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As the effects of climate change and environmental pollution become more

serious, the requirements of low carbon emission are put forward to the

operation of integrated energy systems. Under this trend, a cooperative-

game-based operation optimization model for integrated energy systems is

proposed in this paper. This model can achieve the multi-agent allocation and

coordinate the operating costs and carbon emissions. The Anderson-

accelerated-based alternating direction multiplication (AA-ADMM) method is

used to improve the efficiency of solving the proposed model. Thereafter, the

benefit of each agent is allocated by the Shapley value. Results indicate that the

proposed model can provide a reasonable trade-off between operating costs

and carbon emissions, and the proposed benefit allocation strategy is effective.

KEYWORDS

cooperation game, ADMM, integrated energy system, multi-agent, shapley value

1 Introduction

Recently, humanity is facing the energy shortage and global warming. This trend has

led to the formation of the Climate Ambition Coalition by 66 countries to achieve carbon

neutrality targets. (UNFCCC, 2019). Under energy and policy pressure, traditional

independent energy systems are facing the challenges of energy underutilization and

substandard usage. To deal with this, the Park-level integrated energy systems (PIES) have

been constructed to achieve the efficient integration of combined heat and power (CHP),

storage, and energy conversion components. However, the conflict of interests between

these agents restricts the efficiency of PIES. As a result, it is important to optimize and

coordinate the operation of multiple agents in the PIES to reduce operating costs and

carbon emissions.

Many scholars have conducted a lot of research on the operation of park-level

integrated energy systems. A NSGA-III-based solving approach (Deng Y et al.,

2021) is developed to find the non-dominated solutions of the model. A synergistic

strategy is proposed to achieve efficient energy utilization by recovering waste heat

(Wu et al., 2019). This reference (Ha et al., 2022) proposes an optimized model.

The proposed model provides a more efficient network to scale down the
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environmental and economic impacts of electricity storage.

A multi-objective optimization model achieves a win-win

situation in terms of operation, economy, environmental

friendliness, and safety (Zhang et al., 2019). The reference

(Wang et al., 2020) presents an integrated energy system to

improve the efficiency of wastewater reuse. The CHP is used

to improve the energy supply flexibility and conversion

efficiency of integrated energy systems (Ma et al., 2021).

An integrated energy system optimal dispatch model is

established from the perspective of flexibility and

economy considering the conversion of multiple energy

forms and multiple time scales (Tang et al., 2021). An

integrated energy system optimal dispatch model is used

to operate the coupled demand response characteristics of

multiple energy streams (Tang et al., 2021). However, few

studies focus on the coordination of multiple agents in

integrated energy systems.

The game theory is widely applied to balance the

contradiction between agents in the PIES. Nash is one of

the main research directions. The reference (Jing et al., 2020)

proposes a Nash-type noncooperative game model between

agents that can well ensure fairness and reduce trading costs.

The reference (Geng et al., 2020) establishes an operation

optimization model to distribute the coalition benefits by

Nash negotiation. The reference (Jing et al., 2021) applied the

Nash approach in the energy interaction between multiple

device subjects to improve utilization efficiency and reduce

costs. In addition, the game theory has been widely used to

improve the benefits of multiple subjects while resolving

conflicts. The reference (Yuan, 2021) uses a typical robust

optimization to deal with the uncertainty of energy control.

An evolutionary game approach (Gao et al., 2021) that

considers individual finite rationality is proposed. This

method can effectively improve energy efficiency. A game

stochastic optimization allocation method is used to assign

the weights of renewable energy consumption

responsibilities of market players (Jiao et al., 2022). The

reference (Jing et al., 2018) constructs the cost and

emission constraints to achieve benefit sharing among

multiple agents based on cooperative game theory, and a

mixed integer linear programming (MILP) model is

developed to analyze the impact of benefit allocation.

However, the allocation of interests of multiple agents

with multiple objectives is not considered in the above

methods.

Based on this, a cooperative-game-based operation

optimization model considering multi agents of the PIES is

proposed in this paper. The main contributions of this study

are as follows.

