetic field B0 is applied in

the axial direction of fixed intensity. Moreover, we can ignore the

induced magnetic field by considering low magnetic Reynolds

number. Tw and T∞ are the wall and ambient temperature of

fluid, respectively. Based on abovementioned postulation, the

elementary phenomena are modeled as (Iqbal et al., 2021):

zu

zr
+ u

r
+ zw

zz
� 0, (1)

ρtnf(uzuzr +wzu

zz
+ v2

r
)�−zP

zr
+μtnf(z2uzr2

− u

r2
+ 1
r

zu

zr
+ z2u

zz2
)

−σtnfB2
0u, (2)

ρtnf(u zvzr + w
zv

zz
+ uv

r
) � μtnf(z2vzr2

− v

r2
+ 1
r

zv

zr
+ z2v

zz2
)

− σtnfB
2
0v, (3)

ρtnf(u zwzr + w
zw

zz
) � −zP

zz
+ μtnf(z2wzr2 + 1

r

zw

zr
+ z2w

zz2
), (4)

(ρCp)tnf(u zTzr + w
zT

zz
) � ktnf(z2T

zr2
+ z2T

zz2
+ 1
r

zT

zr
) − qrz

+ Q0(T − T∞), (5)
where

qr � −4σp
3kp

zT4

zz
� −16σp

3kp
T3zT

zz
.

The boundary conditions are

u � L1
zu

zz
, w � 0, v � L1

zv

zz
+Ωr, T � L2

zT

zz
+ Tw at z � 0.

u → 0, T → T∞, v → 0, p → p∞ as z → ∞ .
(6)

Here, L1 and L2 are the wall slip and thermal jump constant,

respectively;Q0 is the generation and absorption;U0 � Ωr is the free
stream velocity; P is the pressure; σtnf is the electrical conductivity of

ternary hybrid nanofluid; μtnf is the dynamic viscosity; ρtnf is the

density; and (u, ​ v, w) are the components of velocity.

The following variables are used to simplify Eqs 1–5 to the

dimensionless system of ODEs:

ζ � z

����
U0

rvf

√
, u � rΩf′(ζ), w � −2

����
Ωvf

√
g(ζ), v � rΩg(ζ),

p � p∞ − ΩμfP(ζ), T � T∞ + (Tw − T∞)θ(ζ).

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(7)

We get,

2
vtnf
vhnf

f′′′ − f′2 + g2 + 4ff′′ − ρhnf
ρtnf

M2f′ � 0. (8)

2
vtnf
vhnf

g′′ + 2fg′ − 2f′g − ρhnf
ρtnf

M2g � 0. (9)

vtnf
vhnf

f′′ + ff′′ − ρhnf
ρtnf

zP

zζ
� 0. (10)

(ρCp)hnf(ρCp)tnf (ktnfkhnf
+ Rd)θ′′ + Prfθ′ +Hsθ � 0. (11)

FIGURE 1
Ternary hybrid nanofluid flow over a rotating disc.
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f(0) � 0, g(0) � 1+g′(0)α, f′(0) �f′′(0)α, θ(0) � 1+θ′(0)β.
f′→ 0, P→ 0, g→ 0, θ→ 0 when ζ →∞ . (12)

Here, Pr is the Prandtl number,M is the magnetic constant, α

is the slip velocity factor, β is the thermal slip constraint, and Rd is

the thermal radiation term.

Pr �
μf(Cp)f

kf
, M2 � σtnfB2

0

Ωρf
, α � L1

��
Ω
vf

√
, β � L2

��
Ω
vf

√
, Rd

� 4σT3
∞

kpkf
. (13)

The engineering interest quantities are

Cf �
������
τ2r + τ2θ

√
ρtnf(rΩ)2, Nur � ktnf

kf

rqw
Tw − Tw

. (14)

The dimensionless form of Eq. 14 is

τw � μtnf(zuzz + zw

zr
)∣∣∣∣∣∣∣z�0, τθ � μtnf(zvzz + zw

zr
)∣∣∣∣∣∣∣z�0,

qw � −ktnfzT
zz

∣∣∣∣∣∣∣z�0. (15)

Re
1
2
rCf � μhnf

μtnf
(f′′(0)2 + g′(0)2)1

2

. (16)

Re
−1
2
r Nur � −khnf

ktnf
Rdθ′(0). (17)

Here,Rer � 2Ωr2
vf

is the local Reynolds number. Table 1 illustrates

the experimental values of ternary nanoparticles and base fluid. Table

2 presented the mathematical model for trihybrid nanofluid.

