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It is imperative to accurately predict the remaining useful life (RUL) of lithium-

ion batteries to ensure the reliability and safety of related industries and facilities.

In view of the noise sequence embedded in themeasured aging data of lithium-

ion batteries and the strong nonlinear characteristics of the aging process, this

study proposes a method for predicting lithium-ion batteries’ RUL based on the

wavelet threshold denoising and transformer model. To specify, firstly, the

wavelet threshold denoising method is adopted to preprocess the measured

discharging capacity data of lithium-ion batteries to eliminate some noise

signals. Second, based on the denoised data, the transformer model output’s

full connection layer is applied to replace the decoder layer for establishing the

RUL prediction model of lithium-ion batteries. Finally, the discharging capacity

of each charging–discharging cycle is predicted iteratively, and then the RUL of

lithium-ion batteries can be calculated eventually. Two groups of lithium-ion

batteries’ aging data from the Center for Advanced Life Cycle Engineering

(CALCE) at the University of Maryland and the laboratory at Anqing Normal

University (AQNU) are employed to verify the proposed method, individually.

The experimental results demonstrate that this method can overcome the

impacts of data measurement noise, effectively predict the RUL of lithium-ion

batteries, and present a sound generalization ability and high accuracy.
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1 Introduction

Thanks to the advantages of high energy density, long storage life, high safety, and no

pollution, lithium-ion batteries are widely applied in the field of electric vehicles (Yuan

et al., 2015; Wang et al., 2021). However, with the use of electric vehicles starting,

irreversible electrochemical reactions occur in the onboard lithium-ion batteries, which

will increase their internal resistance and decrease their maximum available capacity,

leading to the attenuation of their remaining useful life (RUL) and a serious reduction of

the driving distances of electric vehicles (Guha and Patra., 2018; Ansari et al., 2022).

Besides, it is well known that the discharging capacity of lithium-ion batteries is poor in a
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low-temperature environment. Consequently, the accurate RUL

is difficult to be predicted (Zhang D. et al., 2022). If the lithium-

ion battery continues to work even after reaching its failure

threshold, it will attenuate drastically, whichmay result in serious

safety accidents (Liu et al., 2020). Therefore, accurate prediction

of the battery RUL is of great significance to guarantee the safe

and reliable operation of electric vehicles (Murugan et al., 2022).

RUL refers to the quantity of charging–discharging cycles

required for the maximum available capacity of the power battery

attenuating to the specified failure threshold (Zhao et al., 2022).

The RUL prediction is a process of forecasting and calculating the

residual power battery’s life based on its historical data through

certain mathematical approaches (Dong et al., 2020). The

existing RUL prediction methods for lithium-ion batteries can

mainly divide into model-driven and data-driven (Cadini et al.,

2019; Song et al., 2022).

The model-driven method establishes a mathematically

physical model by analyzing the battery performance

degradation and failure mechanism for better predicting

lithium-ion batteries RUL. The commonly-used lithium-ion

battery models mainly include the electrochemical model,

equivalent circuit model, and empirical degradation model.

The electrochemical model primarily follows the internal

chemical reaction mechanism of the lithium-ion battery to

establish the corresponding algebraic or differential equations

for forecasting the RUL. Its accuracy is high, but the model

parameters are easily affected by temperature and other factors.

Consequently, it is difficult to identify the parameters and the

modeling procedure is really complex (Xiong et al., 2018). The

equivalent circuit model adopts the traditional circuit elements

like resistance, capacitance, and a constant voltage source to

constitute a circuit network for describing the externality of the

power battery (Guha and Patra, 2018). This model considers the

battery degradation mechanism, but its establishment depends

on impedance and other data difficult to obtain in practice.

Furthermore, the empirical degradation model is mainly based

on the exponential model of battery capacity and filtering

algorithm to predict RUL (Zhang et al., 2018). Kalman filter

(Xiong et al., 2012), sliding mode observer (Liu and Zhang.,

2021), and particle filter (Morstyn et al., 2017; Pugalenthi et al.,

2018) have all been commonly-applied model methods, which

have achieved good research results. However, it has also been

quite difficult to establish an accurate and universal

mathematically physical model to characterize the attenuation

process of lithium-ion battery capacity due to the severe onboard

working conditions and the variability of the application

environment.

