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horizontal-axis turbines
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This study analyzes actuator disc (AD) models of horizontal-axis turbines to

determine optimal performance, defined as the maximum power extracted at

any tip speed ratio. We use the calculus of variations to maximize rotor torque

relative to the thrust without making any assumptions about the rotor loading.

The torquewas obtained from the angularmomentum equation and the thrust

from the Kutta-Joukowsky equation which depends on the circumferential

velocity and tip speed ratio. The optimality requirement is that the pitch of

the vorticity exiting the rotor must be constant across the wake and equal to

the ratio of torque to thrust. This result generalizes the classical finding of Betz

and Goldstein that optimal lightly-loaded ADs have constant pitch. Optimizing

the torque in the far-wake, well downstream of the rotor, leads to the same

requirement of constant pitch. This implies that the pitch of an optimal rotor

is constant everywhere in the wake at all tip speed ratios. We show that it is

not possible for the pitch to reach its optimal value because of the vorticity

distribution in the wake, and propose modifications to the pitch at the rotor

and in the far-wake. The axial and circumferential velocities in the far-wake,

which are easily determined, were used to find those at the rotor from the “disc

loading equation” for the angular momentum which is also the normalized

bound circulation at the rotor. For the simplest case of a lightly-loaded rotor

at zero tip speed ratio, the induced circumferential velocity is linear in radius

and the axial component is quadratic, As the tip speed ratio increases, the

optimal power and thrust asymptote to the familiar Betz-Joukowsky values,

and the induced axial velocity and rotor bound circulation become constant.

At low tip speed ratios, the optimal wakes are constrained by the need to avoid

breakdown of the flow at high swirl, and the conventional thrust equation,

involving the axial velocity only, is inaccurate. As found in previous studies, the

power coefficient increases monotonically with tip speed ratio, but the thrust

coefficient reaches a maximum value slightly above the Betz-Joukowsky limit

at a tip speed ratio of two, before decreasing towards the limit.
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1 Introduction

Modelling a horizontal-axis turbine or propeller as an
actuator disc (AD) is fundamental to our understanding of
their performance. As shown in Figure 1, an AD just covers
the circular area swept by the blades and is vanishingly thin
in the direction of the flow. It is porous to the wind flow,
but can sustain force and torque. ADs are circumferentially
uniform and therefore represent the rotor - the collection of
rotating blades - as their number, N, becomes large. The axial
and radial velocities, u and v, are continuous through the disc,
but the circumferential velocity, w, is generated only at the disc.
Circumferential uniformity is critical to the simplicity of AD
theory. Further details of the assumptions and history of the
theory can be found in Chapter 1 of van Kuik (2018) which
finishes with a discussion of the most important result of AD
analysis; the Betz-Joukowsky (BJ) limit for the power output
of turbines. Section 6.3.1 of van Kuik (2018) shows this limit
applies at high tip speed ratio, λ, defined as the circumferential
velocity of the blade tips divided by the freestream velocity.
He also considers optimal performance (maximizing the power
at any λ) for smaller λ and compares several models in his
Figure 6.14. Further studies of optimal performance include
Mikkelsen et al. (2014) who suggested that the wake at low λ
may be subject to breakdown, and Vaz and Wood (2016) whose
model did not lead to breakdown. The λ− dependence of the
optimum power coefficient, CP, and thrust coefficient, CT , is
still an open question because their theoretical foundation has
not been investigated fully and the susceptibility to breakdown
needs further consideration. van Kuik (2018) also considers the
connection between AD theory and blade element methods for
finite N. This connection is not studied here as it will be the
subject of a subsequent analysis.

The important early analyses of propeller performance by
Betz (1921) and Goldstein (1929) in particular, assumed “light
loading” whereby the velocities induced by the vortex structure
representing the blades and wake, are small compared to the
freestream velocity. As recounted in Okulov et al. (2015), this
led to the “Betz-Goldstein” rotor whose optimal performance
was associated with constant pitch of the helicoidal wake at
the rotor. In other words, “the ideal flow [is] about rigid screw
surfaces displaced axially backwards,” Betz (1921), page 8. On
the next page, he states “We can, however, by foregoing strict
mathematical accuracy, but without any error worthmentioning,
so modify the laws [governing the flow] that they will also hold
good for more heavily loaded propellers.” On the other hand,
Goldstein (1929) states “The approximation that the trailing
vortices form regular helices is equivalent to neglecting the
contraction of the slipstream [for propellers], and is valid only for
small values of the thrust coefficient.” It is noted that Goldstein
acknowledgedBetz for suggesting his study of optimal propellers,
so the latter and later quote is a better summary of classical

understanding. To the authors’ knowledge, the issue of optimality
under arbitrary and general loading has not been fully addressed.
It is also noted that Goldstein considered finite N whereas we
restrict attention to ADs. It will be shown that “regular helices”
can also occur for ADs with any loading.

Further development of AD theory after Betz and Goldstein,
such as by Conway (1995; 1998), relaxed the light-loading
assumption by using particular variations of vorticity and other
fluid variables across the rotor and in the wake. van Kuik
(2020), for example, considered the velocities at the rotor on
the assumption that the disc loading or bound circulation, is
constant. We note for later use that the disc loading is also
proportional to the angular momentum of the fluid exiting
the rotor. No study, however, has optimized turbine power
production without first specifying the form of the loading.
One of the challenges in doing this is that constancy of pitch
immediately behind a lightly-loaded rotor guarantees constancy
throughout thewake, but this is not the case for arbitrary loading.
In order to undertake an optimization without specifying or
assuming the loading, this investigation considers the far-wake
in addition to the flow emerging from the rotor.

