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Battery Energy Storage Systems (BESS) are essential for increasing distribution
network performance. Appropriate location, size, and operation of BESS
can improve overall network performance. The appropriately scaled and
installed BESS helps meet peak energy demand, improve the advantages
of integrating renewable and distributed energy sources, improve power
quality control, and lower the cost of expanding or re-configuring the
distribution networks. This paper investigates the feasibility of BESS for
providing short-term and long-term ancillary services in power distribution
grids by reviewing the developments and limitations in the last decade
(2010-2022). The short-term ancillary services are reviewed for voltage
support, frequency regulation, and black start. The long-term ancillary
services are reviewed for peak shaving, congestion relief, and power
smoothing. Reviewing short-term ancillary services provides renewable
energy operators and researchers with a vast range of recent BESS-based
methodologies for fast response services to distribution grids. Long-term
ancillary services will provide the distributed network system operators
and researchers with current BESS-based bulk-energy methods to improve
network reliability and power quality and maximize revenue from renewable
energy generation. The review presents a list of energy storage policies
and BESS projects worldwide with a cost-benefit analysis. The challenges
for deploying BESS in distribution grids recommended solutions for the
implementation challenges, and future research directions are also presented.
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1 Introduction

Large-scale power plants are traditionally used to
provide ancillary services to maintain stable operation of the
distribution networks Islam et al. (2017b); Prakash et al. (2020);
Islam et al. (2017a). However, the recent increase in renewable
energy sources (RESs) has affected the operational schemes of
the power grids. The intermittent operation of RESs increases
the uncertainties in existing grids and creates technical and
operational challenges Xuetal (2021). The high level of
penetration, primarily in the transmission grids, can significantly
alter the bulk power system due to intermittent generation
and can affect the demand and generation balance, resulting
in unusual frequency variations Wangetal. (2017). On the
other hand, the active power injections from distributed
RESs at the distribution grid can lead to technical issues
such as voltage violations, power fluctuations, and network
congestion Nour et al. (2019). The traditional power plants are
gradually decommissioning due to the increasing penetration
of centralized and distributed RESs, which reduces the overall
capacity of conventional power plants for ancillary service
provision Kryonidis et al. (2021); Podder et al. (2020).

Energy storage systems are capable of providing a variety
of distributed auxiliary services and serving as a backup
power supply. The integration of BESS in active distribution
networks has been encouraged due to the rising penetration
of RESs and decommissioning of traditional power pants
Kumar et al. (2020a, 2020b). The BESS market, much of which
is related to the grid and commercial resilience, is described
as 1) ancillary services: short bursts of electricity are provided
or absorbed to maintain supply and demand, ensure grid
stability (voltage stability), frequency regulation and reserves;
2) peaking capacity: provision of sufficient capacity to satisfy
the system’s peak demand; 3) energy shifting: increasing system
flexibility needs drive uptake. Energy storage is charged during
low costs and released when demand exceeds supply. Batteries
may be charged using excess renewable energy or assets
that become dispatchable when combined with the battery.
4) Transmission and distribution-level: employing ESS as an
alternative to traditional network reinforcement, such as to
meet an incremental increase in network capacity instead of an
expensive line upgrades.

BESS can accommodate different batteries, such as lithium-
ion, lead-acid, and nickel-cadmium. The key benefits and
drawbacks of common BESS currently employed in power
systems applications are presented in Table 1. Besides, each
battery type has technical parameters that identify BESS
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applications and impact battery energy storage efficiency. The
main properties of a battery are its storage capacity, power
attribute, round-trip efliciency, depth-of-discharge (DoD),
and lifetime. The storage capability defines the quantity of
electricity accessible in a BESS or the amount of electric
charge stored in a battery, power attribute specifies how much
power a battery can supply or how much power a BESS can
deliver, round-trip efficiency describes the ratio of energy
delivered by a battery (during discharge) to the energy given
during a charge cycle, depth-of-discharge (DoD) indicates
the percentage of energy discharged from a battery relative
to its total capacity whereas lifetime, which is defined as the
number of charge and discharge cycles of a battery or the
amount of energy that a battery can supply during its lifetime
(battery throughput) and safety, shows the battery’s compliance
with safety requirements. While certain BESS technologies
may be reliable and mature IRENA (2015a), with further cost
reductions anticipated IRENA (2015b), economic concerns are
still preventing BESS from becoming a mainstream solution
for ancillary services in power grids Olatomiwa et al. (2016).
Inappropriate dispatch strategy for BESS can also lead
to instability issues, speedy degradation, and uneconomic
Olatomiwa et al. (2016). BESS
planning and operation are the key to an effective and efficient

operation of power grids

solution for grid ancillary support Jayasekara etal. (2015);
Wang et al. (2018); Divshali and Séder (2017); Hashemi and
Ostergaard (2016); Wang L. et al. (2015); Zeraati et al. (2016);
Marra et al. (2014); Tan et al. (2020); Hemmati et al. (2017);
Hu et al. (2014); Nair et al. (2020).

There are various review papers that have discussed BESS,
as shown in Table 2. For example, a review of the methods and
applications for battery sizing was presented in Yang et al. (2018).
The review provides a valuable contribution to the literature
as it clusters battery sizing based on renewable energy sources,
making it clear to identify critical metrics and select the
most appropriate methods for battery sizing based on various
renewable energy applications. However, the review does not
cover the applications of BESS for ancillary services in the
distribution grids. An overview of the energy storage systems
(ESS) in terms of placement, sizing, operation and power quality
was presented in Das et al. (2018). The study does not cluster
different ancillary service applications of BESS, instead focuses
on the ESS placement, sizing, operation and power quality areas.
A study of BESS in the United Kingdom (United Kingdom)
was presented in Mexis and Todeschini (2020), which describes
the BESS-based projects in the United Kingdom and different
BESS technologies. The ancillary services provided by BESS
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TABLE 2 Discussion on recent review articles related to BESS.

References

Summary of the article

Yang et al. (2018)

Das et al. (2018)

Mexis and Todeschini (2020)

Stecca et al. (2020)

Rotella Junior et al. (2021)
Hannan et al. (2021)

de Siqueira and Peng (2021)

Sufyan et al. (2019)

Rana et al. (2022)

A review of the methods and applications for battery sizing based on different RESs is presented. The review does not cover
the applications of BESS for ancillary services in the distribution grids

A review of optimal placement, sizing and operation of ESS is provided. The review does not cluster different ancillary service
applications of BESS, instead focuses on the ESS placement, sizing, operation and power quality areas

A review of BESS in the United Kingdom (United Kingdom) is presented to describe the BESS-based projects in United
Kingdom and different BESS technologies. However, the review does not provide an extensive review of common ancillary
services provided by BESS, challenges for deploying BESS are not discussed

A review of BESS integration to describe the different BESS technologies, functionalities, sizing, location and control of grid-
connected BESS in distribution systems is provided. The review does not provide challenges related to integrating BESS in
distribution grids and very brief discussion on the ancillary services is provided

Presents a review of the current status in the literature on the economic analysis of BESS. However, does not describe the BESS
applications for ancillary support

A review of optimal BESS sizing, system constraints, optimization model and methodologies, and their benefits and drawbacks
is provided. BESS provision for ancillary services were not discussed

A review of control mechanisms for smoothing wind power output using battery energy storage systems is presented. The
review was primarily focused on the power smoothing capabilities of BESS with wind application, and does not include other
common ancillary services

Provides a review of the latest technologies, sizing techniques and considerations, efficiency, cost and recycling perspectives of
BESS. The application of BESS for ancillary services and the existing challenges were only described from the sizing point of
view

A review of hybrid-PV BESS is provided to describe the methods for lifetime improvement, cost reduction analysis, optimal
sizing and control, power quality issues, and peak shaving. However, does not provide an extensive review of common ancillary

services provided by BESS and relevant existing challenges for deploying BESS

were briefly explained. A more extensive description of the
common ancillary services specific to the BESS in distribution
grids was not provided. The review also does not cover current
challenges related to BESS deployment. A comprehensive review
of BESS integration in distribution grids was presented in
Stecca et al. (2020), which describes the different aspects of
integrating BESS in distribution grids. The study was divided
into three sections to explain the different BESS technologies,
functionalities, sizing, location, and control of grid-connected
BESS in distribution systems. However, it does not provide
challenges related to integrating BESS in distribution grids,
and a very brief discussion on the ancillary services was
provided.

A review of the state-of-the-art literature on the economic
analysis of BESS was presented in Rotella Junior et al. (2021)
but did not describe the BESS applications for ancillary
support. Optimal BESS sizing, system constraints, optimization
model and methodologies, and their benefits and drawbacks
were presented in Hannan etal (2021). BESS provision for
ancillary services was not discussed. A review of control
mechanisms for smoothing wind power output using battery
energy storage systems was presented in de Siqueira and
Peng (2021). The study was primarily focused on the power
smoothing capabilities of BESS with wind application and did
not include other common ancillary services. Another review
of the latest technologies, sizing techniques and considerations,
efficiency, cost, and recycling perspectives of BESS was presented
in Sufyanetal (2019). The application of BESS for ancillary
services and the existing challenges were only described from
the sizing point of view. A review of hybrid-PV BESS was

Frontiers in Energy Research

04

presented in Ranaetal (2022) to describe the methods for
lifetime improvement, cost reduction analysis, optimal sizing and
control, power quality issues, and peak shaving.