The data-driven approach makes it possible to prognosticate

the RUL of lithium-ion batteries by analyzing past data, mining

intrinsic principles governing capacity decline, and utilizing

mathematical algorithms to analyze, expand, and promote

data. This method is simple and does not need to consider

the complex mechanism of the power battery. It is suitable for

the real vehicle operating environment. Common data-driven

methods include the artificial neural network (ANN), (Ansari

et al., 2021), support vector regression (SVR) (Xue et al., 2020),

relevance vector regression (RVR) (Chen et al., 2021), and

gaussian process regression (GPR) (Li et al., 2019). The

transformer model, a deep learning neural network, has

succeeded in the field of natural language processing and has

steadily moved to the field of time-series prediction owing to its

unique structure, long-distance modeling capability, and

outstanding parallel computing capacity (Tian et al., 2022;

Vallés-Pérez et al., 2022).

Considering the capacity regeneration phenomenon in the

degradation process of lithium-ion batteries and the noise signal

generated by load random interference in the measurement, data

preprocessing technology is also widely used to improve the

accuracy of RUL prediction, including empirical mode

decomposition (EMD) (Zhang et al., 2017), variational modal

decomposition (VMD) (Zhang et al., 2021), variational filtering

(VF) (Jiao et al., 2020), and particle filter (PF) (Ahwiadi and

Wang, 2019), etc. The method employed in this study, based on

wavelet threshold denoising (WTD) (Zhang et al., 2015), cannot

only effectively filter the noise but also maximize the noise and

guarantee that the effective signal is not lost. The combination of

a data-driven method and data preprocessing technology can

further realize RUL’s accurate prediction (Huang et al., 2022).

Based on the above analyses, the key factors affecting the

accuracy of RUL prediction are data preprocessing and its

modeling methods. In this study, the discharging capacity is

selected as the health indicator and a prediction method is

proposed. The main contributions are summarized as follows:

The wavelet threshold denoising data preprocessing

technology is utilized to eliminate the capacity data noise

signals, which not only smooths the capacity data but also

retains the original characteristics of the capacity data and

avoids the influence of noise components.

With the long-distance modeling ability and the feature

representation technique of the series data of the transformer

model, the decoder part of the original model is replaced by the

output’s full connection layer, and the RUL prediction

framework of the improved transformer model is established

to output the predicted values. The experimental results show

that the wavelet denoising and transformer model can be

effectively applied to the RUL prediction of the lithium-ion

battery.

Two groups of battery capacity data from the Center for

Advanced Life Cycle Engineering (CALCE) at the University of

Maryland and the laboratory at the Anqing Normal University

(AQNU) are applied to separately verify the RUL prediction

method proposed in this study. The results exhibit that the

performance of this method is superior to the existing

prediction methods.

The rest is summarized below. Section 2 introduces the basic

principles of wavelet threshold denoising and the transformer
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model. Section 3 specifies the proposed RUL prediction

experiment scheme for lithium-ion batteries, including data

preprocessing technique, experimental procedures, and

evaluation criteria. Section 4 elaborates on the experimental

results and compared experiment analyses. Section 5 describes

the concluding observations.

2 Theoretical basis for remaining
useful life prediction

2.1 Wavelet threshold denoising

Wavelet analysis is based on the characteristic that the

original signal is generally concentrated in the low-frequency

region. First, a wavelet transform is performed on the high-

frequency noisy signal x(t) to obtain a group of wavelet

decomposition coefficients Wj,k and then a threshold value λ
is set for the wavelet coefficients according to the characteristics

of the transformed signal. This threshold is the dividing line to

process high-frequency wavelet coefficients. For those with

amplitudes lower than this threshold, they will be removed

directly; for those with amplitudes greater than the threshold,

they will be retained. After the wavelet decomposition

coefficients are processed by the threshold, the wavelet

estimation coefficient Wj,k is obtained to limit ‖Wj,k −Wj,k‖
to the minimum. Finally, the estimated wavelet coefficientWj,k is

used for wavelet reconstruction to acquire the estimation signal

Wj,k as the denoised signal. The principle of this wavelet

threshold denoising is shown in Figure 1.