Our aim is to investigate optimal AD performance of
horizontal-axis turbines as a function of λ. The light-loading
approximation is relaxed and no assumptions aremade about the
velocity or vorticity distribution to start the analysis. Conditions
for optimality are clarified, partly by considering the far-wake
where the axial and circumferential velocities are related simply
through the pitch. “Optimality” is taken tomeanmaximizing the
power coefficient, CP, for any positive λ after first maximizing
rotor torque for a fixed thrust.This is achieved using the calculus
of variations, CoV, with Lagrange multipliers, as was done for
propellers by Breslin & Andersen (1996) and Conway (1995).
Propellers represent the inverse problem to turbines: the thrust
is maximized for a given torque but the analysis is the same.
It will be shown that CoV is easily implemented for turbine
ADs and leads to important results with very little effort.
Later work on propellers by Moreau et al. (2017) used a similar
analysis. They also describe the history of these methods for
propeller optimization. A variationalmethodwas used by Lopez-
Garcia et al. (2012) to optimize hovering rotors. Section 9.3 of
Sørensen (2015) describes the application of CoV to wind
turbines but only for lightly-loaded rotors with small expansion,
and without consideration of the far-wake. Bontempo and
Manna (2022) used CoV to show that the Betz-Joukowsky limit
gives the maximum performance of uniformly-loaded actuator
discs in the presence of flow expansion but did not consider the
effects of λ or the role of the vortex pitch.

In common with most turbine analyses, the AD equation
for the torque is determined from conservation of angular
momentum in the wake. The thrust is given by the Kutta-
Joukowsky (KJ) equation as derived by Limacher and
Wood (2021), hereinafter cited as LW. This equation has the
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FIGURE 1
Perspective view of the actuator disc representation of a wind turbine rotor and the streamtube containing the flow that passes through the
rotor. The arrows indicates the directions of the velocities which are normalized by the freestream velocity. The shaded circle shows the
actuator disc. The velocity triangles are not to scale. Equation 14 gives p = (1− a)/(λ+w/(2x)) and Equation 11 gives p∞ = (1− a∞/2)/(λ+w∞/(2x)).
The upper figure is adapted from https://openmdao.org/newdocs/versions/latest/examples/betz_limit.html.

circumferential velocity at the rotor, w, instead of the axial
induction factor, a, that appears in the conventional thrust
equation. Like the angular momentum equation but unlike the
conventional thrust equation, the KJ equation is valid for any λ
provided the vortex lines remain coincident with the streamlines.

Themain novelty of this study is its determination of optimal
rotor characteristics as a function of λ without making any
assumptions about the nature of the loading.TheBJ limit emerges
as the global limit at sufficiently high λ. This result is not new
but is important in understanding the changes to the flow at
small λ. We also consider for the first time the far-wake’s role
in determining optimality to minimize the assumptions made
about the form of the flow through the rotor. Further, it is shown
that for λ ≤ 2, optimal performance is constrained by the need to
avoid the breakdown of the swirling, expanding wake.

The application of results derived for optimal ADs to real
wind turbines is often a challenging task because it is not
clear how the extension to even a lifting-line description can
be done while maintaining the generality of arbitrary loading.
Sørensen et al. (2022), for example, use the Goldstein light-
loading results to derive the extracted power of a three-bladed
rotor as a function of λ. We consdier the applicability of AD
analysis to finite −N in Section 4.

The next section describes the CoV formulation starting
with the simplest case of a lightly-loaded stationary rotor.
This provides the lower bound on the distributions of the
velocities and rotor loadings which change dramatically with
λ. Section 3 presents and discusses the main results. Section 4
lists four important applications of the analysis to wind turbines,
propellers and other thrust producers. The final section contains
the conclusions. The Appendix derives an approximate and an
exact solution for two special cases of the “disc loading equation,”
derived in Section 2 and solved numerically to provide the
results in Section 3. The closed-form solutions are used to assess
the accuracy of the numerical ones.

2 Optimality via calculus of
variations

The first part of the optimization problem is to maximize
torque relative to thrust, both of which come from the lift for an
ideal rotor with no viscous drag. For power-producing rotors (i.e.
λ > 0) optimizing torque is equivalent to optimizing powerwhich
is the main goal of this study. We will, however, briefly consider
stationary rotors as the λ ↓0 limit of the analysis.The relationship
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between the conventional power and torque coefficients, CP and
CQ respectively, is CP = λCQ, from which it follows that

dCP

dλ
|
λ=0
= CQ (λ = 0) . (1)

Thus maximizing torque on a stationary rotor, maximizes its
power extraction as it begins to rotate.

2.1 Torque and thrust for an actuator disc

The conventional angular momentum equation is obtained
using a cylindrical control volume (CV) centred on the axis of
rotation and whose radius is large compared to the rotor radius,
R.The inlet is well upwind of the rotorwherew = 0, and the outlet
is just downwind of it. For a circumferentially-uniform AD, The
rotor torque Q is given by Equation (2.2) of Sørensen (2015) as:

Q
2πρU2

0R
3 = ∫

1

0
(1− a)wx2dx = ∫

1

0
(1− a)cxdx (2)

where ρ is the fluid density, and U0 is the freestream velocity.
x is the radius normalized by R, as are all lengths, and c = wx
is the normalized angular momentum or disc loading which is
often more useful than w. Throughout this paper, all velocities
are normalized by U0. The upper limit on the integral can be any
x ≥ 1 because w = 0 in this region. a is the usual axial induction
factor at the rotor and it is emphasized that w is the azimuthal
velocity immediately behind the blades. At the rotor, the azimuthal
velocity is w/2 with the difference, w/2, coming from the bound
vorticity of the blades. Equation 2 is valid for any distribution of
w(x), and any expansion of the flow through the rotor.

For the same CV, the KJ equation for the thrust on an AD, T,
is

T
2πρU2

0R
2 = ∫

1

0
(w

2

2
+ λwx)xdx. (3)

LW derived Eq. 3 from an impulse analysis which shows that
it is also exact for any distribution of w(x) and for any flow
expansion. Equation 3 has an essential restriction: it requires
alignment of the trailing vorticity with the streamlines in the
wake, which will be assumed to hold throughout this analysis.
Wood & Limacher (2021), hereinafter cited as WL, give the
other seven assumptions required to derive (3). Equations 2, 3
must be augmented by consideration of the subsequent wake
development as is done in deriving the BJ limit. It is important,
therefore, to note that (2) holds everywhere in the wake, that
is, from the near-to the far-wake in Figure 1, with a suitable
adjustment to the upper limit on the integral, but (3) does not.
Its general form in the near-wake includes the radial velocity, v,
as explained byWL. Introducing v complicates the optimization,
but fortunately v = 0 in the far-wake, which is considered in
Section 2.4, after applying (2) and (3) at the rotor. Equations 2,
3 are given as (9.95) of Breslin & Andersen (1996) and used in
a CoV determination of optimal propellers without considering
the equivalent of significant flow expansion.