The investigation of the existing review papers shows that
various concepts have been covered in the literature, mainly
focusing on optimal siting, sizing, and scheduling algorithms,
BESS projects, control algorithms for wind power smoothing,
and different BESS technologies. None of the existing surveys
have presented an extensive review of BESS-based algorithms
for distribution grid ancillary support. This paper extensively
reviews the latest research and developments on fixed and
static BESS-based solutions for distribution network ancillary
support to bridge these research gaps. Relevant journal papers
have been selected to provide an up-to-date review in the last
decade. The review is divided into short-term and long-term
ancillary services. The short-term ancillary services for future
distribution grids are reviewed for voltage control, frequency
regulation, and black start. Long-term ancillary services are for
congestion management, peak shaving, and power smoothing.
The findings are summarized in a series of tables with detailed
information about different grid ancillary services, optimization
algorithms, existing methodologies for BESS planning (siting
and sizing), and current control strategies for BESS dispatch
and their limitations. This review provides a survey of energy
storage policies worldwide. Cost-benefit analysis and a list of field
demonstration projects related to BESS are presented. Challenges
for deploying BESS are also identified, and future research
directions are provided. It should be noted that the research
issues associated with mobile battery energy storage systems,
such as EVs, are different and have not been covered in this paper.
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TABLE 3 Research questions.

10.3389/fenrg.2022.971704

RQ1 What strategies can identify and filter relevant research articles on BESS applications
for grid ancillary support in power distribution grids?
RQ2 What type of visualization technique and analysis approach can be utilized to determine
the evolving research areas and recent research contributions from dense scholarly data?
RQ3 What are the research gaps in recent research papers? How could potential research opportunities
lead to a favorable implication for the research in BESS applications for grid ancillary support?
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FIGURE 2
Research themes emerged from vosviewer analysis.

The rest of this paper is organized as follows. The review
methodology is described in Section 2. Section 3 provides a
review of ancillary services for distribution grids. The energy
storage systems policies are described in Section 4. A list of
global BESS projects with cost-benefit analysis is provided in
Section 5. Section 6 presents the challenges for deploying BESS,
while Section 7 concludes the findings and provides future
research directions.
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2 Review methodology

The proposed framework for this review is based on the
preferred reporting items for systematic reviews and meta-
analyses (PRISMA) approach to identify and review the
published literature over the last decade (2010-2022). The
PRISMA approach, as shown in Figure 1, uses a three-step
process of planning, conducting, and reporting to provide a
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checklist of items that are used to increase the transparency and
clarity of reviews Page and Moher (2017). The review questions
and the purpose of conducting the study are identified in
the planning process. The conducting process helps implement
strategies for finding relevant articles and extracting the results.
The final reporting process assists in investigating the results
from selected papers and delivering the concluding remarks
such as current limitations, existing challenges, and potential
future research directions. The following subsection describes
the planning, conducting, and reporting stages.

2.1 Planning

In this phase, we identify the critical research areas and
keywords for research. Then, the research questions, as shown
in Table3, are formulated. The guideline from Page and
Moher (2017) has been used to develop the research questions
in this paper.

2.2 Conducting

In this process, we use search engines and digital libraries,
such as Scopus, Google Scholar, and Web of Science (WOS), to
collect relevant resources for the review. A simple search strategy
is established using the Boolean operators, such as “AND” and
“OR;” to join the keywords. For instance, our search process is
established using “Battery” OR “BESS” AND “Ancillary Services”
to indicate that any items falling under the terms “Battery”
or “BESS” with “Ancillary Services” should be included in the
conducting process. In the first round, 941 research papers are
collected from the above-mentioned search engines for this
research. These papers are collected based on the research topics,
contents, and focuses. Then, in the next round, a filtering process
is used to eliminate the irrelevant papers, mainly those that do
not fit with the scope of this review or are too old. Only the
articles published between the years 2010 and 2022 are selected
for this review to provide the recent update on research and
developments related to the BESS provision for distribution grid
ancillary support. In the final filtration process, the majority of
the conference papers are removed. Only top-ranked journal
papers and a few relevant conference papers that are prepared
with BESS for ancillary support in distribution grids are selected.
After the final stage of filtration, 115 papers are selected for
investigation. These papers are divided into two major sections;
BESS provisions for short-term and long-term ancillary services.

2.3 Reporting using vosviewer
experiments

For this review, the findings of collected articles are
reported using VOSviewer experiments. Scholarly articles, such
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as scientific papers, books, or research reports, typically contain
millions of raw data, and analyzing them can be time-consuming
and challenging. Introducing clustering solutions is one method
to solve this problem Alietal. (2021). Clustering techniques
find similar publications or journals by grouping each article
and establishing a citation network. VOSviewer, a powerful
visualization tool, is used in this work to provide clustering
solutions to identify the most common subjects in the sparse
literature. The collected articles from the conducting process are
used to create a network visualization map, and the results are
presented as visual clusters (Figure 2). The size of a cluster, as
illustrated in Figure 2, shows the number of articles that belong
to that cluster. Cluster-relatedness is represented by colored
lines between clusters, with line width denoting the number of
citations between clusters. Our analysis has found that “battery
energy storage systems” have gained significant attention in
the last 12 years. The standard ancillary services provided by
battery energy storage systems are categorized into four clusters,
as shown in Figure 2. The first cluster includes the research
and innovations in voltage regulation support using BESS. The
second cluster highlights the articles related to peak shaving
and congestion management. The third cluster demonstrates the
analysis for power smoothing and power quality improvement
in distribution grids, whereas the fourth cluster shows the
innovations for frequency support. In the terminology of link
strength, the keyword “battery energy storage systems” is the
largest, appearing 450 times.

3 Ancillary services in distribution
grids

Different terminologies are used to classify the types of
ancillary services for distribution grids Malhotra et al. (2016). In
this paper, the ancillary services for distribution grids are selected
and are presented for short-term and long-term applications, as
shown in Figure 3. A review of BESS-based methodologies for
providing short-term ancillary services to the distribution grids
is presented in the following subsection.

3.1 Short term ancillary services

The short-term ancillary services are known as fast response
services that are primarily focused on compensating demand
and generation unbalance Mexis and Todeschini (2020).
BESS can be deployed to improve the grids performance by
ensuring stable, robust, and reliable grid operation. In this
paper, the common short term ancillary services are reviewed
for voltage support Hesse etal. (2017), frequency regulation
Farhadi and Mohammed (2015) and black-start Alkhil et al.
(2015).
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FIGURE 3
Types of ancillary services for power grids.

3.1.1 Voltage support

The traditional power distribution grids were designed
considering unidirectional power flow, typically from high
voltage or medium voltage transformers to the end-users
connected via distribution lines Prakash et al. (2016, 2017a). The
recent advents of distributed RESs have caused bidirectional
power flow in distribution grids, leading to voltage issues
in the network Alyamietal (2014); Prakashetal. (2019);
Mamun et al. (2022); Chand et al. (2019). The intermittent
renewable energy connected to the power grids must
meet the voltage requirements and standards to guarantee
that the nominal grid voltages operate within limits
Prakash et al. (2022a). Several solutions have been proposed to
overcome voltage issues in distribution networks. Curtailing
power to reduce the demand and generation unbalance
is a traditional approach for mitigating overvoltage, but it
limits the maximum utilization of RES Alyamietal. (2014);
Chand et al. (2020a).
from PV converters Samadietal. (2014), installing sensors

Providing reactive power support
and voltage regulators Chamana and Chowdhury (2018),
adjusting on-load tap changers Todorovski (2014) or even
re-configuring the grid Shayani and de Oliveira (2010)
are other traditional solutions in the existing literature.
While the traditional approaches can effectively mitigate
voltage problems, they lead to increased network losses,
and excessive green curtailment
and Rizwan (2018);

(2018).

energy
Chand et al. (2020b);

Chaudhary

Islam et al.
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The recent advancements of BESS and their flexible
nature provide a promising and most effective solution for
voltage support in active distribution grids Chaudhary and
Rizwan (2018). BESS can act as a load and a generator, and
can be switched on and off instantaneously. They can be
used to consume excess renewable generation during peak
generating hours and reduce the overvoltage issues in the
network Chaudhary and Rizwan (2018). Similarly, they can act as
a generator during peak load hours to reduce the under-voltage
issues. A typical example of a BESS application for mitigating
overvoltage and under-voltage issues is shown in Figure 4. The
generation from photovoltaic units exceeds the load demand
between 08:00 to 14:00, creating excessive reverse power flow
at the substation and resulting in overvoltage issues. Similarly,
between 19:00 to 21:00, the peak load causes voltage issues. As
shown in Figure 4, BESS is charged and discharged accordingly
to mitigate the overvoltage and under-voltage issues, respectively.