In the process of wavelet threshold denoising, the commonly-

used threshold functions mainly include the hard threshold

function, soft threshold function, and semi-soft threshold

function. Their formulas are as follows:

The expression of the hard threshold function is:

Wj,k � {Wj,k,
∣∣∣∣Wj,k

∣∣∣∣≥ λ
0,

∣∣∣∣Wj,k

∣∣∣∣< λ
(1)

The expression of the soft threshold function is:

Wj,k � { sgn(Wj,k)(∣∣∣∣Wj,k

∣∣∣∣ − λ), ∣∣∣∣Wj,k

∣∣∣∣≥ λ

0,
∣∣∣∣Wj,k

∣∣∣∣< λ
(2)

The expression of the semi-soft threshold function is:

Wj,k �
⎧⎪⎪⎨⎪⎪⎩ sgn(Wj,k)∣∣∣∣Wj,k

∣∣∣∣ − λ + 2λ

1 + e2Wj,k/λ, ∣∣∣∣Wj,k

∣∣∣∣≥ λ

0,
∣∣∣∣Wj,k

∣∣∣∣< λ

(3)

where Wj,k represents the wavelet estimation coefficient; Wj,k is

the wavelet decomposition coefficient; sgn() indicates the symbol

function, and λ refers to the threshold value.

Wavelet threshold estimation is the optimal threshold

obtained under the limitation of minimum and maximum

estimation for the joint distribution of multidimensional

independent normal variables. The selection formula of this

threshold value is:

λj � σ
��������
2 log(N)

√
(4)

where λj is the threshold under the scale j; σ refers to the noise’s

standard variance, and N represents the signal length. The

wavelet denoising method can effectively eliminate or weaken

the noise signal in the lithium-ion battery capacity’s measured

data and restore the raw data.

2.2 Time-series transformer

The transformer model relies on the attention mechanism to

draw the global dependency between input and output. Like most

neural series transformation models, it has an encoder-decoder

structure. The encoder maps the input time-series X �
(X1, X2, / , Xn) represented by the capacity data to the

continuous representation series Z � (Z1, Z2, / , Zn). Under
the condition of fixedZ, the decoder generates output time-series

Y � (Y1, Y2, / , Yn) from one element at a time. In each step of

time-series prediction, the model is automatically regressed, and

when generating the output series at the n + 1 time, the output

series generated at the last n time will be used as an additional

input. The transformer time-series model’s architecture is shown

in Figure 2.

The encoder part selects the original capacity data as the

input, while the decoder part replaces the decoder with the full

FIGURE 1
Schematic diagram of wavelet threshold denoising.
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connection layer to predict the unknown capacity data value by

the auto-regressive method (Jin et al., 2022). The decoder uses the

attention mechanism to connect with the encoder, and “pays

attention” to the most useful part of the input capacity data value

before prediction, in which the padding mask part will be input

for the mask to avoid gaining future values during training.

In the time-series prediction task, the transformer actually

adopts the calculation method of scaled dot product attention,

which is also an attention mechanism that links the different

positions of a single series to calculate the representation of the

series. Its general calculation process is shown in Figure 3.

According to the three variables of query, key, and value

gained from the linear mapping of the input series, the attention

function is employed to calculate the Q matrix and K matrix for

achieving the attention weight matrix. Based on this, the

similarity between Q and K is also calculated to obtain the

output matrix A. The calculation process is as follows:

A � softmax(QKT/ ��
dh

√ ), A ∈ Rd×3dh (5)

In the time-series, query, key, value, and output are all

vectors. Furthermore, calculate the Value according to A and

obtain the weighted sum. The calculation process is as

follows:

SA(z) � AV (6)

In order to improve the diversity of features, a multi-head

attention layer is employed to calculate multiple self-attention

heads in parallel. Eventually, the final results are obtained by

splicing the outputs of all attention heads (Zhang Q. et al.,

2022).

Positional encoding is adopted to prevent the loss of position

information in the series of input batch capacity data. Its

principle is to add sine and cosine data of different

frequencies to the input series as position codes so that the

FIGURE 2
Transformer time-series model’s architecture.
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model can capture the relative position relationship of input

variables. The calculation process is expressed in Eqs 7 and 8.

PE(pos,2i) � sin(pos/100002i/d) (7)
PE(pos,2i+1) � cos(pos/100002i/d) (8)

where pos is the position of each capacity value in the whole

series; i ∈ [0, / , d/2] is used to calculate the index of the

channel dimension. For the same i, the coding of the 2i + 1

and the 2i + 1 positions on the channel is the sine and cosine

values with the same angular velocity to ensure that the position-

coding can be added to the input embedding.