Numerical solution

Many researchers have used different types of numerical and

computational techniques to deal highly nonlinear PDEs (Zhao

et al., 2018; Zhao et al., 2021a; Zhao et al., 2021b; Chu et al., 2022b;

Jin et al., 2022; Nazeer et al., 2022; Rashid et al., 2022; Wang et al.,

2022). The main steps, while dealing with the PCM method, are as

follows (Shuaib et al., 2020a; Shuaib et al., 2020b; Bilal et al., 2022c):

Step 1: Simplify Eqs 8–11 to 1st order

ƛ1 � f(η), ƛ2 � f′(η), ƛ3 � f″(η), ƛ4 � g(η),
ƛ5 � g′(η), ƛ6 � θ(η), ƛ7 � θ′(η), ƛ8 � p(η). } (18)

By substituting Eq. 18 in Eqs 8–12, we get

2
vtnf
vhnf

ƛ3′ − ƛ22 + ƛ24 + 4ƛ2ƛ3 −
ρhnf
ρtnf

M2ƛ2 � 0. (19)

2
vtnf
vhnf

ƛ5′ + 2ƛ1ƛ5 − 2ƛ2ƛ4 −
ρhnf
ρtnf

M2ƛ4 � 0. (20)

TABLE 1 Investigational values of Al2O3, ZrO2, CNT, and water Arif
et al. (2022).

k(W/m.K) ρ(kg/m3) Cp(J/kg.K) β(1/K)

Water 0.613 997.1 4,179 0.00021

Al2O3 40 3,970 765 0.00000508

ZrO2 1.7 5,680 502 —

CNT 3,007.4 2,100 790 −0.000008

TABLE 2 Thermochemical properties of ternary hybrid nanofluids Alharbi et al. (2022), Bilal et al. (2022b).

Viscosity μtnf
μf

� 1
(1−ϕZrO2

)2.5(1−ϕAl2O3
)2.5(1−ϕCNT)2.5

Density ρtnf
ρf

� (1 − ϕAl2O3
)[(1 − ϕAl2O3

){(1 − ϕCNT) + ϕCNT
ρCNT
ρf

} + ϕAl2O3

ρAl2O3
ρf

] + ϕZrO2

ρZrO2
ρf

Specific heat (ρcp)tnf
(ρcp)f � ϕZrO2

(ρcp)ZrO2
(ρcp)f + (1 − ϕZrO2

)[(1 − ϕAl2O3
){(1 − ϕCNT) + ϕCNT

(ρcp)CNT

(ρcp)f } + ϕAl2O3

(ρcp)Al2O3
(ρcp)f ]}

Thermal conduction ktnf
khnf

� ⎛⎝kCNT + 2khnf − 2ϕCNT(khnf − kCNT)
kCNT + 2khnf + ϕCNT(khnf − kCNT)

⎞⎠,
khnf
knf

� ⎛⎝kAl2O3 + 2knf − 2ϕAl2O3
(knf − kAl2O3)

kAl2O3 + 2knf + ϕAl2O3
(knf − kAl2O3)

⎞⎠,

knf
kf

� ⎛⎝kZrO2 + 2kf − 2ϕZrO2
(kf − kZrO2)

kZrO2 + 2kf + ϕZrO2
(kf − kZrO2)

⎞⎠,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
Electrical conductivity

σtnf
σhnf

� (1 +
3(σCNT

σhnf
− 1)ϕCNT

(σCNT

σhnf
+ 2) − (σCNT

σhnf
− 1)ϕCNT

), σhnf
σnf

� (1 +
3(σAl2O3

σnf
− 1)ϕAl2O3

(σAl2O3

σnf
+ 2) − (σAl2O3

σnf
− 1)ϕAl2O3

),

σnf
σf

� (1 +
3(σZrO2

σf
− 1)ϕZrO2

(σZrO2

σf
+ 2) − (σZrO2

σf
− 1)ϕZrO2

).
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vtnf
vhnf

ƛ3 + ƛ1ƛ3 −
ρhnf
ρtnf

ƛ8′ � 0. (21)

(ρCp)hnf(ρCp)tnf (ktnfkhnf
+ Rd)ƛ7′ + Prƛ1ƛ7 +Hsƛ6 � 0. (22)

ƛ1(0)� 0, ƛ2(0) �αƛ3(0), ƛ4(0)�1+αƛ5(0), ƛ6(0)�1+β,ƛ7(0),
ƛ2→0, g→0, ƛ8→0, ƛ6→0 when ζ→∞ . (23)

Step 2: Familiarizing parameter p in Eqs 19–22:

2
vtnf
vhnf

ƛ3′ − ƛ22 + ƛ24 + 4ƛ2(ƛ3 − 1)p − ρhnf
ρtnf

M2ƛ2 � 0. (24)

2
vtnf
vhnf

ƛ5′ + 2ƛ1(ƛ5 − 1)p − 2ƛ2ƛ4 −
ρhnf
ρtnf

M2ƛ4 � 0. (25)

vtnf
vhnf

ƛ3 + ƛ1(ƛ3 − 1)p − ρhnf
ρtnf

ƛ8′ � 0. (26)

(ρCp)hnf(ρCp)tnf (ktnfkhnf
+ Rd)ƛ7′ + Prƛ1(ƛ7 − 1)p +Hsƛ6 � 0. (27)

FIGURE 2
Velocity outlines f′(η) versus velocity slip factor α.