In this paper, the control schemes of BESS for voltage
regulation are characterized as centralized, decentralized, and
localized. A centralized control schemes adopts a single central
control center that gathers the required measurements from the
distribution grid (primarily through the smart meters or remote
terminals). Then the central controller retrieves the information
and responds to the voltage problems by communicating the set-
points to the distributed energy resources and voltage control
devices Antoniadou-Plytaria etal. (2017). The decentralized
controllers gathers local measurements, process them, and
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FIGURE 4

Typical application of BESS for mitigating overvoltage and under voltage issues.

provides counteractions to appropriately control the voltage
profiles. Decentralised controllers have more flexibility and
reliability compared to the centralized controllers as they
can be based on zone controllers rather than on single
DER controller. This provides flexibility for multiple point
of control to regulate voltage issues in distribution grids
Antoniadou-Plytaria et al. (2017). Finally, the localized control
are mainly the inverter based volt/var controller that creates a
closed-loop dynamical system in which the measured voltage
influences the reactive power injection to impact the voltage
profiles Farivar et al. (2015). A literature survey for centralized,
decentralized and localized control is presented as follows.

3.1.1.1 Centralized control
Considering the centralized control, a method for optimal

planning and operation of community BESS to provide
voltage support to the distribution network was proposed in
Jayasekara et al. (2015). The planning and operation of BESS
were done from the system operators’ perspective, assuming that
the community BESS is owned and operated by them. The aim of
the research was to provide an overview of voltage support using
bulk-energy from BESS. As a result, the study was mainly suitable
for medium voltage or large-scale systems and did not consider
multiple distributed BESS installations. In a practical scenario,
multiple BESS could operate at the same time and optimal
coordination might be required to maintain smooth and steady
operation of the grid Wang Y. et al. (2015). A control strategy to
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coordinate photo-voltaic (PV) generators and BESS for voltage
regulation in medium voltage distribution grids was proposed
in Wangetal. (2018). But, the methodology did not provide
any economic analysis to demonstrate the benefits/savings for
minimizing BESS charging/discharging and SVR tap operations.

Moreover, a novel optimization model for siting and sizing
of central BESS in a low voltage distribution network was
proposed in Divshali and Soder (2017). The objective function
was formulated to achieve voltage regulation and increase the
hosting capacity limit of the network. The research only considers
steady-state conditions for designing the controller for hosting
capacity improvements and does not consider any dynamic
studies. Dynamic studies can provide better and more accurate
analysis as it will allow to model the complex scenarios and
various uncertainties such as transient conditions, real-time
distribution grid behavior and batch and semi-batch processes
Divshali and Séder (2018). A centralized methodology that
mitigates the voltage violations in low voltage distribution grids
by combining the support from BESS operation and reactive
power of distributed RESs was proposed in Hashemi and
Ostergaard (2016). The method is highly dependent on the input
parameters such as electricity price and grid data (including
network topology, line characteristics, and locations of PV),
which could be challenging to obtain in a real practical scenario
Alietal. (2020a,b). A method has used a centralized control
scheme to coordinate multiple BESS for voltage regulation in a
distribution network in Wang L. et al. (2015).
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3.1.1.2 Decentralized control

The centralized control for voltage regulation requires
uninterruptible communication between central and BESS
controllers. The efficiency of the centralized controller is
decreased if the communication is interrupted or lost. As
a result, the support for regulating voltage problems is not
guaranteed Kryonidis et al. (2021). The distributed control does
not require global grid information; instead, a communication
link between neighboring installations is required Antoniadou-
Plytaria et al. (2017). Voltage rise or drop issues were solved
distributed BESS in Wang Y. etal (2015). A
coordinated control scheme was proposed that comprises

using the

distributed and localized controllers. The distributed control
has used a consensus algorithm to regulate the voltage issues
while the localized control maintains the desired BESS state
of charge (SoC). Similar research has used consensus-based
control strategies to achieve voltage regulation by ensuring that
appropriate BESS SoC is maintained in Zeraatietal. (2016).
However, the methodology does not include battery degradation
analysis and uses 100 percent charging and discharging efficiency
of BESS in most of the investigation, which maybe impractical.
According to the research in Wankmiiller et al. (2017), battery
degradation must be included in the optimization models as they
are very crucial for providing realistic estimates of profitability.
Voltage regulation was achieved using distributed control
strategy that combines the management of plug-in electric
vehicle batteries and curtailment of PV generation in
Zeraati etal. (2017). The consensus-based control algorithm
ensures that curtailment of PV generation is only applied when
the plug-in electric vehicles cannot regulate voltage issues. A
distributed BESS management scheme using reinforcement
learning to mitigate overvoltage issues in a PV-rich distribution
grids was proposed in Al-Saffar and Musilek (2020). The
results shows that the methodology mitigates voltage issues by
controlling network-wide installed BESS and minimizes power
losses due to power transfer in the network. However, other
practical factors such as thermal constraints and unbalanced
scenarios of distribution grids were not considered, which did
not demonstrate the scalability of the methodology to larger
practical distribution grids. Event triggered voltage control
techniques to optimize BESS power for voltage regulation
in power grids were proposed in Kangetal (2022) and

Zhang et al. (2022).

3.1.1.3 Localized control

It is evident from the existing literature that centralized and
decentralized controls require reliable communication between
storage controllers. Voltage regulation is not guaranteed in case
of any communication issues in the distribution network. To
eliminate the communication requirement and dependency,
localized controls have been proposed in the literature. A simple
yet most common local control of residential BESS has used
excess PV power to charge the BESS and discharge when
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PV generation is low or zero in Barcellona et al. (2019). The
methodology proposed does not provide battery degradation
analysis and considers full discharge of the battery, which is
impractical and can affect the battery’s health in real scenarios.
Additionally, an optimization model without any battery
degradation analysis could lead to an inaccurate estimation of the
profitability Wankmiiller et al. (2017). A similar control based
on voltage sensitivity analysis to mitigate overvoltage issues in
the distribution network was proposed in Marra et al. (2014).
The signal for BESS charging is triggered by using a predefined
PV power threshold. The methodology was further extended
to address the under-voltage issues during peak demand in
Cortés et al. (2018). Still, BESS support for weak grid dynamics,
such as integrating electric vehicles and high penetration of
renewable energy sources, were not considered.

Adaptive control to manage the operation of BESS for
voltage regulation and congestion management of distribution
grids was proposed in Procopiou et al. (2018). A model-driven
control algorithm to incorporate BESS for voltage regulation
in distribution grids was proposed in Krata and Saha (2018).
A similar coordinated control strategy to coordinate BESS
operation with the on load tap changers for voltage regulation
in distribution feeders was proposed in Tewari et al. (2020).
However, the proposed scheme was only tested on the IEEE
test cases. The working principle of the methodology on a
real distribution grids with various regulation devices were not
demonstrated.

3.1.2 Frequency regulation

According to the IEEE/CIGRE Joint Task Force on Stability
Terms, frequency stability is described as “the ability of a
power system to maintain steady frequency following a severe
system upset resulting in a significant imbalance between
generation and load” Kundur et al. (2004). To ensure that the
frequency variation is within the specified limits, it is essential
to immediately balance any differences between demand and
generation Rajan etal. (2021); Chand et al. (2020¢). Failure to
maintain the frequency within acceptable limits may lead to
cascaded outages and blackouts Rajan etal. (2021). BESS has
flexible and fast response characteristics that can balance demand
and generation by either consuming or producing power based
on the network requirements. The following discussion is divided
into two parts. First, the research on providing frequency
regulation support with BESS is discussed. Then, the innovations
and control algorithms related to BESS for multiple purposes,
including frequency control, are presented.

3.1.2.1 BESS for frequency regulation
A novel approach for optimal BESS sizing to stabilize the

frequency during high PV generation hours was proposed in
Aghamohammadi and Abdolahinia (2014). The researchers in
Wu et al. (2015) have proposed an algorithm to coordinate PV
and BESS for frequency regulation. Bus-signaling technique was
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used to ensure that the BESS is never over or undercharged.
Still, the methodology was based on a trade-off between the
investment of communication links and the high quality of
power supply, which may vary based on different applications. A
direct ramp rate control technique to manage the BESS SoC and
their support functionality for frequency regulation was used by
the research in Bullich-Massagué et al. (2017). However, it does
not consider optimal sizing of BESS for frequency regulation.
Inappropriate or random BESS size could add to unnecessary
costs and lead to technical problems such as creating frequency
oscillations, increasing system losses or causing system collapse
Kerdphol et al. (2016). Also, the ramp rate control was designed
considering a substantial restriction with a time window of
2's, which can lead to unnecessary power oscillations. A
coordinated control strategy using torque limit control and BESS
to enhance the temporary inertial response of the wind turbine
generators and mitigate the secondary frequency drop issues,
respectively was proposed in Wu et al. (2017). The methodology
does not consider BESS’s optimal size and location, which could
help achieve a trade-off between optimal frequency regulation
performance and economic perspectives of BESS. The controller
aims to enhance the BESS lifespan by avoiding excessive use,
so the BESS is smoothly disconnected once the predefined
frequency limit is reached.

A controller for frequency regulation was designed by
combining the adaptive droop control and SoC recovery control
for BESS in Tanetal. (2020). The research aims to provide
a controller that can improve the BESS’s system frequency
dynamics and performance. A control algorithm for BESS to
participate in primary frequency regulation in power grids was
developed in Meng et al. (2021). The methodology was tested on
different load disturbances to demonstrate the benefits of virtual
inertia control and droop control. A location-dependent control
of BESS for fast frequency response services was proposed
in Zhao etal. (2021). After comparison with other centralised
approaches, it was found that the proposed methodology in
Zhao etal. (2021) can provide faster-acting frequency support.
However, several uncertainties such as communication delays
were not considered in the study, which could be helpful to
demonstrate the practical scenarios of power grids.