3 Remaining useful life prediction’s
experiment scheme

3.1 Experimental data

Two kinds of lithium-ion battery datasets with different

electrode materials and discharge environments are used to

verify the performance of the proposed algorithm.

The first group of the battery degradation data is obtained

from the University of Maryland’s CALCE company. The battery

aging test was realized by using the ArbinBT2000 battery test

system. In the test, the LiCoO2 battery named CX2-37 accepted

FIGURE 3
General calculation process of attention mechanism.

FIGURE 4
Experimental equipment.

TABLE 1 Specifications of AQ-01 battery.

Cathode LiFePO4

Anode Graphite

Rated capacity 2.4 Ah

Normal voltage 3.6 V

Allowed voltage range 3–4.2 V

End-of-charge current 48 mA

Max charge/discharge current 2400 mA/7200 mA
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the standard constant current/voltage protocol, charged at 0.5C

constant current (C is the measurement of the

charging–discharging current to the nominal capacity) until

the terminal voltage reached 4.2 V, then charged at the

constant voltage of 4.2 V until the charging current dropped

below 0.05 A. Discharging was operated at a 1C constant current

until the battery terminal voltage of CX2-37 dropped to 2.7 V.

The second set of lithium-ion battery aging data was

measured in the laboratory of AQNU university based on the

high-performance battery test system (Zhang et al., 2021).

Experimental equipment is shown in Figure 4. For simplicity,

this lithium-ion battery capacity data is named AQ-01 in this

study. Table 1 presents the summary of its specifications.

The validity of the proposed prediction method is verified by

using two groups of battery degradation data of CX2-37 and AQ-01.

According to the international standard, the lithium-ion battery

performance test stipulates that it shall be kept in a normal working

state at a normal temperature (25 ± 2) °C. When the actual capacity

of the battery drops below 70–80% of the rated capacity, the lithium-

ion battery is considered to be invalid. In order to ensure the safety

and reliability of the system operation, the EOL threshold of all the

used batteries is both set to about 70% of the rated capacity when the

experiments will be terminated. Therefore, the rated capacity of

battery CX2-37 is 1.33 Ah, and the EOL threshold configuration is

0.93 Ah. The rated capacity of AQ-01 battery is 2.4 Ah, and the EOL

threshold is set to 1.68 Ah. The measured capacity data of CX2-37

and AQ-01 batteries are listed in Figure 5.

3.2 Experimental procedure

In order to better reflect the generalization of the proposed

method. Experimental verification of transformer method is

made with the selected two groups of the lithium-ion battery

FIGURE 5
Measured capacity data of CX2-37 and AQ-01.
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capacity data from CALCE and AQNU laboratory. The

framework of the RUL prediction method proposed in this

study is shown in Figure 6.

More specifically, there are five steps to realize the goal

prediction.

Step 1: Select the discharging capacity as the health indicator

reflecting the degradation trend of RUL, remove the noise

signal of the raw data by wavelet threshold denoising

method, and obtain the capacity series with a relatively

stable degradation trend.

Step 2: Standardize the capacity data after denoising and

smoothing.

Step 3: Divide the first 50% of the battery capacity data equally as

the training set and the last 50% as the testing set. Build

the transformer model in Pytorch and train the capacity

series data to obtain the RUL prediction model.

Step 4: Use the transformer model to establish the mapping

relationship between the early and late stages of the

capacity, iteratively predicts the unknown discharging

capacity of each charging–discharging cycle, then

calculate the RUL of the lithium-ion battery.

Step 5: Apply different evaluation indexes to evaluate the

prediction results.

3.3 Model evaluation indexes

The lithium-ion battery RUL is defined as the number of

remaining useful cycles from the beginning of prediction to the

end of battery life. When the actual capacity of the battery

degrades to the failure threshold, the battery life is considered

to be over. The RUL calculation formula of the battery is as

follows:

Trul � Teol − Tcur (9)

The calculation formula of the battery’s RUL prediction value

can be expressed in Eq. 10.

