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District heating systems offer the possibility of lowering emissions and

support the goal of reaching a carbon-neutral energy system by

integrating renewable heat sources. Therefore, this work provided a

systematic literature review to identify potential research gaps and

show the literature distribution over the relevant topics. The focus is

on the design optimization with (non-)linear programming of district

heating systems in the context of decarbonization. Furthermore,

crucial energy balance equations were extracted from the literature

for a potential optimization problem. The systematic literature review

limited its search to two databases, 10 years timespan, a quality

measure, and uses keywords regarding topic and method. Categories

were derived based on the subject and literature to cluster the found

publications and identify potential research gaps. The results showed

potential research gaps in the depiction of different stakeholder

decisions, reduction of computational efforts, and their resulting

uncertainties. Additionally, they identified gaps in the integration of low-

grade heat sources, thermal storage facilities, and energy converters,

especially geothermal energy, large-scale heat pumps, and seasonal

storages.
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Introduction

Since the millennium, global climate change has shown devastating outcomes

due to natural disasters. The integration of renewables in the energy system is

essential to limit the enhancement of global climate change. District heating

systems (DHS) would offer the possibility to enhance the integration of renewables

if the system’s design was optimized. In addition to global climate change, the

independency of fossil fuels is more crucial than ever to European countries due to

rising gas prices caused by the Ukrainian conflict (Global Conflict Tracker, 2022).

Natural gas is an essential heat carrier in Europe, with a share of 36% gross heat

generationin 2019 (DG Energy, 2020; European Commission, 2021b). Figure 1

illustrates the high dependency on fossil fuels in DHS in relation to net heat
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production. 66% of the net heat production was generated from

less than 15% renewables1. Because of the increasing demand

for the independency of natural gas and other fossil fuels, most

countries will face a decarbonization process in the upcoming

years. The heat supply in countries like Germany is at a

temperature of 80–130°C. High temperatures further

complicate the decarbonization process due to higher losses

and decreasing efficiencies for renewable heat sources

(Paardekooper et al., 2018; EnBW Company, 2021).

Mathematical optimization is a commonly applied method

to support planners and operators in transforming their

DHS (Sameti and Haghighat, 2017). The optimization tries

to find a mathematical minimum of a cost function designing

energy converters, storages, pipes, or other components.

The field of optimization in DHS was reviewed by several

researchers in the literature. The focus of those publications can

be summarized as follows:

• Sameti and Haghighat (2017) discussed mathematical

approaches on optimizing district heating and cooling

systems in detail. The review described possible

modeling techniques for energy conversion

technologies or thermal storages and objective

functions. The objectives minimized costs or CO2

emissions. It gave a broad overview of optimization

approaches in the literature, describing the method,

the objective, and the type of installation (centralized,

decentralized). The research was conducted in

2017. Therefore, our review focused on new

topics with relevance, like the integration of

renewable heat sources. In addition, we concluded the

relevance or irrelevance of mathematical formulations

for the grid.

FIGURE 1
Renewable share and net heat production in DHS in dependency of some European countries in the year 2019 (European Commission, 2021a;
Corscadden et al., 2021, p. 34, p. 34).

FIGURE 2
Summary of the methodology for the systematic literature review.

1 Not all European countries are included due to the lack of data.
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• Lake et al. (2017) reviewed case studies of district

heating and cooling systems to identify the

advantages and drawbacks of different energy sources.

Furthermore, the publication reviewed energy policies

to determine their influence on designing such systems.

Additionally to Lake et al. (2017), we provided a

literature distribution on the different technology

solutions.

• Li et al. (2017) examined smart grids, energy storages, and

the integration of renewable energy sources in optimizing

district heating and cooling systems. The publication

highlighted the conversion of energy, its distribution,

heat transfer stations, terminal users, and approaches in

the literature. In addition to Li et al. (2017), we contributed

with a strong focus on DHS‘ design optimization.

• Mazhar et al. (2018) reviewed DHS’s progress, focusing on

technical configurations, regulations, and policies. The

review identified an urgent need to expand DHS to

accelerate the transformation process in the heating

sector. Our work extended Mazhar et al.’s (2018) review

by examiningmathematical approaches with a strong focus

on the grid.

• Olsthoorn et al. (2016) reviewed modeling and

optimization approaches for integrating storage and

renewable energy. Energy sources were classified

depending on their sustainability and complexity of

integration. The paper reviewed modeling approaches

regarding computational time, detail level, and results

certainty. In addition to Olsthoorn et al. (2016), we

provided knowledge on equations for DHS.

• Paiho and Reda (2016) reviewed DHS in Finland and how

they can possibly be transformed into a sustainable system.