2.2 Lightly-loaded stationary rotors

The simplest case is a stationary rotor (λ = 0) for which the
second term in (3) is zero. If the rotor is lightly-loaded, a is
negligible. Combining Eqs 2, 3 leads to a simple CoV problem
in terms of the Euler-Lagrange equation: to find the optimal
distribution of w(x) given by

∂h/∂w = 0 where h = wx2 − Lw2x/2. (4)

L is the Lagrange multiplier1 of the integrand in (3). Clearly,
the solution is w = x/L, which maximizes Q = LT, and satisfies
the boundary condition w(0) = 0. There is no need to consider a
specific condition at x = 1 because the right side of (4) does not
depend on dw/dx, see Section 1.4 of Wan (1993) and Section 1.5
of Komzsik (2020). Thus the wake, which will not expand
significantly, is a vortex “core,” ormore appropriately, a helicoidal
vortex cylinder with constant (with x) pitch, p, defined as the
streamwise co-ordinate of a point on the vortex divided by its
helical angle; the precise from is derived in the next subsection.
It is relevant to the later analysis to observe that p is directly
related to the Lagrange multiplier as was noted by Breslin and
Andersen (1996). It is further noted that if the maximization
was of the circumferential force or lift, relative to thrust, then
h = wx− Lw2x/2, and the optimal w becomes constant. This is
only the start of a derivation of the optimality condition for wings
which are also stationary, single-bladed rotors, but it does point
to the close relationship between the analysis of lightly loaded
wings and rotors. Both analyses, for example, ignore the induced
axial velocity.

There are two reasons why this analysis is important for
the study of optimal power-producing rotors. First, it gives the
lower bound of w∼x as λ ↓0 which is very different from w∼1/x
associated with the BJ limit at high λ. Second, the inviscid
expansion of flow with constant axial velocity and solid body
rotation was analyzed in Section 7.5 of Batchelor (1967). To the
authors’ knowledge, this is the only expanding flow that has exact
equations for the velocities in the upstream and downstream
regions. He showed that the expanded flow can break down
through the appearance of negative velocities on the axis of
rotation. Avoidance of breakdown is a further constraint on the
present analysis and is considered in Section 2.6.

2.3 Rotors with arbitrary loading

At any λ, h is a function of w and a:

h = (1− a)wx2 − L(w2/2+ λwx)x (5)

1 Lagrange multipliers are usually denoted by the symbol (λ) we use for
the tip speed ratio.
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and the Euler-Lagrange equations for optimality are
∂h/∂a = ∂h/∂w = 0. The first requires w = 0 which is approached
at high λ to give the BJ limit, and the second,

L = (1− a)/ (w/x+ λ) , (6)

is applicable at all λ. The right side of (6) is LW’s Eq. 15 for
the pitch of the trailing vorticity immediately behind the rotor,
normalized by the blade radius. The pitch, as defined earlier,
is also the tangent of the angle between the vortex lines and
the plane of rotation. Thus, the connection between p and the
Lagrange multiplier carries over to all λ and the Betz-Goldstein
requirement that an optimal rotor has constant pitch is valid for
arbitrary disc loading. It is, however, important to stress again
that for light-loading with a ≈ 0, the optimal w remains linear in
x at low values of λ. At high λ, λ≫ w/x for most of the wake and
the second term in Eq. 3 dominates. It will be shown that w∼1/x
for most x at high λ.

Setting p = L does not complete the optimality solution
because a further relation is needed between a and w. This
can be found either from the analysis of the far-wake in the
next subsection, or by assuming helical symmetry at the rotor.
Symmetry requires 2pa = c = wx as onlyw/2 is due to the trailing
helical vorticity, and is strictly valid only for trailing vorticity
of constant pitch and radius, as explained, for example, by WL.
Symmetry and (6) lead to

w =
2 (1− λp)px
x2 + 2p2

and a =
(1− λp)x2

x2 + 2p2
. (7)

which can be compared to Equation 58 of Okulov et al. (2015).
Note that, at λ = 0, a = w2/2 for large pwhichmakes its negligible.
The equations for the velocities in (7) can be substituted into
Eq. 2 to determine the torque. Multiplying by the angular
velocity gives the extracted power which can be differentiated
with respect to p to find the optimal power. This will not be
done because it will be shown that helical symmetry is not a
generally-valid assumption.

2.4 The far-wake with arbitrary loading

As an alternative to invoking helical symmetry at the rotor,
which may be invalid for expanding flow, the far-wake can be
analyzed. There, the vortex development is complete and helical
symmetrywill hold for anywake expansion.Quantities in the far-
wake are identified by the subscript “∞”.The angular momentum
equation has the same formas (2) but the thrust equation changes
as noted above. The equations to be optimized are

Q
2πρU2

0R
3 = ∫

R∞

0
(1− a∞)w∞x

2dx and

T
2πρU2

0R
2 = ∫

R∞

0
(1
2
w2
∞ + λw∞x−

1
2
a2∞)xdx. (8)

where the equation for T is (25) of WL. R∞ is the non-
dimensional radius of the far-wake. Thus

h∞ = (1− a∞)w∞x
2 − L∞ (w

2
∞/2+ λw∞x− a

2
∞/2)x. (9)

No special consideration of the dependence of R∞ on a∞ and
w∞ is needed because Liebnitz’s rule for differentiating under an
integral introduces no extra termswhen dQ/dT = L∞ everywhere
in the far-wake. Setting ∂h∞/∂a∞ = 0 gives the helical symmetry
relation w∞x = L∞a∞, without a factor of 2 because w∞ is due
entirely to the trailing vorticity. ∂h∞/∂w∞ = 0 results in

L∞ = p∞ = (1− a∞)/ (w∞/x+ λ) , (10)

which, reassuringly, is also retrieved by removing a∞ from
(9) using helical symmetry and considering only ∂h∞/∂w∞ = 0.
Equation 10 again relates the Lagrange multiplier to the pitch.
Since the values of torque and thrust cannot depend on the CV
used to determine them, p = p∞ and, from 6, 7, 10, a∞→ a at
high λ. This would prevent wake expansion and reduce power
extraction.The approach of the far-wake pitch to the value given
by (10) formaximizing the torque,must be constrained. Oneway
of doing this is provided by the following considerations.