T
�

rul � T
�

eol − T
�

cur (10)

Absolute error (AE), mean absolute error (MAE), and root

mean square error (RMSE) are adopted as the evaluation criteria

of the prediction model. Their calculation formulas are as

follows:

AE �
∣∣∣∣∣∣∣Trul − T

�

rul

∣∣∣∣∣∣∣ (11)

MAE � 1
n
∑n
i�1

∣∣∣∣∣x(i) − x
�(i)

∣∣∣∣∣ (12)

RMSE �
���������������
1
n
∑n
i�1
[x(i) − x

�(i)]2√
(13)

where Trul is the number of remaining useful cycles at the end of

the actual battery life; Tcur represents the cycle’s starting position,

while Teol is the number of cycles at the end of the battery life in

the actual state; T
�
rul indicates the number of remaining useful

cycles at the end of the battery life in the predicted case; T
�
eol refers

to the number of cycles at the end of the battery life in the

predicted case; x(i) is the real value of capacity, and x
�(i) stands

for the predicted capacity.

FIGURE 6
RUL prediction method’s framework.
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It should be noticed that RMSE is the most comprehensive

evaluation index, which can measure the fitness between the

prediction curve and the actual degradation trend. The closer

RMSE is to 0, the better the prediction effect.

4 Experimental results and
discussions

4.1 Denoising results

Due to an irreversible chemical reaction, the discharging

capacity of the lithium-ion battery will show a detailed

downward trend owing to the repeated charging and

discharging. The capacity data measurement process is

affected by electromagnetic interference, instrument error,

and changes in the external environment. The nonlinear

capacity data is mixed with noise signals, and the capacity

regeneration phenomenon makes the degradation track rise

rapidly, briefly, and irregularly in an uncertain

period, which adds difficulty to the training process of the

model.

In order to remove the irregular fluctuations in the

capacity curve and retain the original characteristics of the

data, it helps the model achieve better learning results in the

training stage. The raw data of battery capacity of CX2-37 and

AQ-01 are smoothed by the wavelet threshold denoising

method, and the large and small noise signals are

eliminated. The effect of processed battery capacity data is

shown in Figure 7.

FIGURE 7
Capacity data of CX2-37 and AQ-01 batteries processed by wavelet threshold denoising.
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4.2 Prediction results

AE, MAE, and RMSE methods are individually adopted to

evaluate the accuracy of the capacity data predicted by the RUL of

lithium-ion batteries. Experiments are carried out through two

groups of battery degradation data of CX2-37 and AQ-01. Both

groups of capacity data set 50% of the series length as the

prediction starting point, and the established transformer

neural network model is employed to conduct the capacity

prediction experiment. The prediction results are shown in

Figure 8 and Table 2 gives the statistical errors of the above

experimental results.

The prediction results of both CX2-37 and AQ-01 batteries

both illustrate that the degradation trend can be accurately

captured according to the mapping relationship between cycle

and actual capacity, but the prediction results gradually deviate

from the actual degradation curve with the increase of cycle

times. From the capacity degradation trend line shown in

Figure 8 and the data analysis in Table 2, the RUL

prediction accuracy of CX2-37 battery based on the

FIGURE 8
Transformer model’s capacity prediction results.

TABLE 2 Statistical errors of the transformer algorithm.

Battery Actual RUL Predicted RUL AE MAE (%) RMSE (%)

CX2-37 493 494 1 1.81 2.19

AQ-01 556 555 1 1.81 2.39
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transformer model is 494, and 1 cycle later than the true RUL,

which MAE is 1.81% and RMSE is 2.19%. The RUL prediction

accuracy of AQ-01 battery is 556, and 1 cycle earlier than the

true RUL, in which MAE is 1.81% and RMSE is 2.39%. It

demonstrates that this method has an accurate RUL prediction

effect. It also shows the degradation trend prediction curve of

AQ-01 battery is closer to the original curve than that of CX2-

37 battery. A possible reason is transformer model mines the

correlation from the global relationship and the accuracy highly

depends on data, which needs a lot of training to build a better

RUL prediction model. It reflects that AQ-01 battery has the

best prediction results due to its long sequence length of data

and better training effect.

4.3 Compared experiment

To further verify the reliability of the wavelet threshold

denoising and transformer model RUL prediction methods

proposed in this study, the relevance vector machine (RVM),

support vector regression (SVR), and particle filter (PF) methods

are separately adopted to compare and analyze with the

transformer model prediction method, for proving the

transformer model’s accuracy and superiority in predicting the

RUL. The capacity prediction results of CX2-37 and AQ-01

batteries based on the transformer, RVM, SVR, and PF

methods are shown in Figure 9, while Table 3 gives the

statistical errors of the above experimental results.