FIGURE 3
Velocity outlines f′(η) versus magnetic term M.

FIGURE 4
Velocity outlines f′(η) versus ternary nanoparticles ϕ.

FIGURE 5
Velocity outlines g(η) versus velocity slip factor α.

FIGURE 6
Velocity outlines g(η) versus ternary nanoparticles ϕ.
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Step 3: Apply Cauchy principal and discretized Eqs 24–27.

After discretization, the obtained set of equations is

computed through the MATLAB code of PCM.

Results and discussion

This section elaborates the physics and trend behind each

figure. The following statements are concluded from Figures 2–11.

Figures 2–4 revealed the axial velocity f′(η) outlines versus

velocity slip factor α, magnetic termM, and ternary nanoparticles ϕ,

while Figures 5 and 6 display the radial velocity g(η) outlines versus
slip factor α and ternary nanoparticles ϕ, respectively. Figures 2 and

3 reported that the velocity contour diminishes with the influence of

slip factor and magnetic term. The slip factor and magnetic force

both resist the fluid field because themagnetic impact causes Lorentz

strength, which opposes the fluid flow; hence, fluid velocity contour

declines due to the increasing tendency of magnetic field and slip

factor”. Figure 4 shows that the dispersion of more quantity of

ternary nanoparticles (ϕ � ϕ1 � ϕ2 � ϕ3) to water decelerates the

fluid velocity. Physically, the inclusion of trihybrid nano composites

to the base fluid enhances its average viscosity, which results in such

retardation. Figures 5 and 6 present that the radial velocity also

declines with the velocity slip factor and ternary nanoparticles. The

upshot of trihybrid nanoparticles enhances the fluid viscosity, which

resists the fluid velocity g(η).
Figures 7–10 show the energy outlines versus the thermal slip

factor β, heat source Hs, ternary nanoparticles ϕ, and thermal

radiation Rd. Figure 7 expresses that the thermal slip factor

reduces to the energy contour because slip effect minimizes the

rate of frictional force, which results in reduction of energy field.

Physically, the frictional force generates heat, so its reduction also

decreases the temperature of fluid. Figure 8 illustrated that the heat

generation and absorption term boost the energy profile. An

additional energy is provided due to the rising effect of heat

source, which elevates the energy profile. Figure 9 expresses that

the addition of ternary nanoparticles enhances the temperature

profile. The specific heat capacity of water (4,179 Cp(J/kg.K)) is
much higher than that of Al2O3 (765 Cp(J/kg.K)), ZrO2

(502 Cp(J/kg.K)), and CNT (790 Cp(J/kg.K)) nanoparticles.

Therefore, the dispersion of these NPs to water lessens its average

heat capacity, which fallouts in the elevation of energy outlines.

FIGURE 7
Energy outlines θ(η) versus thermal slip factor β.

FIGURE 8
Energy outlines θ(η) versus heat source Hs.

FIGURE 9
Energy outlines θ(η) versus ternary nanoparticles ϕ.

FIGURE 10
Energy outlines θ(η) versus thermal radiation Rd.
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Figure 10 displays that the upshot of radiation Rd term enhances the

temperature contour. The impact of radiation term augments the

energy of fluid, which causes in the inclination temperature contour.

Figure 11 demonstrates the comparative evaluation of nanofluid,

hybrid, and ternary nanofluid. From all the subfigures of Figure 11, it

can be noted that the ternary nanofluids have greater tendency to

boost the energy transmission rate than hybrid and solo nanofluids.

Conclusion

We have examined the consequences of thermal radiation

with slip boundary conditions and the uniform magnetic field on

a steady 2D flow of trihybrid nanofluid over a rotating disc. The

trihybrid nano composites are synthesized by the dispersion of

Al2O3, ZrO2, and CNT in water. A nonlinear system of PDEs is

used to describe the phenomenon. The modeled equations are

reduced to a nondimensional collection of ODEs using similarity

substitution. The PCM methodology is used to estimate the

nonlinear differential equations that resulted. The key

findings are

• The axial velocity f′(η) outlines are reducing with the

influence of slip factor and magnetic term.

• The dispersion of ternary nanoparticles (ϕ � ϕ1 � ϕ2 �
ϕ3) to water decelerates the fluid velocity.

• The radial velocity also declines with the velocity slip factor

and ternary nanoparticles.

• The energy field declines with the increasing effects of

thermal slip constraint.

• The influence of heat generation and absorption term

boosts the energy profile.

• The addition of ternary nanoparticles magnifies the

temperature profile.

FIGURE 11
Percentage- and column-wise comparison of nanofluids.

Frontiers in Energy Research frontiersin.org07

Alshahrani et al. 10.3389/fenrg.2022.967307

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.967307


• The fluid temperature augments with the effect of thermal

radiation.

• The ternary nanofluid has higher thermal characteristics

than simple and hybrid nanofluid.
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