1) A cooperative-game-based optimization model of PIES is

proposed to balance the interests of multiple agents.

Moreover, the Anderson-accelerated-based ADMM

algorithm is employed to efficiently obtain the optimal

scheduling strategy.

2) The Shapley method is used to allocate the benefits of each

agent after cooperation, and more users can be motivated

to build an integrated energy system through

cooperation.

3) A game method is used to determine the weight of

operational objectives including the operation cost and

carbon emission.

2 The structure of PIES

Generally, most of the current operation modes are

independent devices. The users cannot realize multi-energy

coupling, and this operation mode has a high economic cost

and low energy utilization rate. PIES is a representative multi-

energy coupled systems today. Therefore, the PIES is

considered as a research issue in this paper. Its

characteristics can significantly improve energy utilization

efficiency, and reduce system operating costs and CO2

emissions. The structure of the PIES in Figure 1. Multiple

energy sources work together to break down the blockade of

independent operation.

3 A cooperative-game-based
operation optimization model of PIES

The idea of cooperative game includes two aspects. First, the

AA-ADMM is used to obtain the pareto frontier, which can

ensure the optimality of the overall benefit. Then, the Shapley

value method is employed to distribute the obtained benefits

according to the contributions of each coalition.

3.1 The multi-agent cooperative game
optimization model

In this paper, the economy and environmental friendliness

are used as the operational objectives in the proposedmulti-agent

cooperative game optimization model. It can help to get an

objective allocation result of the overall optimal benefit. This

multi-objective problem can be a good solution to the problem of

overall benefit loss in the practical operation process. The specific

objectives and system constraints are shown below.

3.1.1 Objective function
1) Economic Objectives

The operation optimization of PIES aims to achieve the

lowest total operating cost,
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minfC � Cgas + Cgrid + CEM + CEI

Cgrid � ∑
d

∑
t∈T

kgridPgrid

Cgas � ∑
d

∑
t∈T

kgasPgas

CEM � ∑
d

∑
t∈T

∑m
k�1

ωkP
k
t

CEI � ∑m
k�1

kIP
c

(1)

where fC is the annual operation cost of the overall system; d is

the typical seasonal day; the simulation step is 1 h, T = 24; Pgrid
and Pgas are the purchasing power of electricity and gas; kgrid
and kgas are the prices of electricity and gas, respectively; m is

the total number of devices; ωk is the maintenance cost of

equipment k, Pk
t is the output power at moment t, kI is the initial

investment factor of each equipment, Pc represents the

equipment capacity.

2) Environmental Objectives

The environmental friendly objective of PIES operation is to

minimize CO2 emissions,

minfE � ∑
d

Dd ∑
t∈T
(αgridPgrid + αgasPgas) (2)

where fE is the CO2 emission of the overall system; αgrid and αgas
are the CO2 emission factors for natural gas combustion and grid

purchased electricity, respectively.

3.1.2 System main constraints
1) Component Constraints

As shown in Figure 1, the main component in operation

includes CHP, transformer (T), ground source heat pump

(GSHP), air source heat pump (ASHP), electric chiller (EC),

absorption chiller (AC) and electric energy storage (EES).

Operation equality constraints.

PCHP � ηCHPGCHP � ηCHPFCHP(t)qg (3)
HCHP � μCHPηCHPGCHP (4)

HAshp � ηAshpPAshp HGshp � ηGshpPGhsp (5)
OEC � ηECPEC OAC � ηACPAC (6)

SOC Exp � SOC(T)
SOC1Cap � SOCIniCap + Ps

1ηs − Pd
1/ηd

SOCtCap � SOCt−1Cap + Ps
tηs − Pd

t /ηd
(7)

where the subscripts denote the components, P, G,H, andO denote

the electricity power, gas input, heating power, and cooling output,

respectively; η denotes the efficiency of components; FCHP(t)

denotes natural gas flow; qg is the calorific value of natural gas;

μCHP is the thermal conversion coefficient of CHP; ηs and ηd are the

battery charging and discharging efficiency respectively; Cap is the

energy storage capacity; SOCt is the state of EES charge at time t; Pst
and Pd

t are the EES charging and discharging power at time t,

respectively; SOCExp denotes the final value (desired value) of the

energy storage system; SOCIni denotes the initial value of the energy

storage system.