FIGURE 9
Compared experiment results between different prediction methods for CX2-37 and AQ-01 batteries.
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According to the capacity degradation trend line in Figure 9

and the errors in Table 3, this prediction method is proven to

offer a better prediction accuracy. The prediction errors of CX2-

37 battery based on the transformer, RVM, SVR, and PFmethods

are 1, 13, 18, and 36, respectively. The prediction errors of AQ-01

battery based on the transformer, RVM, SVR, and PF are 1, 22,

20, and 15, respectively. Among them, the prediction results of

CX2-37 battery seriously deviate from the cycle range of the real

threshold based on the PF method, but the prediction effect on

AQ-01 battery is significantly better than those of the compared

methods, as the effects of both MAE and RMSE are less

than 2.4%.

By comparing with traditional RVM, SVR, and PF

algorithms, it is found that the transformer neural

network achieves the best prediction effect owing to the

superior long-series data processing ability. According to

Figure 9, it can also be seen that the degradation trend

prediction curve of AQ-01 battery based on the PF

method is close to the original curve, but the CX2-37

battery comparison prediction curve obviously deviates

from the original aging curve under the same condition.

This is the reason for the low accuracy of feature recognition.

The transformer model has the advantage of constructing a

global information interaction mechanism, which helps to

establish a more sufficient feature display. At the same time,

the modal data can be fused efficiently. Therefore, a better

fitting trend is reflected in the two groups of experimental

data and reflects that the transformer prediction method has

a better generalization ability. However, the global attention

mechanism also brings a large amount of computation,

especially in intensive prediction tasks with facing long

series of inputs. In addition, the training process of the

transformer model is unstable and sensitive to parameters.

Therefore, the wavelet threshold denoising method is used to

smooth the original data, so as to better predict the future

capacity of lithium-ion batteries and improve the prediction

accuracy.

5 Conclusion

In this study, an RUL prediction method for lithium-ion

batteries based on wavelet threshold denoising and

transformer model has been proposed. First, the

discharging capacity has been selected as the health

indicator, and the wavelet threshold denoising method has

been adopted to eliminate the noise signal caused by the

actual measurement and instrument errors in the raw data.

Second, the pre-processed data have been equally divided

into the training set and testing set. Based on the training set,

the transformer neural network has been used to establish

the RUL prediction model of the lithium-ion battery.

Moreover, two groups of experimental data from CALCE

and AQNU laboratories have been chosen to verify the

reliability of the proposed method. The conclusions are

summarized as follows:

The onboard battery is affected by various uncertain factors

during the working process, which causes the gathered data to

contain noises and fluctuations. Directly using the raw data to

predict the signal affects the prediction accuracy of this model.

Consequently, the necessary data preprocessing method has been

utilized to improve the prediction accuracy of this prediction

model in this study.

Owing to the long-distance modeling ability and the feature

representation ability of the series data in the transformer model,

an RUL prediction framework based on the transformer neural

network has been established, while a new RUL prediction

method for lithium-ion batteries has been proposed and good

prediction results have been achieved.

Two groups of battery capacity data from CALCE and

AQNU laboratories have been employed to verify the RUL

prediction method. The experimental results have shown

that the prediction effect of the proposed method is superior

to those of some existing calculation ones, among which the

effects of MAE and RMSE are kept within 1.81 and 2.39%,

respectively.

TABLE 3 Statistical errors of the comparison experiment.

Battery Algorithm Actual RUL Predicted RUL AE MAE (%) RMSE (%)

CX2-37 Transformer 493 494 1 1.81 2.19

RVM 493 506 13 0.92 1.19

SVM 493 511 18 1.09 1.40

PF 493 457 36 1.46 1.74

AQ-01 Transformer 556 555 1 1.81 2.39

RVM 556 578 22 4.33 5.24

SVM 556 576 20 1.86 2.35

PF 556 541 15 2.67 3.11
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To conclude, the RUL prediction method for lithium-ion

batteries consists of the data preprocessing by wavelet threshold

denoising and the transformer model with a high prediction

accuracy, reducing the prediction error and providing a new idea

for the existing RUL prediction research of lithium-ion batteries.

This method could also be applied to the prediction of other

similar issues.
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