At any λ, the angular momentum or normalized circulation,
c∞ = w∞x, is a monotonically increasing function of x, and
the vortex core, where w is maximized, becomes smaller as λ
increases. These results suggest that the far-wake approaches
a “Joukowsky” wake in which all the positive vorticity (giving
positive angular momentum and torque) is concentrated along
the axis of rotation, and all negative (tip) vorticity in a cylindrical
sheet at R∞, Okulov et al. (2015). The pitch of the tip vorticity is
then

p∞ = (1− a∞/2)/ (w∞/(2x) + λ) . (11)

as the axial and circumferential velocities of the sheet must be
the average of the wake velocities, 1− a∞ and w∞ respectively,
and the freestream values of unity and zero. The velocities in
this definition of p∞ are shown in Figure 1. A “generalized
Joukowsky” far-wake is now assumed for any λ: all negative (tip)
vorticity is concentrated at the edge of the wake but the positive
vorticity is an arbitrary, monotonically increasing function of
radius. It is further assumed that: 1) the generalized wake is as
close to the optimal as can be achieved when the tip vorticity is
considered and 2) p∞ as given by (11) is the Lagrange multiplier.
In other words, Eq. 11 is generally valid. With p∞ = p, the far-
wake velocities are

w∞ =
2 (1− λp)px

x2 + p2
and a∞ =

2 (1− λp)x2

x2 + p2
. (12)

CP,∞ and CT,∞ are given by

CP,∞ = λCQ,∞ = λpCT,∞

= 4λp (1− λp)[
R2
∞ (2λp(R2

∞ + 2p2) −R2
∞ − 3p2)

p2 +R2
∞

+ p2 (3− 4λp) log(1+R2
∞/p2) ] . (13)
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The reasons for limiting the pitch through Eq. 11 imply
similar limitations for the flow exiting the rotor. If the wake
does not expand significantly, which is the case for lightly loaded
stationary rotors, then a in (6) should be replaced by a/2. WL
showed that a just outside an expanding wake was comparable
to that just inside, implying that no replacement of a should be
made. Since a is negligible for lightly-loaded stationary rotors, it
was decided that no change should be made to the form of a in
(6). In contrast, the difference inw from inside to outside the far-
wake occurs also at the rotor.Thus the pitch equation at the rotor
is modified to

p = p∞ = (1− a)/ (w/(2x) + λ) . (14)

as indicated in Figure 1. The pitch Eqs 11, 14 are used for the
remainder of this analysis. It is emphasized that these equations
are approximations for most λ. In the Joukowsky wake at high
λ, there will be no vorticity outside the core and beneath the
tip vortex sheet, so that (11) will be exact. For the generalized
Joukowsky wake, however, the vortex pitch within the wake will
either be different from (11) as its axial velocity will be closer
to 1− a∞, or there will be a misalignment between vortex and
streamlines and the thrust equations will be modified. No simple
alternatives to the pitch equation appear possible, so we continue
to use them as they are asymptotically correct and the main
constraint at low λ comes from the need to avoid recirculation.

Finally, it has been mentioned that ending the CV anywhere
between the rotor and the far-wake introduces the radial velocity
v into the thrust equation as shown by Eq. 24 in WL: the
T equation in (8) has an additional term v2/2 within the
parentheses. In the absence of a relation between a,v, and w, this
leads to an apparently useless additional optimization condition
∂h/∂v = 0 but the conditions on a andw are the same as on a∞ and
w∞. This implies that the Lagrange multiplier is the vortex pitch
throughout the wake of an optimal rotor and the pitch must be
constant.

2.5 Combining the rotor and far-wake
analyses

To solve the optimization problem for all λ, a∞ and w∞ must
be related to a and w without using helical symmetry which may
not hold hold if the wake expands significantly. One way to do
this is to use the streamfunction, Ψ, defined as ∂Ψ/∂x = (1− a)x
anywhere in the wake and remove 1− a using the ptich Eq. 14.
This use of Ψ follows Batchelor’s (1967) study of expanding,
swirling flow. He combined equations for the total energy and
c = wxwhich depends only on Ψ by the principle of conservation
of angular momentum.The relationship can be determined from
Eq. 12 and then used to solve two ordinary differential equations

(ODEs) behind the rotor:

dΨ
dx
= p(

c (Ψ)
2x
+ λx) and dc

dx
= dΨ

dx
dc
dΨ

(15)

for trial values of p, from which follow a and the thrust and
torque. The present analysis reverses that used in Section 7.5 of
Batchelor (1967). He established Ψ at the equivalent position to
the rotor and then determined the velocities in the equivalent of
the far-wake.

From Eq. 12, both c∞(x) and Ψ∞(x) are functions only of x2,
which is easy to eliminate to derive the relationship between Ψ
and c:

Ψ = 1
2
p2[

c (2λp− 1)
2p (1− λp) − c

+ 2 (1− λp) log(
2p (1− λp)

2p (1− λp) − c
)].

(16)

Differentiating (16) gives

dΨ
dc
=
p2 (1− λp) (p− c)
(2p (1− λp) − c)2

, (17)

and the equation for dc/dx is

dc
dx
=
(2p (1− λp) − c)2

p (1− λp) (p− c)
( c
2x
+ λx). (18)

This “disc loading” equation appears not to have a general
closed-form solution. The exact solution for λp = 1/2 and
the approximate solution for λ≫ c/(2x2) are derived in the
Appendix and used there to check the numerical solution which
is now described.

2.6 Solving the disc loading equation for
optimal power

The disc loading Eq. 18 for λ > 0 defines two boundary value
(BV)ODEs that satisfyΨ(1) = Ψ(cmax), c(1) = cmax = c∞(R∞), and
Ψ(0) = c(0) = 0. As far as we could determine, the ODEs only
have analytical solutions for the special cases described in the
Appendix. BV numerical solvers are usually more difficult to
implement than initial value solvers so the Matlab variable step
length Runge-Kutta routine ode113was used to integrate dc/dx at
all λ for trial values of R∞ and p. To avoid numerical singularities
at x = 0, the integration was started from x0 = 0.001 for all but the
highest λ in Table 1 for which x0 = 0.0001. The initial value of c
was

c(x0) = c0x20 + c2x
4
0 (19)

where c0 and c2 were determined from Eq. 18:

c0 =
2 (1− λp)

p
and c2 = −

4λ (1− λp)
p2 (1+ λp)

. (20)

Integration was terminated at x = xend defined by
Ψ(xend) = Ψ(cmax). If |1− xend| > 0.001 the solution was rejected.
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FIGURE 2
Iteration of the power coefficient (□) and λp (×) for λ = 4.