FIGURE 1
Structure of park-level integrated energy system.
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Operation inequality constraints.

PCHP
min ≤PCHP ≤CCHP (8)∣∣∣∣PCHP

t − PCHP
t−1

∣∣∣∣≤ΔP CHP
max (9)

SOCmin#SOCt#SOCmax (10)
P s

min ≤Pt
s ≤P s

max

P d
min ≤Pt

d ≤P d
max

(11)
0≤PEC ≤CEC 0≤HAC ≤CAC (12)

PAshp
min ≤PAshp ≤CAshp 0≤PGshp ≤CGshp (13)

where C denotes the capacity of components; Pmin is the lower

limit of equipment output; ΔPCHP
max is the upper climbing rate of

CHP unit; SOCmin and SOCmax are the minimum and

maximum constraints of charge state; P s
max and Pd

max are the

maximum constraints of charge and discharge power; P s
min and

Pd
min are the maximum constraints of charge and discharge

power, respectively.

2) Energy Balance Constraints

Pgrid + PCHP + Ps
t � LE(t) + PEB + PAshp + PGshp + PEC + Pd

t

(14)
LH(t) +HAC � HEB +HGshp +HAshp +HCHP (15)

OEC + OAC � LC(t) (16)
Pgas � GCHP (17)

0≤Pgrid ≤Pgrid,max

0≤Pgas ≤Pgas,max
(18)

where LE(t), LH(t), and LC(t) are loads of electricity, heat, and

cooling; Pgrid,max and Pgas,max are the purchasing power bounds of

electricity and gas.

3.2 The solution approach for multiple
objectives

A reasonable operation optimization strategy is an important

means to ensure the economic stability and efficient energy

supply of the system. PIES can cause optimization conflicts

due to its multi-objective properties. Therefore, it is necessary

to resolve the conflicting benefits of multiple optimization

objectives. The optimization model can be considered as:

{ min(fC, fE)
s.t. (3) − (18). (20)

The solution process is played by two virtual participants to

achieve the desired economic and environmental optimality. The

problem has been proved in the reference (Lan et al., 2021). To

facilitate the solution, the minimum problem Eq. 20 is converted

to a maximum optimization problem,

max
x∈S

(lm1 − fC(x))(lm2 − fE(x))
s.t. (3) − (18) (21)

The preconditions of the multi-objective game include

reaching the optimal benefit, i.e., the Pareto solution. Thus,

the set S in Eq. 21 is the Pareto frontier of the problem Eq. 20,

and lm1 and lm2 are the highest unilateral costs (Tan et al.,

2021). The geometric representation of (21) is shown in

Figure 2.

The large ellipse in Figure 2 shows the feasible domain, lm1
and lm2 are the worst target values. The curve is the game function,

and the line is the Pareto front. The boundary of the circle

represents the same distance point from the worst objective

value. The physical meaning of the optimization is to ensure

that the solution under the feasible domain can achieve the

maximum value of both sides.

To solve the above multi-objective game optimization

problem, this paper uses the ADMM algorithm. The method

has a good application in the game model (Luo et al., 2022). The

core idea is to equivalently decompose the objective function of

the original problem into several solvable subproblems, then

solve each subproblem in parallel. Finally, it can coordinate the

solutions of the subproblems to obtain the global solution to the

original problem.

The standard form of the conventional ADMM algorithm is

as follows (Wu et al., 2019).

minf(x) + g(z)
s.t. Ax + Bz � c

(22)

In Eq.22, f(x), g(z) are two convex functions, Ax + Bz = c is

the equation constraint. The ADMM algorithm has a faster

convergence rate and finds higher quality solutions in the

optimization of solutions under multiple objective functions

(Cao., 2020; Huang et al., 2021). The ADMM solution for Eq.