3.1.2.2 BESS for multiple applications, including frequency

support
The application of BESS has been analyzed for multiple

purposes instead of only frequency support. A novel control
strategy to utilize the maximum reserve capacity of BESS
for primary frequency control and self-consumption was
presented in Engels et al. (2019). A linear recharging method
for controlling the BESS SoC guarantees an adequate
BESS energy reserve for self-consumption. A comparison
of revenue generated for a single application (frequency
regulation) and multiple applications (frequency regulation and
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self-consumption) of BESS was made. It was found from the
obtained results that the BESS for multiple applications increases
the revenue by 25%. A similar study presented a framework for
maximizing the profit of BESS in Zhang et al. (2016). However,
it did not include high ramping effects of BESS in the economic
assessment. The ramping effects of BESS have a direct impact
on the degradation and, if not analyzed properly, can lead to
increased investment costs Rajan et al. (2021).

An optimal BESS planning strategy for frequency control in
a Mexican power grid was proposed in Ramirez et al. (2018). The
objective function was modeled to site the BESS based on the
distributed renewable energy penetration limit and generation
contingency. Then, a droop controller was implemented to
control the BESS for frequency regulation. Although the
methodology provides positive results for regulating the system
frequency, the analysis does not consider any limits for BESS
SoC, which could result in speedy degradation of BESS. Also,
the placement methodology allocates BESS on larger transient
frequency deviation buses and is only limited to the primary
frequency control application. A novel methodology was used
to control a utility scale BESS for primary frequency and
local voltage regulation services in Zecchino etal. (2021). A
similar study proposed a re-configurable BESS emulation tool for
frequency and voltage supportin Boles et al. (2019). Unlike other
existing emulators, the emulator proposed in Boles et al. (2019)
incorporates BESS power electronics and control interface to
automate frequency and voltage support services. A study
examined and presented the application of BESS for multiple
ancillary services, including voltage regulation, congestion relief,
demand response, self consumption, energy arbitrage, and
frequency regulation in Maeyaert et al. (2020). Some common
ancillary services such as power smoothing, peak shaving and
black-start were not covered. Optimal planning of BESS was done
in Wuetal. (2021) to determine appropriate size of BESS for
frequency regulation and energy arbitrage.

3.1.3 Black-start

The ability of the grid to restore its working state after
being shut down due to faults is known as black-start
Datta et al. (2021). In a power system grid, any black-start source
should have the capacity to self-start, supply the required power
to the non-black-start units, and immediately provide support
to stabilize grid voltage, and frequency Datta et al. (2021). In the
recent literature, BESS is an ideal and widely accepted solution
for black-start in power grids due to its voltage source converter-
based active and reactive power regulation capabilities.

A two-stage methodology to coordinate multiple BESS for
black-start was proposed in Li C. etal. (2020). The first stage
partitioned BESS into twenty-four operating modes considering
the working partitions of BESS SoC. Adaptive control was
then used to manage the BESS charging/discharging power and
predefined SoC constraints in the second stage. A methodology
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to restart the grid using wind power generators was presented
in Liu and Liu(2019). To ensure reliable operation of the
wind generators and minimize any distribution model mismatch
during the black-start process, optimal siting and sizing of BESS
was done. An optimization methodology for black-start using
PV-BESS was proposed in Lietal (2019). The optimization
process was collectively solved in three layers; the data analysis
layer was used to analyze/predict available PV power for black-
start, and the coordination layer was used to determine the
optimal control quantity of PV units and BESS power. In contrast,
the scheduling control layer has determined the actual control
process of PV and BESS controllers.

Moreover, the application of BESS for black-start was
validated using a real case study of an Italian MV distribution
grid in Manganelliet al. (2018). The effectiveness of BESS
for black-start in distribution grids was demonstrated using
different scenarios; BESS in coordination with distributed
generators and BESS alone. However, the study does not
consider detailed modeling and experimental activities for
investigating transient, voltage, and frequency control. As a
result, scalability of the methodology to a practical system cannot
be guaranteed. The methodology can only be implemented in a
practical system once the distribution system operator can fully
control the DG Izadkhast et al. (2022). A similar investigation
in Strunck et al. (2019) and Strunck et al. (2021) determined the
black-start capability of an actual distribution grid in Germany
that has a high share of BESS and combined heat and power
(CHP) plants. Still, the dynamic effects and protection devices
that have a significant role in system restoration were not
considered. A practical wind farm with high-capacity BESS
in Hailar was used for black-start in Liuetal. (2016). The
effectiveness of the proposed black-start scheme was validated
by simulating the actual East Hailar thermal power plant. A
controller to evaluate the performance of BESS for providing
voltage and frequency support during black-start was designed
in Izadkhast et al. (2022). It was found that BESS has full
capabilities for stabilizing the voltage profile and regulate the
frequency during black-start.

A summary of the BESS-based methodologies for short-
term ancillary services is presented in Table 4. The literature
is categorized based on the three short-term ancillary services;
voltage control, frequency regulation, and black-start. Research
contributions, methodologies, and the limitations of each
research article are described.

3.2 Long term ancillary services

The long-term ancillary services are also known as “bulk
energy, which aims to store and use a large amount of energy
to obtain an efficient and economical power system operation
Alkhil et al. (2015). BESS in transmission and distribution grids
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are operated over a long period for ancillary support to improve
the system’s efficiency and reduce the costs of producing and
delivering electricity Mexis and Todeschini (2020). Congestion
relief, peak shaving, and power smoothing are reviewed for long-
term ancillary services in this paper.

3.2.1 Congestion relief

Congestion management in distribution networks
refers to reducing the overloading of distribution network
equipment. Due to the recent increase in distributed energy
resources, overloading in distribution networks has become
a major technical issue which leads to stability and security
issues, uneconomic operation of the grid, damaging of
network equipment, or even collapsing the grid if not
mitigated on time Guptaetal. (2017); Prakash et al. (2017b).
The traditional solutions for mitigating the congestion of
distribution grids include network configuration, utilization
of compensating devices, managing on-load tap changers or re-
scheduling the loads, and generating units Pillay et al. (2015).
The recent literature indicates that BESS if appropriately
managed, can be the most promising and eflicient solution
for managing congestion issues in the distribution grids
Kryonidis et al. (2021). This section reviews the most recent
BESS-based solutions for congestion management in power
distribution grids.

A novel methodology for optimal planning and scheduling
of BESS to avoid thermal overload in distribution grids was
proposed in Hemmati et al. (2017). The objective function was
used to minimize the total power flow in the network, hence
reducing congestion, minimizing power losses, enhancing
network stability, and improving network reliability. However,
the methodology did not consider battery degradation
analysis and did not demonstrate the scalability to a larger
practical distribution grid. Similar research mitigates voltage
and line loading issues in the distribution network in
Bahramipanah et al. (2016). A decentralized control algorithm
was proposed to manage the distributed BESS where the
communication between different areas and regions of the
network is achieved using the concept of multi-agents.
Low voltage distribution grid congestion was reduced by
deploying centralized community BESS in van Westering and
Hellendoorn (2020). BESS control was formulated and solved by
a linear optimization problem and a linear programming solver.

A coordinated scheme mitigates distribution line and
transformer overloading by managing the charging strategy
of multiple EVs in Hu et al. (2014), but does not analyze the
economic feasibility of utilizing EV batteries for congestion
management. Similar charging strategies for roof-top PV
and BESS integrated EV charging stations were proposed to
avoid transformer overloading issues in de Mattos Affonso and
Kezunovic (2018) and Datta et al. (2020). A novel approach for
BESS charging/discharging to mitigate uncertainties related to
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RESs and relieve congestion in power grids was proposed
in Prajapati and Mahajan (2021). Although the methodology
provides impressive results, optimal planning of BESS is required
to demonstrate a practical scenario. The methodology considers
assumed BESS sizes, which could be oversized or undersized for
the grid. Random or assumed BESS sizes can result in additional
costs and lead to technical problems, which could affect the
normal operation of the grid Kerdphol et al. (2016).

A model predictive control to determine the optimal
dispatch of PV-BESS was presented in Nair et al. (2020). A multi-
objective function was used to mitigate the congestion issues,
delay the BESS degradation, and improve self-consumption.
A methodology for optimal BESS siting, sizing, and dispatch
to improve the stability and reliability of a medium voltage
distribution grid by relieving congestion was presented in
Mohamed et al. (2020).