This rejection was important because some values of p and R∞
gave CP,∞ > 16/27. High CP, however, always caused xend > 1 to
“lower” CP by increasing the rotor radius. Using Ψ to terminate
the solution was found to give very similar results to the use
of c. Checks of the numerically determined a and c against the
analytic solutions for the special cases of λp = 1/2 at low λ and
λx≫ c/x at high λ are described in theAppendix.The numerical
values were found to be very accurate except for a at very small
values of x.

Because some far-wake equations gave CP > 16/27, the
search for optimal performance could not be based on finding
the value of p that maximized far-wake CP for a trial value
of R∞. Instead, for each λ, a range of p and R∞ was used
to find c(Ψ) for the far-wake from Eq. 12. There was no
rejection of solutions for which CP > 16/27 from (13) so as
not to bias the search for optimality. The ODEs in (15) were
complemented by ODEs for CP and CT and all equations
were solved concurrently. The solutions were rejected if the
relative tolerance |(CP −CP,∞)/CP,∞| > 0.001.The tolerances used
in solving the ODEs were at least two orders of magnitude
smaller.Themaximum CP for each λwas found by inspection by
incrementing R∞ and λp in steps of 0.0001. A typical example of
the search for optimal values, at λ = 4 is shown in Figure 2which
is discussed in detail in the next section.

2.7 Detecting flow breakdown

Seeking the optimal solutions at small λ resulted in large w
as x→ 1. This may lead to flow breakdown in a way that the
present analysis does not consider. Wake breakdown is analyzed
in Section 6.6 of Sørensen (2015). He assumed a Joukowsky wake
for low λ but, as shown in Section 2.3, this is not valid for an

optimal rotor. Without prescribing the wake, it is still possible
to follow Sørensen (2015) in determining the significance of
high w by using the swirl number, S, defined as the ratio of the
fluxes of angular and axial momentum. It is commonly held that
swirling flow will break down at a threshold value S ≈ 0.5, e.g.
Vignat et al. (2022). In the present flow, S in the far-wake is given
by

S∞ = ∫
R∞

0
(1− a∞)w∞x

2dx/[R∞(∫
R∞

0
(1− a∞)2xdx

−1
2
∫
R∞

0
w2
∞xdx)]

= CQ[2R∞(
7+ 2λp (5λp− 8)R2

∞ + (1− 2λp)R4
∞

1+R2
∞/p2

− 2p2 (1− λp) (3− 5λp) log(1+R2
∞/p2) ) ]. (21)

For optimal rotors, the equation for S∞ can be approximated as

S∞ ≈ CQ/(CT +ΔCT) ≈ pCT/(CT +ΔCT) . (22)

ΔCT is the mass flux which is also the upwind momentum flux
entering the CV. Since ΔCT > 0, it follows that S∞ < p which
restricts the range of λ for which breakdown is possible to λ ⪅ 2.

Section 2.2 showed that a is small and w∼x at low λ,
and mentioned that the expansion of this flow is analyzed
in Section 7.5 of Batchelor (1967). His Equations (7.5.22) and
(7.5.23) give the equivalent far-wake velocities as
U∞

U
=
1− a∞
1− a
= 1−AJ0 (2x/p) and

w∞

1− a
= x
p
−AJ1 (2x/p)

(23)

in the present notation. a is constant, and J0(.) and J1(.) are Bessel
functions of the first kind of order zero and one respectively.The
coefficient A is given by

A =
R2
∞ − 1

pR∞J1 (2R∞/p)
. (24)

Breakdown starts when U∞(x = 0) = 0, i.e. when A = 1. This
defines the critical p as a function of R∞ and limits expansion
to R2

∞ = 1.925 to avoid J1(2R∞/p) going negative. When A = 1,
S∞ ≈ 0.52 which was taken as the limiting value to avoid
recirculation in the optimality search. In the present case, the
light loading approximation does not hold in general so Eq. 23
is likely to overestimate theQ and T that will cause recirculation.
It is noted that Batchelor’s and the present analysis can only
predict the onset of recirculation. Both require establishing an
equation for Ψ at a particular cross-section (equivalent to the
rotor in his case) which holds throughout the flow. Recirculation
is associated with streamlines whose Ψ cannot be determined in
this manner.

3 Results and discussion

The optimal power and thrust from the analysis in
subsection 2.6 are shown in Figure 3 along with the CP results
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FIGURE 3
Optimal actuator disc power and thrust. × is CP from
Glauert (1935). The circles are CP, the diamonds are CT from
Table 1. The solid line is for visual aid only. Note that CP

asymptotes to the BJ limit of 16/27 and CT to the corresponding
limit of 8/9.

from Glauert’s (1935) optimization. The current results are
listed in Table 1. All the computed CP and CT asymptote to
the BJ values at high λ. Figure 3 can be compared to the
“Betz-Goldstein” results in Figure 30 of Okulov et al. (2015),
Figure 8 and Figure 9 of Vaz & Wood (2016), and Figure 6.14
of van Kuik (2018). Most previous determinations of CP closely
follow Glauert’s results.

Figure 2 plots the progress in the search for optimal power
and thrust as the far-wake radius is altered. It indicates the
flatness of the region of peak performance, which occurs at all λ,
but shown for λ = 4 only. In other words, there is a wide range of
p and R∞ where CP does not vary significantly from the optimal
value. The results plotted are the current maximum CP for the
search in units of 0.0001 for R2

∞ and λp, starting at R2
∞ = 2 where

CP = 0.5759 and ending atR
2
∞ = 2.2180 whereCP = 0.5771 which

FIGURE 4
The axial induction factor at the rotor. Symbols are defined in
Table 1.

is the value in Table 1. CT varied more, from 0.8847 to 0.9132 for
the same increase in R∞. The peak region for CP was flat at all λ.