21 is essentially a nonconvex problem, so it is difficult to solve

FIGURE 2
The geometric representation of the multi-objective game
model.
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this problem directly. The model Eq. 21 can be transformed as

follows (Ma et al., 2021),

min − [ln(lm1 − fC(x)) + ln(lm2 − fE(x))]
s.t. (3) − (18) (23)

The ADMM algorithm is a decomposition of both the

variables and the objective function. The two parts satisfy a

linear relationship, which can be represented by the following

Lagrangian function.

Lp(x, z, λ) � f(x) + g(z) + λT(Ax + Bz − c) + ρ/2����Ax + Bz

− c
∣∣∣∣∣∣∣∣22

(24)
where Lp(x,z,λ) is the augmented Lagrangian function; λ is the

dual variable; ρ > 0 is the penalty function. Then the format of

update iterations can be,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xk+1 � argmin
x

Lρ(x, zk, λk)
zk+1 � argmin

z
Lρ(xk+1, z, λk)

λk+1 � λk + ρ(Akk+1 + Bxk+1 − c)
(25)

Moreover, this paper uses AA-ADMM to further

accelerate the ADMM algorithm. The AA-ADMM can

speed up the calculation and improve the convergence

accuracy. The Anderson’s acceleration method should

satisfy that the sum of weighting coefficients is one and it

is convergent. In this paper, the total of multiple objectives

weights is 1. Moreover, the game formula is obtained by the

deformation of the quadratic function. The quadratic

function has the iterative convergence property.

Therefore, the Anderson’s acceleration method can be

applied in the proposed model. The main idea of

Anderson acceleration is to use the current iteration xk
and the previous m iterations to make the residuals of

new iterations as small as possible. Based on Eq. 24, the

iterative form of fixed-point iteration is,

(zk+1, λk+1) � G(zk, λk) (26)

Using u= λ / ρ, the iteration of the multi-objective system is

obtained as,

{Xk+1
i � argmin

Pi

(fi(Xi) + ρ

2
(Xi − �X

k + uk
i )2)

uk+1
i � uk

i + ek+1 (27)

where Xk+1
i is the cost value after k+1 iterations, the optimal

solution is obtained by,

FIGURE 3
Optimized scheduling solution process.
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Xk+1
i � ρ( �Xk − ek) − ρuk

i − c2i

ρ + 2c1
i � 1, 2,/, n (28)

In the ADMM algorithm, the iteration is ended when both the

original residuals and the pairwise residuals are less than the

convergence accuracy,

⎧⎪⎪⎨⎪⎪⎩
uk+1
i − uk

i � ∑n
i�1
Xk+1

i −Xn#εA

ρ( �Xk+1 − �X
k)#εB

(29)

where εA and εB is the convergence accuracy of the original

residuals and dual residuals.

The optimal scheduling solution process of the cooperative

game model under multiple objectives is shown in Figure 3.

3.3 Shapley value benefit allocation
method

Allocation is an important concept in cooperative games. The

distribution of benefits ensures that the benefits gained by

cooperation are greater than the benefits of operating alone. In

this paper, the Shapley value method is used to solve the benefit

distribution problem in the cooperative game. The contribution of

each alliance is used to determine the benefit distribution. In

addition, the classification of alliances is based on the energy

coupling relationship, e.g., GSHP and ASHP use electricity to

generate heat, CHP burns gas to produce electricity and heat.

It is considered that the benefits received by multiple agents

in operation are allocated as φi(v). V represents the cooperative

surplus, and i represents the coalition agent. In this paper, v is the

difference between the independent mode and cooperation

mode. The benefits of the coalitions are allocated according to

the following equation (Duan et al., 2022).

ϕi(v) � ∑
S⊆N

W(|S|)[v(S) − v(S − {i})]
i � 1, 2,/, n

(30)

W(|S|) � (|S| − 1)!(n − |S|)!
n!