3.2.2 Peak shaving

Peak load occurs only for a small portion of time
during the day and does not often coincide with peak
generation Uddin et al. (2018). A traditional approach is to
install additional generating units for meeting the peak load,
known as the capacity addition technique Uddin et al. (2018);
Prakash et al. (2022b). This approach is not an economical
solution as the distribution system operators need to install
and manage additional generating units only for a few hours
per day Mishra and Palanisamy (2018). It also leads to increased
carbon emissions and speedy degradation of network equipment

10.3389/fenrg.2022.971704

Mishra et al. (2013). Peak shaving is a process of flattening the
load curve by lowering the peak load and transferring to an off-
peak period Nourai et al. (2008), which is a preferred solution
to overcome the drawbacks of the capacity addition technique.
Characteristics of BESS make it a promising solution for peak
shaving in power grids where BESS can be charged during the off-
peak period (low demand) and discharged during peak-period
(high demand) Farsadi et al. (2016). A typical example of BESS
application for peak shaving is shown in Figure 5. The BESS is
charged during off-peak hours, between 01:00 to 08:00, 12:00 to
15:00, 22:00 to 24:00, and discharged during peak hours (10:00
to 12:00 and 15:00 to 17:00) to flatten the load curve.

In this paper, BESS-based solutions for peak shaving are
classified into two categories; planning (siting and sizing) and
operation (scheduling), respectively. Deployment of BESS is cost-
sensitive, and installing oversized or undersized BESS can lead
to several technical issues such as voltage violations, thermal
overload, or increased losses in the network Uddin et al. (2018).
As aresult, planning becomes an essential part of the deployment
process. The efficiency and lifetime of the BESS depends how
they are dispatched Uddin et al. (2018). Optimum dispatch can
help to increase the efficiency of BESS, maximize the revenue and
delay the battery degradation. Recent research and innovations
related to the aforementioned areas are described as follows.

3.2.2.1 Optimal planning of BESS for peak shaving
A novel BESS sizing strategy for peak shaving considering

the historical load profiles of customers was proposed in

T T I T T I T T T
BESS discharge into network — ‘Before Peak Shaving
= \ \ \ ’\ —After Peak Shaving H
o | \\'\, _
®
g BESS char in
aF ging % i
o
8 \\\\\\ BESS charging :\\\ i
— \
BESS charging
5 10 15 20
Time of the day
FIGURE 5

Typical application of BESS for peak shaving.
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Chuaetal. (2016). Adaptive control was used to maximize
the peak demand reduction of a commercial building in
Malaysia. However, the key input to the methodology is the
historical load profiles of residential customers, which can
be considered confidential information in a practical scenario
Ali et al. (2022b,a, 2020¢). Optimal BESS allocation in a typical
radial distribution network was done by formulating a multi-
objective function, aiming to minimize peak shaving, power
losses, and investment costs in Lakshmi and Ganguly (2019).
The multi-objective function was modeled using Pareto
approximation and solved using the particle swarm optimization
(PSO) algorithm. The scalability of the methodology to a
practical distribution grid is not guaranteed as the study
does not consider any uncertainties in load demands and
renewable generations, coordination between inverters, PVs,
and BESSs, and unbalanced characteristics of distribution grids.
A similar research determined the optimal capacity of BESS
to shave the peak load of a building at Naresuan University
(NU), Phitsanulok, Thailand in Prasatsap etal. (2017). Still,
it does not consider battery degradation analysis which is
necessary to demonstrate the effects of battery charging and
discharging on their health and loss of life. A novel methodology
used the Malaysian tariff to determine optimal BESS capacity
for maximizing electricity bill savings and peak shaving of
commercial and industrial buildings in Subramani et al. (2018).
A three-step coherent strategy to determine the optimal size,
location, and operation of BESS for peak shaving using historical
load data was proposed in Danish et al. (2020). However, the
methodology requires customers’ historical load data as input,
which could be confidential and difficult to obtain in practical

scenarios.

3.2.2.2 Optimum operation of BESS for peak shaving
Several methodologies to optimize the operation of BESS
for peak shaving in distribution grids were presented in the
literature. For example, a rule-based control strategy for peak
shaving was proposed in Manojkumar et al. (2021). Dynamic
load and feed-in-tariffs are used for day-ahead load and
PV profile predictions, which are then used to optimize the
charging/discharging of BESS to reduce peak load. A similar
research has presented a combination of predictive control and
load/generation forecasting for peak shaving at shopping malls in
Barchi et al. (2019). It was found that the proposed methodology
can effectively shave 55% of the load when the electricity price is
maximum and thus provide maximum profit to the customers.
Dynamic programming was used to control the BESS for peak
shaving and primary frequency regulation in Engels et al. (2019).
A coordinated control strategy to optimize the number of
vanadium redox batteries and their charging/discharging profiles
for peak shaving was proposed in Li]. et al. (2020). However,
the study did not consider the degradation analysis of the
batteries which is required to demonstrate the effects of charging
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and discharging on their health and loss of life. A controller
was designed based on a predefined threshold load for BESS
charging/discharging in Lucas and Chondrogiannis (2016). The
command was set to charge the BESS when the load is
below 10 kW and discharge when the load exceeds 400 kW.
Although the control scheme proposed is simple and reasonably
effective for peak shaving, the variations in load demands
were not analyzed. Also, the methodology did not demonstrate
how multiple distributed BESS could interact with the system
operators while providing their services.

3.2.3 Power smoothing

In distribution grids, most of the distributed RESs comprise
PVs and wind generators Kryonidis et al. (2021). PV and wind
have common intermittent characteristics, and their output
power depends on the availability of the primary energy
source, Sun and wind. This intermittency can affect the stability
and reliability of power grids as the variations in Sun, and
wind availability can lead to technical issues such as voltage
fluctuations (flicker), which can affect the performance of voltage
regulating devices Islam et al. (2016); Prakash et al. (2017b). The
most common traditional approaches for mitigating power
smoothing issues are to operate the distributed RESs below
the maximum power point (MPP) limit or actively utilize
load participation to minimize the output power fluctuation
of the renewable generators Sukumar et al. (2018). While these
approaches can be reasonably successful for power smoothing,
they can increase the energy losses, reduce the efficiency of
renewable generators and increase the operating costs. The
fast response characteristics of BESS provide a potential power
smoothing solution for modern power grids with high renewable
energy penetration, where BESS can be deployed to operate as an
energy buffer/filter Datta et al. (2021). The following discussion
is divided into two parts to describe the recent control strategies
for power smoothing using BESS by considering wind and solar
generation applications.

3.2.3.1 BESS for wind power smoothing
An intelligent control strategy for wind output power

smoothing was proposed in Linetal (2017a). The control
strategy has used a recurrent fuzzy neural network to determine
the wind power smoothing curve, which was then compared
to the actual wind power. Any differences between the
actual and the smoothed power were filtered through BESS
charging/discharging. A finite-time convergence robust control
algorithm of BESS was proposed to reduce wind power
fluctuations in Deng et al. (2017). The conservative estimation
of maximum uncertainty guaranteed stability but resulted
in chattering effects. The chattering effects can damage the
system in practical scenarios. Hence, a real-time estimation of
uncertainties is required to enhance the dynamic capabilities of
the controller. A control strategy for short-term wind output
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power smoothing using BESS was proposed in Jannati and
Foroutan (2020). The methodology aimed to reduce power
fluctuation, however, it did not consider the state of health
of the batteries and their effects on the power allocation
strategies. A combined algorithm for energy management and
wind power smoothing using BESS was proposed in Altin and
Eyimaya (2018).

3.2.3.2 BESS for solar power smoothing
A neural network predictive control algorithm to mitigate

PV power fluctuations in distribution networks was proposed
in Syed and Khalid (2021). The controller optimized the BESS
SoC using the input parameters from the neural network model
(predicted PV power). Still, the precision of the neural network
plant model is dependent on the quality of data. A similar
study obtains PV power smoothing using a probabilistic fuzzy
neural network and BESS in Lin et al. (2017b), but does not
consider the health of the battery in the simulation. Excessive
charging or discharging of the batteries or even significant
delays could have a negative impact on the battery’s health.
The methodology uses Saviztky-Golay filter for PV power
smoothing with the help of BESS in Atif and Khalid (2020).
The results show that the method leads to unnecessary battery
consumption and increases the battery cost if a significant delay
is introduced. A BESS control for PV power intermittency
smoothing using an optimized two-stage filter was proposed
in Nazaripouya et al. (2017). More BESS-based algorithms for
power smoothing and improving power quality can be found in
Lallu et al. (2017); Islam et al. (2020); Guo et al. (2020).

Table 5 of the BESS-based
methodologies for long-term ancillary services, which are

presents a summary
classified as congestion management, peak shaving, and power
smoothing. For each journal article, the method, significant
contributions, and limitations are summarized and presented in
Table 5.

4 Energy storage policies worldwide

Several countries and governments have introduced energy
storage system policies to motivate higher adoption of clean
energy generation and reduce greenhouse gas emissions. The
policies from different countries differ as they are developed
based on their requirements. For instance, Australia and
the United States have introduced policies to improve the
power systems’ stability. Japan aims to provide backup power
support during emergency shutdowns due to the damages
from natural disasters, Germany adopted policies to promote
higher renewable energy integration in the grid, while South
Korea aims to reduce peak demand using higher adoption of
BESS Lee (2015); Sani et al. (2020). Although all policies have a
different perspective toward BESS, they are not limited to one
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specific area and are flexibly operated to provide multiple grid
ancillary support. The ESS policies of different countries are
described as follows.