The review’s focus was an overview of promising

innovative and realistic technologies for integration into

DHS. In addition, we identified research gaps in the

literature for the design optimization of DHS.

• Sarbu et al. (2017) reviewed different optimization

techniques for DHS and proposed a detailed

optimization model focusing on the network’s

hydraulics. In addition, the authors presented the

economics of DHS. We expanded Sarbu et al.’s (2017)

work with different temperature models for the network

based on the necessary level of detail.

• Sarbu et al. (2019) reviewed optimization and modeling

techniques in DHS, discussing deterministic and heuristic

optimization. Furthermore, they highlighted the numerical

description of DHS and their components. The state-of-

the-art was also categorized. We added a literature

distribution over relevant technologies

for the decarbonization process to Sarbu et al.’s

(2019) work.

• Sarbu et al. (2020) provided an overview of DHS’s

optimization, focusing on heuristic methods. In

addition, an optimization problem (single-objective and

multi-objective) was formulated, and the criteria for

optimizing DHS was described. Again, we

complemented this work with a literature distribution

over relevant technologies for the decarbonization

process.

The literature reviews provided valuable knowledge in the

field of optimizing DHS. In addition to the state-of-the-art, we

conducted a systematic literature review (SLR) based on a generic

and reproducible method. Our review was driven by the question

if the current optimization methods at hand can calculate a

sustainable re-design of DHS facing a decarbonization process?

In conclusion, our contribution was a SLR on DHS’s

optimization focusing on their transformation process and

identifying research gaps on the topic. Our scope is not only

on the general design of DHS but on the method of linear

programming. The SLR was explained in detail in the method

section, and categories were derived for structuring the results.

The result section followed, giving an overview of the found

literature sorted into the categories. In the discussion section,

major research gaps were identified. In the conclusion, the SLR’s

main findings were described to give an outlook for upcoming

research.

Methods

The SLR was based on Webster and Watson (2002) and Jan

vom Brocke et al. (2009). The scope of the literature review was a

sequential search of bibliographic databases using a

comprehensive set of techniques such as keyword, backward

search, and forward search (vom Brocke et al., 2015). This

method ensured transparency and reproducibility of the

results. The methodology was divided into five steps: selecting

the databases, creating the search string, searching (forward/

backward), refining the results, and deriving categories. In

Figure 2, the applied methodology was visualized.

The search was conducted on Scopus and Web of Science as

they are one of the largest scientific databases, and they allowed

the implementation of search strings in contrast to Google

Scholar (Paperpile, 2012). The search string consisted of the

field, the problem, and the method. The main research question

focused on DHS; therefore, the field was identified as district

heating. The problem was the DHS’s design optimization to

reach a carbon-neutral supply system. The literature usually

formulated its problems as linear or nonlinear (Sameti and

Haghighat, 2017). To conclude, the search string read (district

heating) AND (optimization OR optimisation) AND (linear

programming OR nonlinear programming OR non linear

programming OR non-linear programming). The search

resulted in 83 publications on the 22cd of February 2022. This

method does not exclude any regions or researchers. If a
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publication was not selected, it would have been excluded by the

chosen key words, the refinement, or it would not be available on

the searched databases.

A quality measure refined the 83 publications quartile one and

two in the year 2020—excluding 12 journals: mathematical

problems in engineering, Computer aided chemical engineering,

Journal of energy engineering, Journal of physics conference series,

Chemical engineering transactions, WIT Transactions on ecology

and environment, Chemical Product and Process, Environmental

and Climate Technologies, Yingyong Kexue Xuebao/Journal of

Applied Sciences, Nippon Kikai Gakkai Ronbunshu, C Hen/

Transactions of the Japan Society of Mechanical Engineers, Part

C, Nihon Enerugi Gakkaishi/Journal of the Japan Institute of

Energy (SCImago, 2007).

Additionally, all publications published before 2012 were

excluded to create comparability due to significant developments

in computational time (Sameti andHaghighat, 2017). On top of that,

ten publications2 were excluded because the topic did not match the

DHS’s design optimization. Through the forward search, Krug et al.

(2020) were included in the literature review due to their detailed

model of the DHS in an optimization problem. In conclusion,

51 publications were selected to be reviewed in this article.

The categories clustered the 51 publications and enhanced a

fast overview of the topic regarding the research question. In

addition, it shows possible research gaps in the state-of-the-art.

The categories were divided into nine supercategories: system,

objective, method, solver, computational time, the validity of

results, consumer, grid, and supply structure. Each of those

supercategories consisted of subcategories to further describe

the content of the literature. The arrangement and meaning of

each category were explained in the results section, supported by

figures illustrating the literature’s distribution concerning the

DHS’s (re-)design optimization.