(31)

where S denotes the number of participants in the set N of coalition

members; v(s) is the overall operating cost of PIES; v(s-{i}) is the

operating cost of the cooperative coalition without i; v(s)-v(s-{i})

means themarginal contribution of the agent to the coalition S;W|S|

is the probability of the occurrence of the coalition S.

4 Case studies

The optimal operation solution of PIES is obtained by solving

the proposed cooperative game model through AA-ADMM. The

benefits generated after the cooperation are distributed by the

Shapley value method. The convergence accuracy of the AA-

ADMM algorithm is set to 10–4. There are five agents in PIES,

that is, EES, EC, GSHP&ASHP, CHP, and AC. The parameters

are shown in Table 1. The electrical, thermal and cooling load

curves are shown in Figure 4.

The prices of electricity are 1.14 CNY/kWh during peak

hours (12–14, 19–22), 0.46 CNY/kWh during valley hours (1–7,

23, 24), and 0.84 CNY/kWh during normal hours (8–11, 15–18).

The price of natural gas is 0.25 CNY/kWh. The purchase limit of

electricity and natural gas is 200 MW. The carbon emission

factors of natural gas and electricity are 0.22 kg/kWh and

0.968 kg/kWh, respectively.

4.1 Results of multi-agent game
optimization

The multi-agent cooperative game optimization is performed

to find the optimal operation strategy. The AA-ADMM

algorithm can find the weight parameters of two objectives,

operations costs, and carbon emissions.

The (Figure 5A) show that cost and CO2 emissions are

mutually exclusive objectives, and a decrease in one is

necessarily accompanied by an increase in the other one. The

optimal operating cost fC is 5.9332×108 CNY and carbon

emission fE is 3.9796 × 108 kg. As shown in (Figure 5B), the

optimal target value corresponds to a specific weight λ of 0.7071.
After getting the target weights, the game operation

considering multi-agent is performed. There are two modes of

PIES operation, mode A is the separate operation mode and

mode B is the optimized cooperative operation model. The

TABLE 1 Component parameters.

No. Equipment Capacity (MW) η kI($/kW) ωk(¢/kWh)

1 CHP 100 0.5/0.3 (E/H) 1,186 0.33

2 ASHP 12 3 171 0.14

3 GSHP 14 4.4 428 0.14

4 EC 90 3.5 180 0.146

5 AC 60 0.7 200 0.12

6 EES 50 0.95/0.9(A/E) 375 0.11
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optimization results of the operation cost and carbon emission of

the two modes are shown in Table 2.

Considering the contribution of all the sub-alliances, the

Shapley value method is used to allocate benefits to the alliances.

All feasible sub-alliances are shown in Table 3. The optimization

results of the sub-alliance operation are shown in Figure 6.

As shown in Table 2 and Figure 6, the total cost and carbon

emission are positively correlated expect the cases without EC.

This is because the efficiency of EC is lower than that of AC. For

alliances 8, 16, 17, 18, and 19, the supply of heat load mainly

comes from electric components, which causes the increase in

carbon emissions.

The total economic benefit and carbon emission benefit using

the cooperative operation are 0.4222×108 CNY and 0.9056 ×

108 kg, respectively. As shown in Figure 7, since CHP can meet

most of the electric and heat load, it obtains the economic benefit

FIGURE 4
Load curves of four typical days.

TABLE 2 Results of operation mode.

Operation mode Cost/CNY Emission/kg

Mode A 6.3554 × 108 4.8852 × 108

Mode B 5.9332 × 108 3.9796 × 108

TABLE 3 Achievable gaming alliance combinations.