4.1 Australia

Under the ARENA Act 2011, the Australian Renewable
Energy Agency (ARENA) was founded in 2012 to lower
the cost and increase the use of renewable energy in
Australia. ARENA, which now serves as Australias primary
ESS development support mechanism, has made significant
investments in battery storage as they know that the ESS
technology can help the agency achieve its goals and objectives
Australian renewable energy agency (2022).

A low carbon investment plan policy strategy was developed
by the South Australian (SA) government in 2015. The
government has made substantial investments toward low-
carbon energy and has already attained 52.1 per cent renewable
energy penetration Clean energy council (2020). Through this
project, ESS will primarily be used to prevent power quality
and curtailment problems that could result from the intermittent
nature of renewable energy sources H. Britton (2015). Moreover,
the Adelaide City Council was the first Australian government
to give direct financial incentives for battery storage coupled
with solar PV installations in 2015 as part of the sustainable city
incentive scheme. The scheme was introduced to target business
owners, residential customers, community organizations, and
educational institutions. Soon after the program started and
its potential became apparent, the SA government matched
Adelaide City Council’s funds to construct a 600 kWh battery
energy storage S.C. Staff (2016). The SA government introduced
the home battery program in October 2018 to offer subsidies to
residential customers installing batteries alongside their rooftop
solar PV systems Home battery scheme (2020). To provide the
necessary grid support services, the SA government erected the
Hornsdale power reserve, the largest Li-ion battery in the world
(100MW/129 MWh). The details of these projects can be found
in Section 5.

The Sustainable Energy Policy Framework, introduced
in 2011, supports the Australian Capital Territorys (ACT)
ambitious goal of generating 100 per cent renewable
energy by 2025. The government believes battery ESS
is essential to attaining some of the policy’s goals
ACT Government (2011). One of the government’s schemes,
it easier for 5,000
families and companies by installing 36 MW of battery

Next Generation Renewables, made

storage between 2016 and 2020 Environment Planning
Another
program created to aid the development of the clean

and  Sustainable Development Directorate (2021a).

economy is the Renewable Energy Industry Development
Strategy (REIDS), which aims to develop the ESS and
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renewable industries in ACT Environment Planning and

Sustainable Development Directorate (2021b).

4.2 United States

To increase and develop new markets for ESS in the
United States, both the federal and state governments have
promoted policies that encourage investment, tax reduction,
subsidy assistance, and extension of public supply Lee (2015).
The primary contribution of the state governments is to
encourage higher adoption of ESS and renewable energy by
developing policies to provide subsidies for new ESS and
renewable installations. In contrast, the federal government’s aim
is to promote business investments Lee (2015). A list of most
common ESS policies and contributions of the US government
are described below.

e Section 1301 of the legislation helped the American Energy
Innovation Act to authorize a 5 year fund of

e $1.4 billion for ESS research and development in 2020
American Energy Innovation Act (2020).

e Farm Bill (2019) provided financial support to the
programmes run by the Department of Agriculture to
promote ESS installations on farms and small businesses
in rural communities Energy Storage Association (2020).

e The Advanced Research project’s Agency provided funding
for long-term energy innovation in 2018 to support the
development of technologies that can utilize ESS to power
the US grid for 100 h A Zablocki (2019).

e ESS tax incentive bill S.3159 was introduced in 2016 to
provide tax credits for ESS that have a minimum capacity
of 5 kWh Congressional Research Service (2016).

e Residential Energy Property Tax Credit provides incentives
to the ESS owners with a minimum capacity of 3 kWh
Martin Heinrich (2016).

e Storage 2013 Act was introduced to encourage high
installations of ESS by providing tax incentives to the owners
and businesses United States Senate Committee on Energy
& Natural Resources (2013).

e Law HB2193 was imposed in 2015 to ensure that the utilities
have a minimum five MWh operational ESS by 2020 P.
Maloney (2017).

e California state government announced Bill AB2514 in 2010
to ensure that the state-owned utilities establish 1325 MW
ESS by 2020 Hart et al. (2018).

e H.4857 and Clean Energy Standard were passed in
2018 to ensure that Massachusetts and New York install
1000 MWh and 1500 MWh of ESS by 2025, respectively A.
Zablocki (2019).

e The New Jersey state passed A3723 in 2018 to ensure
2000 MW ESS installation by 2030 A. Zablocki (2019).
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4.3 Europe

The European Union (EU) significantly promotes clean
energy generation in Europe by supporting the development of
renewable energy technologies. Several European countries are
developing their ESS policies to avoid obstacles that interfere
with the deployment of ESS Sani et al. (2020). These policies are
introduced to encourage higher ESS installations by providing
subsidies, incentives, and research grants and promote the ESS
provisions for ancillary grid support in Europe.

The United Kingdom (United Kingdom) does not provide
direct subsidies for the deployment of energy storage systems as
they believe that the energy industry should not be dependent
on the subsidies Sanietal. (2020). However, the government
provides a lot of funding for research and development to
promote innovation in the sector Potau et al. (2018). The KfW
Bank in Germany collaborated with the Federal Ministry of
Economic Affairs and Energy to introduce a low-interest subsidy
and load scheme for interested ESS and renewable energy buyers
International Energy Agency (2016).

Other European countries also have regulations related to
ESS. However, some barriers are limiting the speedy adoption of
ESS. For example, the ESS facilities do not have business interests
in the Netherlands as the government is solely promoting
renewable energy generation to achieve the clean energy targets
Sani et al. (2020). As a result, no adequate policies or regulations
were introduced for ESS. Similarly, the progress on BESS
deployment in Italy is plodding as there are no policies to support
it Sani et al. (2020).

4.4 Asia

Several countries in Asia have been developing and
improving the ESS policies to reduce greenhouse gas emissions
and increase clean energy generation. To promote battery
technology in Japan, a battery storage project was introduced
by the Ministry of Trade and Industry in 2012. Supportive
policies and market opportunities were provided by the
Ministry of Trade and Industry (2012). In 2014, the government
launched the fourth strategic energy plan that aimed to establish
a resilient multi-layer energy supply to ensure power system
stability Ministry of Trade and Industry (2014). Moreover,
the Japanese government provides one-third of the total ESS
installations costs from government subsidies and other relevant
programs. They aim to ensure that the Japanese power grid is
prepared to provide the fast response needed during natural
disaster and loss of large generation Lee (2015). Similarly, the
Chinese government has been supporting relevant ESS policies
since 2005 to meet the clean energy targets. The policies have
focused on a variety of areas that might advance and guarantee
the quick development of ESS, including market development,
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grid-connected operation management, development pattern
environmental protection, and financial assistance Yang and
Zhao (2018).

5 Cost-benefit analysis of field
projects

Battery technology provides a promising solution for
ancillary grid services and brings a diverse range of benefits
to their owners and utilities Kumar et al. (2020a). However, to
demonstrate the feasibility of the widespread adoption of BESS, it
is essential to evaluate the cost and benefits of the commissioned
BESS projects comprehensively and systematically. In this
section, we present a cost-benefit analysis of BESS projects that
have been commissioned globally. Only the projects that have
publicly released the data are evaluated for this review. The
benefits of adopting BESS for grid applications are summarized
from the perspective of utility and independent power providers
(IPPs). BESS, owned by the utility, usually generates revenue
by participating in the wholesale ancillary markets for services
such as frequency support and energy arbitrage. In contrast,
the BESS owned by the IPPs are mostly used for resource
adequacy support, and the revenue for those BESS is generated
based on the contracts and agreements with the utilities
Lazard (2018). Applications such as using BESS to replace or
upgrade the existing infrastructure and utility-scale peak shaving
also produce monetized benefits for the utility. Considering that
the BESS cost and benefit analysis are particularly interesting for
the investors, we divide the discussion into two subsections to
evaluate the cost-benefit analysis from the investors’ perspectives
(IPPs and utilities).

5.1 IPP owned BESS

The IPP-owned BESS generates income for participating in
wholesale ancillary markets and providing resource adequacy
support to the system operators to improve the grid’s reliability.
The IPPs mostly dominate the market share of large-scale BESS.
For example, the IPPs in the United States (US) at the end
of 2019 owned more than 56 percent of the existing power
capacity of large-scale BESS participating in grid ancillary
services  US Energy Information Administration (2021). A
summary of IPP-owned BESS projects around the world with
public information is provided in Table 6. For example, a
20MW/80 MWh BESS was developed by AtlaGas Pomona
Energy in the US for smoothing demand spikes and maximizing
renewable energy generation. The total cost for deploying
the BESS was around $40 to $45 million, which includes
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the cost of the battery pack, power electronic converters,
energy management system, and engineering, procurement,
Since the detailed
benefit report for this project is not provided, revenue data
from the California Independent System Operator (CAISO)
is used to estimate the annual revenue and return of investment
Lazard (2018). It is expected that the BESS will generate around
$2.8 to $5.6 million in revenue and will take approximately

and construction costs AltaGas (2017).

7-8 years to return its capital investment.