Results

The results section consisted of three subsections: District

Heating System, Optimization, Modeling of District Heating

Systems in Optimization, and Significant Findings of the

Literature. In those subsections, the subcategories were derived,

and the literature’s distribution was displayed. In addition,

standard approaches to the topic were explained. The

considered literature was documented in Table 1. Figure 3 is an

overview of the literature distribution based on the categories for

method, unit type, technology, system, computational time, and

objective. Due to the applied method, all publications provided

knowledge on those supercategories except for measures of

lowering computational time. The graphic showed that most

publications dealt with small scale-systems using a mix of

renewable and nonrenewable heat sources or energy converters

that are centrally installed. Usually, the mathematical model was

linear and optimized towards a single objective. In 40 publications,

computational methods were applied to decrease the calculation

time. The following sections provide a more profound knowledge

of the categories and the publication’s content.

District heating system

DHS transport heat through pipes to consumers. Usually,

DHS have a forward-flow transporting heat from the production

units to the consumers and a backward-flow transporting the

fluid back to the production unit. Some DHS operate on

temperatures over 90°C, while the 4th Generation of DHS

operates below 60°C (Lund et al., 2021). If the forward-

temperature is below 60°C, the warm water must be heated

decentrally to prevent legionella. The 5th generation of DHS

enables parallel cooling and heating. Consumers can extract or

inject energy into the grid. In that case, consumers become

prosumers (Wirtz et al., 2020). Therefore, the three

subcategories of the system were high temperature > 90°C,

medium temperature 60–90°C, and low temperature < 60°C.

The DHS’s size influences the model complexity due to the

need for spatial discretization (Sameti and Haghighat, 2017).

Some DHS supply small districts, while others supply cities

(Biedermann and Kolb, 2014). Therefore, large-scale and

small-scale system were subcategories of the supercategory

system. A system was considered small-scale if the problem

was not spatially discretized or the optimization was

performed over a few nodes. Furthermore, this work

differentiated between real case studies and synthetic case

studies.

About 70% of the literature used real case studies to support

their model inputs. In Figure 3, most systems were small-scale:

Bornand et al. (2020) derived an investment planning

methodology and implemented it for a hospital site. This

problem was categorized as small-scale due to the low number

of nodes. The same category was set for Wirtz et al. (2021a)

because the problem was not spatially discretized. In general, the

temperature level was not always clearly identified; therefore,

some methods can be applied to high- and medium-temperature

systems. The vast majority of systems (~85%) covered by the

literature are small-scale systems with temperatures over 60°C.

Optimization

Mathematical optimization is a tool to support decision-

making processes, e. g. designing and operating energy systems

2 Excluded publications: Ryohei Yokoyama et al. (2016); Mojica et al.
(2017); Wu et al. (2018); Sameti and Haghighat (2019); Alghool et al.
(2020); Scolan et al. (2020); Campos et al. (2021); Halmschlager and
Hofmann (2021); Liu et al. (2021); Neri et al. (2022).
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(Sameti and Haghighat, 2017). Mathematically, “optimization”

means the determination of the maximum or minimum of a

function f. In the literature, the function inherited economic,

technical (exergy), social, or ecologic factors and was defined on a

(restricted) domain S or state space. Classic optimization theory

deals with cases where S is coherent, and the function f is

optimized and continuous. The function f was also called the

objective function in the optimization environment. The pending

decisions (e.g., investments or dimensions of energy converters)

were linked to the degrees of freedom of the problem. In an

optimization model, variables represented degrees of freedom

(e.g., the storage volume). The optimization algorithm assigned

values to the variables resulting in the objective function’s optima

reflecting the consequences of the decisions.

Min{f(x, y)
∣∣∣∣∣∣∣∣ h(x, y) � 0
g(x, y)≥ 0

,
x ∈ R

y ∈ R
} (1)

is a generic objective function with h(x, y) representing the

equality and g(x, y) the inequality constraints. Various factors

influenced the objective value in the literature, e. g. subsidies for

CO2 lowering measures. The design optimization was usually

performed over a given time period τ, optimizing the variables at

every timestep t (Delubac et al., 2020). The objective function

usually consisted of capital expenditures (CAPEX) and

operational expenditures (OPEX). For example, the CAPEX

could depend on the installed capacity for production units or

the installed length of a pipe. The OPEX was often divided into

fixed and variable costs. The variable costs usually depend on the

operation power multiplied by specific costs, e.g., gas price for a

gas boiler. The fixed OPEX depended on the nominal heat and

the device, usually including costs for controlling devices,

maintenance, and repair. Further information concerning

costs for components in a DHS can be found in VDI 2067 or

Steinbach et al. (2020). (Kallrath, 2013, pp. 1–2; Khatibi et al.,

2019; Steinbach et al., 2020)

The depiction of different objectives in mathematical

optimization was achieved via three methods. The first one

was the introduction of a boundary for a variable, e.g., for

CO2 emissions. Nevertheless, introducing a boundary

constraint is not a multi-objective problem (Gurobi, 2018).