Figures 4, 5 plot the distributions of a and w respectively.
Equation 2 requires that no torque is extracted from the
streamline on the axis of rotation, x = 0, and (3) shows the same
is true for thrust. Therefore a(x = 0) = w(x = 0) = 0 for any λ.
Similarly, Eq. 12 requires a∞(x = 0) = w∞(x = 0) = 0 for any λ.
The change in a and w with λ is dramatic. At very small λ, a∼x2

and w∼x per the light-loading limit for stationary rotors, but
a→ 1/3 and w∼1/x at high λ for consistency with the BJ limit
which can be seen from Figure 3 to be the high −λ limit.

The tests of helical symmetry - the extent to which the
equation 2pa = wx = c holds behind the rotor - in Figure 6
are the most important results of this section. They are also
the most unexpected as helical symmetry is violated at low
λ and then becomes increasingly accurate as λ increases for
sufficiently large x. There are two main inferences from this

TABLE 1 Performance of Optimal Rotors and symbols for Figures 4–7.

λ Symbol R2
∞ pλ CP CT ĈT λcmax

2λp
1+λp

S

0.1 1.2109 0.2025 0.0724 0.3573 0.1093 0.0736 0.3368 0.5199

0.25 1.2583 0.3753 0.1649 0.3573 0.2378 0.1690 0.5458 0.5197

0.5 1.3662 0.5114 0.2862 0.5597 0.3939 0.2830 0.6767 0.5199

1 1.6440 0.5934 0.4381 0.7383 0.6070 0.3974 0.7448 0.5199

2 2.3285 0.5986 0.5466 0.9131 0.8225 0.4628 0.7489 0.5199

4 2.2092 0.6327 0.5771 0.9122 0.8763 0.4596 0.7750 0.2566

8 2.0537 0.6563 0.5881 0.8961 0.8837 0.4497 0.7925 0.1205

16 2.0179 0.6633 0.5915 0.8917 0.8875 0.4463 0.7976 0.0594

50 2.0092 0.6655 0.5926 0.8904 0.8897 0.4452 0.7992 0.0189

The CP and CT values were determined from the far-wake. The values determined at the rotor agreed with these to four significant figures for all λ. For λ ≤ 2 the optimization was
constrained by S reaching 0.52 indicating wake breakdown.
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FIGURE 5
The circumferential velocity at the rotor. Symbols are defined in
Table 1.

behaviour. First, the large variation justifies the complicated
analysis of the previous section: assuming helical symmetry
at the rotor makes the determination of optimal performance
straightforward. Secondly, the conventional thrust equation

ĈT = 8∫
1

0
a (1− a)xdx (25)

follows from (3) only if 2pa = c = wx. The listing of ĈT in Table 1
shows the significant error in the conventional equation at small
λ. ĈT is too small by 10% at λ = 4. The error drops to 2% at λ = 8
which, fortunately, is typical of modern large wind turbines. The
thrust computed fromEq. 3 is always larger than ĈT,Table 1, and
overshoots the BJ value before returning to it at high λ, Figure 3.
The difference between the two thrust equations is substantial at
λ ≈ 1 and an experimental test of the KJ formulation may well be
possible. It is also worth noting that Eq. 25 does not allow a CoV
optimization.

The results in Figure 6 near x = 0 at low λ are affected by
the small values of a and some are unreliable as demonstrated
in the Appendix. On the other hand, at high λ where the
Betz-Joukowsky limit requires a = 1/3, that is a constant, helical
symmetry can only occur in the region where c is constant. In
other words, the lack of helical symmetry at small x must be
a genuine expression of the wake model. The series expansion
of Eq. 19 at x = 0 with the coefficients from Eq. 20, gives the
limiting form of c(x), and of a(x) from (15):

a→ 2λ (1− λp)x2/p/(1+ λp) as x↓0. (26)

Thus

2pa/c→ 2λp/(1+ λp) as x↓0. (27)

The limiting values, listed in Table 1, are in excellent agreement
with themajority of the small−x results in Figure 6.We note also

FIGURE 6
Test of helical symmetry. Symbols are defined in Table 1.

that the asymptotic form of c, Eqs 19, 20, and a from (26) agree
with the small −x behaviour of the exact solution for λp = 1/2,
Eq. (A7). Having the largest departures from helical symmetry
when λ ↓0 conflicts with the expectation of minimal expansion
of the wake for a stationary rotor which implies the validity of
helical symmetry. From (27), helical symmetry is possible at
small λ only if λp = 1 which implies p→∞ as λ ↓0 and minimal
a. As mentioned in subsection 2.5, an alternate low −λ model
with small expansion does not seem possible. Figure 5 shows the
“core” of the trailing vorticity shrinks with increasing λ so the
lack of helical symmetry eventually becomes of little dynamical
importance but it can never be valid for the whole rotor flow as
λp < 1 as noted previously.

a∞ and 2a are plotted against the streamfunction, Ψ, in
Figure 7. a∞ = 2a is normally assumed in deriving the one-
dimensional equations leading to the BJ limit, but it is clear from
the figure that the approximation becomes valid only at high λ as
suggested by the pitch Eqs 11, 14 when λx≫ w. At low λ, the
approximation, like helical symmetry, is in considerable error.
The failure of helical symmetry at low λ has been highlighted as
a major finding of this analysis. There are two further aspects of
it, related to p, that are worth commenting on. From Eq. 14 and
the coincidence of streamlines and vortex lines, we have

p
x
= 1− a
w/2+ λx

=
Ωz

Ωθ
=

∂c/∂x
x (∂v/∂z+ ∂a/∂x)

. (28)

behind the rotor. Ωz and Ωθ are the axial and circumferential
vorticities, respectively, and v is the radial velocity. For constant
p, ∂v/∂z∼∂c/∂z whenever pa is a constant multiple of c. Thus v is
maximized at the rotor both at low and high λ when c becomes
independent of x for most of the wake. In general, ∂c/∂x > 0 and
the streamtube in Figure 1 expands more behind the rotor than
ahead of it. This is consistent with the general result that 2a < a∞
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FIGURE 7
The far-wake velocity with the symbols defined in Table 1
compared to 2a shown as a solid line of the same colour. (A) All
results. (B) Results at high λ. Note that the results for λ = 1 are not
shown for clarity. Symbols are defined in Table 1. The 2a results
for λ = 50 cannot be distinguished from the lines showing a∞.