The Hornsdale power reserve project, owned and
operated by Neoen, installed a 100MW/129 MWh lithium-
ion battery to provide premium contingency frequency
control ancillary service through its fast frequency response
McLaren et al. (2017). In comparison to $7 million revenue in
2019, the project resulted in a $36 million increase in revenue
in the first quarter of 2020. A small portion of this revenue was
also provided by other minor BESS projects owned by Neoen.
The total revenue of the Hornsdale battery has exceeded its
investment cost of $96 million in just over 2 years after it started
operations in late 2017 McLaren et al. (2017); Meng (2021). The
Marengo project cost $20 million to invest in a 20MW/10 MWh
battery unit for frequency regulation. It is estimated that the
BESS will generate a revenue of approximately $5.599 million
and will recover the total investment cost within 4 years
DOE Office of Electricity (2019¢). In 2019, the Gannawarra
project in Victoria, Australia, installed 25MW/50 MWh BESS to
support maximum renewable energy integration and regulate the
frequency in the Victorian power grids. The annual operational
report indicates that the BESS has generated $3.68 million in
revenue in the first year itself and will take approximately 7 years
to obtain a return of investment Edify (2021).

The Lake Bonney project invested in a 25MW/52 MWh
BESS, which costs $41.6 million. The primary objectives of
the BESS are to provide fast response duties and wind power
curtailment. In the first year, the total income from the BESS
ancillary services exceeded $10 million, which indicates that
the BESS can recover its total investment cost in less than
5years Infigen (2021). Several other field projects worldwide
have invested in BESS for ancillary support. However, they
have not disclosed the cost-benefit analysis. For instance, the
Virtual Power Plant project, led by AGL Energy Limited,
installed solar battery storage systems across 1,000 residential
and business premises in Adelaide, South Australia. The role
of these BESS is to provide RES power smoothing support
and achieve peak load shaving to minimize the electricity
bills of the customers Energy (2020). Details of similar
projects such as AES Kilroot Carmen (2021a), Mt Newman
Carmen (2021c), Butleigh Somerset Energy Matters (2018),
Rabbit Hill DOE Office of Electricity (2019d) and Bulgana
Carmen (2021b) can be found in Table 6.
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5.2 Utility owned BESS

The utilities invest in BESS to ensure the secure and economic
operation of the grid, mainly due to the high integration of
RES. The unity-owned BESS also participates in wholesale
ancillary market services to generate revenue for their owners
Liuetal. (2020). During high RES penetration, the generation
exceeds the load demand and causes significant drops in
electricity prices, which provides energy arbitrage opportunities
for BESS. For instance, the BESS can be charged (purchase
energy) from the excess renewable energy generation (during
low electricity price) and discharged (sell energy) during peak
hours when the electricity price is high to maximize the revenue
Liu et al. (2020). A summary of utility-owned BESS projects is
given in Table 6. For example, the Stafford Hill project invested
in a 4MW/3.4 MWh BESS for peak shaving. The report from
the US Department of Energy summarizes the cost-benefit of
the project, which indicates that the total investment cost of
the project was $5 million, and the annual benefit from the
BESS services is estimated to be around $0.35 to $0.7 million
US Department of Energy (2018a). As a result, it is estimated
that the BESS will cover its investment cost in less than 10 years.

The Sterling BESS was installed in 2016 to provide multiple
services such as peak shaving, energy arbitrage, and reliability
support US Department of Energy (2018b). The project costs
$2.5 million and generates annual revenue of $0.68 million
(approximately 27 percent of its capital investment cost). In 2019,
a similar project (Ballarat) in Victoria, Australia, invested in a
30MW/30 MWh BESS to provide frequency control, network
stability, and congestion management support ARENA (2019).
From the operational report, it is found that the project’s capital
cost was $25 million, and the revenue from BESS services in the
first year (2020) was $6.65 million. It is estimated that the BESS
will reach its investment return in less than 4 years.

Other interesting BESS field projects that are owned by the
utilities can be found in Table 6. However, the cost-benefit data
were not disclosed for those projects. For example, the Willenhall
project invested in a 2MW/1 MWh BESS for frequency
regulation The University of Sheffield (2016), Snohomish
PUD MESA 2 invested in 2.2MW/8 MWh BESS for peak
shaving and energy arbitrage DOE Office of Electricity (2019e),
Escondido installed 30MW/120 MWh BESS for peak shaving
and reliability services DOE Office of Electricity (2019b), SCE
LM600 Hybrid EGT - Grapeland added a 10MW/4.3 MWh
BESS for spinning reserve, frequency regulation and
load leveling DOE Office of Electricity (2019f), the
Science and Technology Park project invested in a
10MW/5 MWh BESS for energy arbitrage, demand response
and reliability services DOE Office of Electricity (2019g), the
Ideal Energy MUM Ideal Energy (2019) and the MidAmerican
Energy Storage Pilot Projects MidAmerican Energy Company
(2019) invested in 0.35MW/1.05 MWh and 1IMW/4 MWh BESS,
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respectively for improving renewable energy reliability and
achieving peak shaving. The Convergent SCE Project installed
a 35MW/140 MWh BESS for additional generation support in
California DOE Office of Electricity (2019a).

6 Challenges for deploying BESS

Deploying an efficient BESS is a challenging task as several
factors, such as costs, reliability, environmental issues, and
their degradation, need to be considered Datta etal. (2021).
This section presents the compendium of the literature and
highlights the existing challenges associated with deploying and
managing BESS in distribution grids. The substantial challenges
in deploying BESS are summarized in Figure 6 and explained in
the following paragraphs.

e Challenge 1: Economic concern for BESS investment and
operation

The most critical factor for deploying BESS is the cost. Over-
sizing BESS may not only increase the total investment costs but
also lead to technical challenges in the grid Awad et al. (2014).
As discussed in the above literature, many researchers have
focused on minimizing the costs while planning the BESS for
self-consumption, and ancillary support Engels etal. (2019);
Zhang et al. (2016); Ramirez et al. (2018), Chua et al. (2016);
Prasatsap et al. (2017). BESS costs depend on multiple factors,
which include the type of BESS (technology), applications,
geographical locations, investment costs, and maintenance
requirements Awad et al. (2014). Other factors such as BESS
degradation, power losses, and SoC can also have a direct impact
on the BESS costs Mohamed et al. (2020).Solution: Developing
an efficient BESS that considers economic concerns is a challenge,
as various factors must be considered. These factors can be
optimized by considering them within the optimization models
to obtain lower BESS investment and operation costs. It is also
essential for the governments to develop policies to provide
incentives for BESS installations and participation. As described
in Section 4, several countries are providing subsidies and
incentives to encourage higher BESS installations while others
are yet to introduce ESS policies.

o Challenge 2: Battery degradation, loss-of-life

Characteristics of an effective BESS are fast charging,
slow discharging, and delayed degradation (increased lifetime)
Mosca et al. (2019). An efficient design and control of BESS
must consider the key factors that deteriorate the battery’s
health. According to Sufyan et al. (2019), the four critical factors
that impact the deterioration of battery capacity are the depth
of discharge (DoD), battery lifetime, temperature, and the
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Challenges in deploying BESS.
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charging and discharging current, which are described as
follows.

e Battery DoD:
discharged with respect to its rated capacity and allows

represents the percentage of battery

for deep charge and discharge cycles, depending on the
characteristic of the battery.

Battery lifetime: represents the total number of cycles
the battery can sustain and is measured as calendric
and cyclic degradation. The calendric degradation, also
known as constant degradation, is based on the chemical
agents of BESS that are active due to the temperature
and voltage. In contrast, cyclic degradation is dependent
on the charging/discharging rate of BESS Mosca et al.
(2019).

Temperature: the battery degradation process is also

dependent on the ambient temperature, which is known
as the capacity fading phenomenon in the literature
Sufyan et al. (2019).

Charging and discharging current: current limits during the

charging and discharging process plays an important role in
delaying battery degradation. For instance, supplying a large
current increases the internal resistance of the battery and
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reduces the capacity, which can harm the battery lifespan
Sufyan et al. (2019).

Solution: To increase the efficiency of the battery
and delay the degradation process, it is essential to
consider the manufacturer’s recommended specifications,
particularly optimum DoD in the design and operation
stages Mosca et al. (2019); Sufyan et al. (2019). Additionally, the
battery life is the most critical factor in the cost operation process
as the battery’s lifetime depends on the number of charging
and discharging cycles Mosca et al. (2019). Hence, optimizing
the charging and discharging process for delayed battery
degradation is essential. Moreover, low temperature increases
the internal resistance of the battery, whereas high temperature
increases the battery’s chemical reactions, both of which
degrade the electrodes Ju and Wang (2016); Smith et al. (2012).
Therefore, smart control algorithms are required to maintain the
appropriate ambient temperature to improve the battery’s health.

o Challenge 3: Environmental threats imposed by BESS

Although BESS is used to increase the RES penetration
in power grids and reduce greenhouse gas emissions, BESS
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itself may create some environmental threats Pombo et al. (2017)
if not recycled properly. Battery recycling is a process of
discarding degraded batteries. Since the batteries contain
harmful toxic chemicals, dumping them as trash can result in
severe environmental concerns Brogan et al. (2018).