Affiliate Portfolio CHP GSHP&ASHP EC AC EES

Alliance 1 1 1 1 1 1

Alliance 2 1 1 1 0 1

Alliance 3 1 1 0 1 1

Alliance 4 1 0 1 1 1

Alliance 5 1 0 1 0 1

Alliance 6 1 0 0 1 1

Alliance 7 0 1 1 1 1

Alliance 8 0 1 1 0 1

Alliance 9 0 1 0 1 1

Alliance 10 1 1 1 1 0

Alliance 11 1 1 1 0 0

Alliance 12 1 1 0 1 0

Alliance13 1 0 1 1 0

Alliance 14 1 0 1 0 0

Alliance 15 1 0 0 1 0

Alliance 16 0 1 1 1 0

Alliance 17 0 1 1 0 0

Alliance 18 0 1 0 1 0
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0.1802 × 108 CNY. The large capacity of CHP leads to the high

carbon emission, its carbon emission allocation changes from

0.1529 × 108 kg to 0.1349 × 108 kg. Because of the high efficiency,

EC has the economic benefit of 0.0686 × 108 CNY, and the carbon

emission allocation benefit is 0.5349 × 108kg. The economic and

carbon emission benefits of GSHP and ASHP are 0.0196× 108

CNY and 0.1546 × 108kg, respectively. This is because their

electricity can be supplied by not only grid but also CHP, and the

efficiency of electro-thermal coupling components is high. As the

impact of energy storage on carbon emission is extremely low, its

carbon emission benefit is zero.

The optimal operation strategies of PIES components in

spring and winter are shown in Figures 8–11.

As shown in Figures 8–11, the proposed optimization

operation strategy can realize the balance of multiple energy.

Compared with electricity, due to the cheaper price and the lower

carbon emission of gas, the peak hour load is supplied by CHP.

Compared to ASHP, GSHP has better efficiency performance.

Therefore, GSHP also is the main component to supply the heat

load, and ASHP is always used to meet the peak load in winter.

4.2 Analysis of algorithm performance

1) Weight analysis

When the specific weight λ is 0, the operating cost fC is

6.1561 × 108 CNY and fE is 3.6229 × 108 kg. In his cases, the

FIGURE 5
(A) Optimal solution on the Pareto. (B) Optimization objective value.

FIGURE 6
Optimization results for all sub-affiliate operations.

FIGURE 7
Benefit distribution results.
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FIGURE 8
The optimal electricity operation strategies in spring.

FIGURE 9
The optimal heat operation strategies in spring.

FIGURE 10
The optimal electricity operation strategies in winter.
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operation strategy is the worst operation cost. When the λ is 1,

the operating cost fC is 5.7876 × 108 CNY and the carbon

emission fE is 4.3235 × 108 kg. In this case, the solution

approaches its worst carbon emission.

It can be intuitively seen that the weight of 0.7071 is a

compromise value and can reach the solution balancing two

objectives, thus verifying the feasibility of the multi-objective

solution method in this paper.

2) Algorithm Comparison

To verify the effectiveness and advancement of the AA-

ADMM algorithm, it is compared with Non-dominated

Sorting Genetic Algorithms (NSGA-II) and Multiple Objective

Particle SwarmOptimization (MOPSO) algorithms. AA-ADMM

possesses a faster solving speed and obtains better objective

values. The solution iteration processes of three algorithms are

shown in Figure 12.

5 Conclusion

In this paper, a cooperative-game-based multi-agent

optimization model is proposed to explore a new mode of

park operation under the current development of

decentralized and park-based energy systems. The

proposed model is solved by the AA-ADMM algorithm to

find a high-quality solution satisfying the system

constraints, and the benefits of the saved costs are

allocated using the Shapley value method. Through

verification, the method in this paper has the following

significant advantages.

1) The PIES cooperative game model can make excellent use

of equipment supply properties to couple multiple energy

sources for coordinated operation. It alleviates the problem

of energy inefficiency and maximizes operational

efficiency. This method provides ideas for

decentralization and park development. The method can

extend the application scenario to achieve a larger range of

peer-to-peer transactions.

2) The AA-ADMM can effectively solve the multi-objective

optimization problem of the energy system. It can realize

the rational allocation of resources and find a reasonable

trade-off between operating costs and carbon emissions.
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FIGURE 11
The optimal heat operation strategies in winter.

FIGURE 12
Iterative process of the three optimization algorithms.
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