FIGURE 8
Comparison of the numerical determination of a,△,λc,+ and
pa/c,○, at λ = 8 to the analytic approximation, Equation (A2).

from Figure 7. In the far-wake, ∂v/∂z = 0∀ λ, so the coincidence
of vortex lines and streamlines implies that p is constant across
the wake as helical symmetry must hold. This result does not
avoid the need for CoV because it is insufficient to establish
optimality.

FIGURE 9
Comparison of the numerical determination of a,△,c,+ and
pa/c,○, at λ = 0.5 and λp = 1/2 to the analytic solution,
Equation (A7), shown as the solid lines.

The second aspect is also an important one that has been
left until the evidence has been marshalled. The defining feature
of the present analysis is that no a priori assumptions have
been made about the dependence of the disc loading on x
or the forces on the rotor. The 1− a term in Equation 28
shows that p, which defines the flow direction at the rotor, is
normal to the force acting on the streamtube with axial velocity
1− a, and so the disc loading is due to a Kutta-Joukowsky
force.

4 Some applications of the analysis

Webriefly describe some applications and implications of the
analysis:

4.1 Wind turbines at low tip speed ratio

Most large wind turbines operate at high λ where the
current analysis conforms to the Betz-Joukowsky performance
limits. As turbine size decreases, however, keeping a high
λ means increasing in the rotational speed which can lead
to problems with noise and safety, Wood (2011). Small
turbine operation at low λ has been studied by only a few
researchers, e.g. John et al. (2020) and Bourhis et al. (2022), and
a thorough understanding of them has not been developed.
Those experiments used high solidity rotors as a way to ensure
fast starting. For λ ≤ 2, John et al. (2020) found maximum
power coefficients considerably lower than the current values
suggesting that an optimization of blade design would be
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beneficial. Sørensen et al. (2022) used prescribed loadings to
investigate computationally the λ− dependence of the power
output of a three-bladed turbine. The extracted power was less
than given by the present analysis, as it should be, but do not
report any evidence of approaching recirculation. The current
analysis suggests that avoiding recirculation is important in the
optimization but it will require further investigation to see how
this is affected by having a finite N.

4.2 The constancy of vortex pitch

An important result from the present analysis is that
p remains constant throughout the wake of an optimal
AD at any λ. It is reasonable to extrapolate this result to
rotors with finite N which can be analyzed using blade
element/momentum theory. Then, Equations 2, 3 must be
modified using “finite blade functions,” FBFs, which are also
needed to determine the velocities at the blades in terms of
the circumferentially-averaged velocities. FBFs are normally
assumed to be given by Prandtl’s tip loss factor but more
general forms can be derived from the Kawada-Hardin (KH)
solution to the velocity field of an infinite helical vortex of
constant p and radius, Kawada (1936), (1939), Hardin (1982),
and Fukumoto et al. (2015). There are no other known, closed-
form solutions for the velocity field of helical vortices. Simple
and accurate approximations to the KH solutions are described
in Wood et al. (2021) and were used to analyse the effects
of low λ by Wood et al. (2016) and Vaz & Wood (2016), and
blade sweep by Fritz et al. (2022). Wood (2021) showed that
the expansion of the trailing vortices in the wake of a
real turbine is easily accounted for in the approximations
to the KH equations. The present analysis implies that the
remaining restriction of the KH equations to constant p is not
significant.

4.3 Moving wind turbines

If a turbine is mounted on a a land vehicle, Gaunuaa et al.
(2009) and Section 3.6 of Sørensen (2015), or a ship, Connolly
and Crawford (2022), it is possible under some circumstances
to produce more power than required to move the turbine.
Consider the simplest and most favourable case of a turbine
moving at constant velocity Ut into a constant headwind of U0.
The power is proportional to ηCP(Ut +U0)3 = ηλCQ(Ut +U0)3

where η is the overall efficiency of conversion of extracted
to output power. The power cost of moving the turbine is
proportional toCTUt(Ut +U0)2.Thus an optimalmoving turbine
at any λ maximizes the ratio of torque to thrust which is the
basis of the present analysis forUt = 0. Current modern turbines
operating at high λ are, therefore, very suitable for use on so-
called “energy ships.”

4.4 Propellers and other thrust producers

As noted in the Introduction, the current work is based on
the CoV study of propellers by Breslin and Anderson (1996).
Their analysis was limited, however, to light disc loading with
small wake contraction, as was Goldstein’s (1929). The current
analysis can be inverted to apply to propeller ADs of arbitrary
loading by maximizing the thrust for a given torque because
the inversion does not alter the CoV analysis. The contraction
of typical propeller wakes is much less than the expansion of
typical wind turbine wakes, but a full AD analysis should clarify
the accuracy of assuming light loading. Propeller performance is
usually characterized in terms of the advance ratio J = π/λ. High
J, therefore, corresponds to low λ so the current results at low λ
suggest the need to revisit high-J propeller performance.

Many other thrust producers have an energy cost. An
example is tilted-pad thrust bearings, e.g. Liu & Mou (2012),
where the thrust is the bearing load and the torque gives the
energy lost to the bearing. ACoVanalysis tominimize the energy
cost could be valuable.

5 Conclusion

This analysis considered the optimal performance of actuator
disc (AD) models of horizontal-axis turbines. The optimization
used the circumferentially-uniform equations for angular
momentum and the Kutta-Joukowsky equation for thrust, both
derived initially for a control volume ending immediately behind
the rotor. The thrust equation is valid only if the vortex lines and
streamlines are coincident in the wake.

The maximum power at any tip speed ratio (λ) was found
from a straightforward application of the calculus of variations
as has been done previously for lightly-loaded propellers, but
not for turbines with arbitary loading. The angular momentum
and thrust equations are valid for any distribution of induced
axial and circumferential velocities and any amount of wake
expansion. For the first time, the conditions for an optimal far-
wake were established and then used to derive the disc loading
equation for the rotor. This avoided any a priori assumptions
about the flow through the rotor. The link between rotor torque
and thrust is the pitch of the trailing vorticity.We showed that the
optimal pitch was constrained by the vorticity distribution in the
wake. The resulting, approximate Eqs 11, 14 for the pitch were
used for the rest of the analysis.