Solution: The battery manufacturers should be aware of the
health risks associated with the disposal of batteries and should
provide appropriate recycling facilities Brogan etal. (2018).
Recycling batteries is an ongoing process, and it is necessary
to determine strategies for reusing/recycling the degraded BESS.
It is essential for the governments to impose strict laws and
enforcement related to battery recycling. The governments can
also provide funding for research and development so that
the researchers can work together to develop environmentally
friendly storage technologies

and appropriate recycling

resources.

o Challenge 4: Availability and coordination of BESS and other
DERs

The fast response and flexible characteristics of BESS provide
a promising solution for increasing clean energy generation in
power grids Qiu et al. (2018). However, BESS alone may not be
able to solve all technical issues in a power grid Qiu et al. (2018).
BESS should be coordinated with other available RES to provide
an effective solution to the existing problems Qiu et al. (2018).

Solution: To achieve this, new technology advancements and
control strategies are required. The optimization algorithms must
consider the difficulties and restrictions of reducing greenhouse
gas emissions while providing valuable support to the power
grids. Due to system availability and high installation costs, BESS
technology and application are only available in high-income
countries. The possibility of introducing these technologies in
low- and middle-income countries needs to be explored.

o Challenge 5: Lack of regulatory barriers to clarify the role of
BESS

BESS has
multiple

the
ancillary

technical capabilities for providing

grid services Jayasekara et al. (2015);
Wang et al. (2018). However, the network providers and market
operators may hesitate to deploy the BESS for those services
if no regulations, legislation, or guidelines explicitly declare
that BESS may do so Bhatnagaretal (2013). Additionally,
without assurances that BESS projects for ancillary services
would be reimbursed, storage owners and system operators
may be hesitant to undertake the necessary capital investments
Bhatnagar et al. (2013).

Solution: The governments and energy departments need to
establish regulations for BESS participation in energy, capacity,
and ancillary service markets. The guidelines and rules must,

among other things, ensure that BESS has open and equitable
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access to the market, considering its operating and technical
characteristics Bowen et al. (2019). As described in Section 4,
few governments have already established these requirements.
However, there are several countries that still need to introduce
the regulations and policies to promote high installation of
BESS.

o Challenge 6: Deep charge or discharge of BESS

Inappropriate scheduling may result in deep charging or
discharging of BESS, affecting the battery’s performance, state of
health, and state of safety Han et al. (2014). Frequently, the deep
discharge of batteries causes mechanical strains in the plates,
resulting in shedding, poor conductivity, and a shortened system
lifespan. The most frequent mechanical stress causes in active
battery materials are large volume and crystallographic structure
changes during the BESS charging and discharging process.
Excessive voltages can initiate undesirable electrode reactions
towards the completion of BESS charge or discharge, which can
cause corrosion or gas evolution. As a result, the battery’s actual
capacity may be lower than its rated capacity.

Solution: Depending on the measurable outputs such
as temperature, voltage, and current, an effective battery
management system can protect against deep charge or discharge
and precisely calculate the functional status of the battery,
including state of charge (SoC), state-of-health (SoH), state-
of-function (SoF), and state-of-safety (SoS) Han et al. (2014).
For instance, adaptive algorithms and data-driven estimating
approaches were employed by the battery management systems,
and they were compared to direct and indirect experimental
assessments Xiong et al. (2018). The use of big data sets and
machine learning as a method to improve these models
Severson et al. (2019).

It is also critical to reduce the computing burden of the

was investigated by Howey (2019);
models so that they can be employed in real-time applications
Zhang et al. (2019).

o Challenge 7: Dynamic impacts of BESS

The dynamic effect of battery conversion efficiency on grid
support is frequently overlooked in the literature. The dynamic
model of BESS provides a simple representation of the battery
cells and allows for analyzing the effects of battery degradation,
dc-to-dc converters, voltage source converters, and the dynamics
of the filter and transformer that connects the BESS to the grid
Calero et al. (2020).

Solution: Including the dynamic characteristics in the design
and planning phase will allow to evaluate the effects of dc-to-
dc converter limits, and their dynamic responses on the ac side
can be studied. Implementing the dc-to-dc converters will enable
a more realistic representation of battery banks in the power
grids, which can be helpful in analyzing the impacts of battery
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degradation, aging, and SOC on the battery cells in existing BESS
facilities Calero et al. (2020).

o Challenge 8: BESS market for ancillary support

A lack of market for the services that BESS are specially
designed to provide can make it difficult for developers
and system operators to incorporate them as prospective
sources of revenue. For instance, generators are used for
frequency regulation support to provide the inertial, and
governor response in most of the United States independent
system operator markets Bowen et al. (2019). BESS can offer
the same services faster and with better accuracy. Still, the
lack of market opportunities to seek compensation for those
services has become a significant obstacle for BESS deployment
Bhatnagar et al. (2013). Additionally, given the nature of
economies of scale and scope in operating the ancillary service
markets and the connections between markets, the ultimate
allocation of tasks is a matter of debate.

Solution: A centrally coordinated market can provide better
opportunities to the interested network service providers and
lower the driving information technology costs Pollitt and
Anaya (2020). Market participants who wish to engage in
simultaneous shares in multiple marketplaces may also favor it.
One approach for a storage facility is to enter a single, long-
term contract with the system operator and follow the directions
from the system operator on how to run the facility and for
what service. It is difficult for the DER owners to optimize
their bids across several marketplaces at various scales. The
capacity to co-optimize between regulated network investments
and DER ancillary service solutions is required. It will enable
the distribution network operators to award a contract to the
DER owners to provide ancillary support such as congestion
management or voltage regulation rather than improving its
network.

7_Con.clusion and future research
directions

In this paper, an up-to-date review of the role of static
or fixed BESS for short-term and long-term ancillary services
in the distribution grid was presented. The review process
combines two innovative approaches, a PRISMA statement,
and VOSviewer experiments, to identify and address the
contemporary issues related to BESS provision for ancillary
services and highlight the solutions for implementing intelligent
and efficient algorithms. The most recent and relevant research
papers are discovered using simple search strategies and filtering
them based on inclusion and exclusion criteria. Then, the
systematic PRISMA approach was used to provide a full
review of the current approaches. This paper has utilized
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the VOSviewer visualization technique to identify significant
research clusters from the sparse literature. It has been identified
that the common ancillary services provided by BESS can be
categorized into short-term and long-term services. As a result,
we collected and reviewed the most important contributions
and limitations of common short-term ancillary services (voltage
control, frequency regulation, and black-start) and the long-term
ancillary services (congestion management, peak shaving, and
power smoothing). A cost-benefit analysis using commissioned
BESS field projects was evaluated and presented in this review.
The existing barriers to BESS deployment for ancillary services
were also presented. To bridge the existing research gaps,
potential future research directions were identified and can be
summarized as follows.

e With the increasing renewable energy penetration in the
distribution grid, the traditional approaches for ancillary
support have become detrimental to the network equipment
Qiu et al. (2018). Additionally, the uncoordinated provision
of distributed RESs may lead to technical issues such
as overvoltage, overloading, and power quality issues
Qiu et al. (2018). Further research is needed to develop new
control strategies for coordinating BESS with distributed
RESs for fast and effective ancillary support.

e Several strategies have been applied to tackle optimal BESS
allocation, sizing, and scheduling problems. However, to
ensure robustness and reliability of the distribution grids
to voltage, frequency, and power quality problems, more
research effort is required to optimize and validate the
transient and dynamic issues rather than the steady-state
characteristics. The environmental constraints and seasonal
variations need to be considered as well.

e More detailed analysis of BESS is required to consider BESS’s
dynamic impact to accurately analyze the effects of battery
degradation, dc-to-dc converters, voltage source inverters,
and dynamic behavior of filters and transformers.

e To ensure efficient planning and operation of BESS, a
comprehensive techno-economic analysis is required that
should consider the capital costs, operational expenses,
maintenance requirements, and key factors that affect the
BESS aging.

e New control strategies should include the safety and
protection of different types of BESS. A safety feature, such as
early fault warning or fire protection schemes, can help avoid
any occurrences of accidents and faults in the operational
environment.

e Better battery management systems can enhance the
performance of the battery and improve the state of health,
and state-of-safety [an et al. (2014). Artificial intelligence,
the internet of things, big data, and cyber protection could
be utilized to provide safe, reliable, robust, and intelligent
scheduling solutions for BESS-based grid ancillary support.

frontiersin.org


https://doi.org/10.3389/fenrg.2022.971704
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

Prakash et al.

e Policies and regulations between energy and ancillary
markets are required so that the BESS owners are aware of
the rewards for participating in grid ancillary services. This
may also increase the number of prosumers participating in
grid ancillary support.

e Lack of market opportunities is the major obstacle that
is delaying BESS deployment for grid ancillary support
Bowen et al. (2019). There is an immediate need for the
governments and energy departments to create valuable
market opportunities so fast, and accurate BESS replaces
the slow and less accurate traditional methods for ancillary
support.

e To validate the developed algorithms on a physical
network, experimental testing is required. While it may
not be possible to test a developed strategy on an
existing network, as it may compromise the operation
of the grid, it is still possible through hardware-in-the-
loop simulation. Therefore, digital models that replicate
the existing power grids and real-world scenarios are
required.

o Effective BESS recycling strategies are required to allow
appropriate disposal of degraded BESS, as ineffective
techniques can impose severe environmental threats
Pombo et al. (2017).

e Since the world is experiencing a widespread adoption
of EVs, it is necessary to analyse the impacts of mobile
or dynamic EV batteries, and discover the solutions
from hybrid energy storage systems for grid ancillary
support.
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