It was found that the conventional equation for thrust
involving only the axial velocity, is incorrect at low λ but becomes
asymptotically valid as λ→∞. In commonwith previous studies,
the familiar Betz-Joukowsky limit was the global limit on turbine
performance. By starting the optimization with the far-wake,
we avoided using helical symmetry at the rotor. Surprisingly,
this symmetry relation between the axial and circumferential
velocities was invalid at low tip speed ratio where the wake
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expansion was small but became accurate only at large λ. The
failure of helical symmetry is closely linked to the inaccuracy
of the conventional thrust equation and the finding that the
streamtube expands more behind the rotor than ahead of it.

For λ ⪅ 2, the optimization was constrained by the need to
avoid flow breakdown – the axial velocity going to zero on the
centreline in the far-wake. An analytic solution for a related,
expanding, inviscid flow with vorticity, was used to determine
a swirl number criterion for breakdown.

Using the calculus of variations shows that the link between
optimal torque and thrust is the pitch of the wake vorticity
and that optimality requires constant pitch across the wake.
These results hold for any loading of the disc and so extend the
classical findings of Betz and Goldstein that optimality requires
constant pitch for lightly loaded discs. Since the torque and thrust
must be unaltered by moving the end of the control volume
to the far-wake, we deduce the valuable result that pitch is
also constant across the far-wake and equal to the pitch behind
the rotor. The argument at the end of Section 2.4 implies that
the pitch in an optimal turbine wake is everywhere constant.
This justifies a more general determination of finite-blade effects
than the common use of Prandtl’s tip loss factor, as explained
in the previous Section. The importance of vortex pitch for
optimal rotors extends to its setting the radius of the vortex
core, the region where the circumferential velocity w increases
from zero at the axis to its maximum value. The core radius
decreases monotonically with λ to become negligible as the Betz-
Joukowsky limit is approached.

It was proved in Section 2.2 that an optimal, lightly-loaded,
stationary rotor, has w is proportional to the radius, so the
circulation is quadratic in radius whereas the circulation and the
axial velocity are nearly constant in the Joukowsky wake of an
optimal rotor at infinite λ. Optimal rotors clearly cannot have a
Joukowsky wake at low tip speed ratios. The wake at all tip speed
ratios, however, can be classified as a “generalized Joukowsky”
wake as the circulation increases monotonically with the radius
until the edge of the wake where it goes to zero.
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Appendix: Exact and approximate
solutions of the disc loading
equation

This Appendix describes the checks made on the accuracy of
the numerical solution of Equation 18 using the closed form
solution for λp = 1/2 and an approximate solution for λx≫ c/x
that are now derived. Equation 18 is

dc
dx
=
(c− 2p (1− λp))2

p (1− λp) (p− c)
( c
2x
+ λx)

which separates approximately when λx≫ c/x and exactly when
λ = 0. We ignore the latter case as not relevant and derive the
approximate solution. Then (Equation 18) reduces to

p (1− λp) (p− c)
(c− 2p) (1− λp)2

dc ≈ λxdx. (A1)

and so

p (1− λp)[
p (1− 2λp)

c− 2p (1− λp)
− log (c− 2p (1− λp))] = λx

2

2
+C

(A2a)

where C is the constant of integration. Applying c = cmax at x = 1
gives

C = p (1− λp)[
p (1− 2λp)

cmax − 2p (1− λp)
− log(cmax − 2p (1− λp))] −

λ
2

(A2b)

A typical comparison of a,c and pa/c is shown in Figure 8 for
λ = 8 where (A2) should be accurate for sufficiently large x. It
is concluded that the numerical integration is accurate at high
λ when the poor accuracy in the helical symmetry test for very
small x is discounted.
Equation 18 is not separable when λ ≠ 0 and λx ≈ c/x. Its general
form can be transformed to an Abel equation of the first kind
using the substitution

c∗ =
2p (1− λp)

p− c
. (A3)

to yield

dc∗
dx
= (f0 + f1c∗ + f2c

2
∗ + f3c

3
∗)/x (A4)

where the coefficients are

f0 = −1

f1 = 3p1 − 2+ p2x
2

f2 = (1− p1)(3p1 − 1+ 2p2x
2)

f3 = (1− p1)
2 (p1 + p2x

2) . (A5)

p1 = 1/(2(1− λp)), and p2 = λ/(p(1− λp)). When p1 = 1 or
λp = 1/2, a simple, exact solution can be obtained.Equation (A4)
reduces to

dc∗
dx
= (−1+ c∗)/x+ 4λ2c∗x (A6)

whose solution according to Mathematica is

c∗ = 1+√2π λ x e2λ
2x2 erf(√2λx) (A7)

where erf(.) is the error function. The constant of integration in
Equation (A7) was set to zero to make a(0) = 0. This leads to a
direct relationship between R∞ and λ from imposing c(1) = cmax
which is likely to be a feature of any exact solution. Such a
relationship would be highly desirable in the general search
for optimality except for λ ≤ 2 where optimality is constrained
by flow breakdown. For λp = 1/2 the equation for the far-wake
radius is

R2
∞ = √π/8 e2λ

2
erf(√2λ)/λ. (A8)

This is a very interesting result because R∞ increases without
bound as λ increases. The case of λp = 1/2 deserves further
study which we postpone as it is not directly relevant to the
optimization of rotor power.
Figure 9 compares the exact solution of Equation (A7) to the
numerical determination of c for λ = 0.5 where (A8) gives
R2
∞ = 1.4107. The agreement is excellent except for the helical

symmetry test at very small x. Ignoring those points, pa/c→ 2/3
at small x per Equation 27.
The cubic polynomial in (A4) has two real roots at c∗2 =
2(1− λp)/(1− 2λp) and one at c∗0 = 2p(1− λp)/(p+ 2λx2) which
again shows the equation is separable only at λ = 0. Using the
method in Section 4-1 of Murphy (2011), (A4) can be reduced
to the standard Abel equation as

du
dx
= (U (x) + u3) f3v

2 (A9)

where

c∗ = uv+ F

F = −f2/(3f3)

v = exp∫(f1 + f2F)dx

U = 1
f3v

3 (f0 − F
′ + f1F+

2f2F
2

3
). (A10)

Equation (A9) is not integrable because the invariantU in (A10)
is not constant, Mancas and Rosu (2016). This ended our search
for a general analytic solution to Equation 18.
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