Bornand et al. (2020) used the supplementary ε-constraint

with a key performance indicator (here CO2-emissions) to

generate n different solutions for Eq. 1 with

TABLE 1 Publications from the SLR for the literature distribution.

Bartolini et al. (2018) Best et al. (2020) Blommaert et al. (2020)

Bordin et al. (2016) Bornand et al. (2020) Bracco et al. (2013)

Buoro et al. (2013) Casisi et al. (2019) Dancker et al. (2019)

Delubac et al. (2020) Delubac et al. (2021) Elsido et al. (2017)

Fazlollahi et al. (2015) Fazlollahi et al. (2014) Fitó et al. (2020)

Haikarainen et al. (2016) Halmschlager et al. (2021) Hirsch et al. (2016)

Khatibi et al. (2019) Li and Svendsen, (2013) Li et al. (2016)

Marguerite et al. (2013) Marquant et al. (2017) Mavromatidis and Petkov, (2021)

Mertz et al. (2017) Mertz et al. (2016) Morvaj et al. (2016)

Ommen et al. (2016) Pantaleo et al. (2014b) Pantaleo et al. (2014a)

Quaggiotto et al. (2021) Renaldi et al. (2017) Rieder et al. (2013)

Rieder et al. (2014) Röder et al. (2021) Schütz et al. (2018)

Stange et al. (2018) Szypowski et al. (2019) Unternährer et al. (2017)

van der Heijde et al. (2019) Vian et al. (2020) Walter et al. (2020)

Wang et al. (2021a) Wang et al. (2021b) Weinand et al. (2019)

Wirtz et al. (2019) Wirtz et al. (2021a) Wirtz et al. (2020)

Yılmaz Balaman and Selim, (2016) Zhang et al. (2021) —

FIGURE 3
Overview of the literature distribution over the system’s size,
the unit type, the technologies, the method, the objective
function, and efforts for lowering computational time.
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{KPI≤ εi
∣∣∣∣∣∣∣ εi � KPI min + i

KPI max − KPI min

n − 1

for i ∈ [0, n − 1]},
(2)

where the parametric boundary εi is gradually increased.

The second method formulated two separate objective

functions, e.g., for costs and CO2 emissions (Fazlollahi et al.,

2015). The solver then forms a Pareto front of the optimal

solutions depending on the objective functions. The Pareto

front is the border between feasible and infeasible solutions.

All solutions on the Pareto front are optimal. Figure 4 illustrates

the solution space of two objective functions. The point of

intersection is the minimum for both functions. The optima

considering both functions’ objectives is the solution (dashed line

in Figure 4) with the shortest distance to the point of intersection.

The third method used a weighted-sum function, e. g.

including CO2 costs in the objective function (Sameti and

Haghighat, 2017). Based on the influential factors for the

objective and the possibility of multi-objective optimization,

the subcategories ecologic, technical, economic, social, subsidies,

and multi-objective were derived for the objective.

Figure 5 shows the distribution over the subcategories for

objective. Schütz et al. (2018) considered subsidies for combined

heat and power plants (CHP) to exploit total nominal power for

CHP plants until a nominal limit is reached. Only two

publications in total considered subsidies. Technology

subsidies are often regionally limited; therefore, their

publication does not significantly impact the international

community. The influence of social factors on the objective

had not been viewed at all.

Most publications (>95%) used a cost function as their

objective. Some publications (~40%) combined the cost

function with ecologic factors, e.g., limitation of CO2

emissions (Walter et al., 2020) or multi-objective optimization

(Mavromatidis and Petkov, 2021). The application of multi-

objective optimization doubled (12.5% vs. 29.4%) relative to

the samples taken by Sameti and Haghighat (2017).

As explained and shown in Figure 4, the constraints define

the solution space for the objective function. The constraints can

FIGURE 4
Qualitative graph of a Pareto front for a multi-objective optimization with two objective functions, f (x1) and f (x2).

FIGURE 5
Literature distribution for the supercategory objective with a comparison of multi-objective with (Sameti and Haghighat, 2017); low numbers of
publications are marked red as an indication of a potential research gap.
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be formulated linearly and continuously (referred to as linear

programming–LP), linearly and non-continuously (referred to as

mixed-integer linear programming–MILP). Nonlinear problems

can be formulated nonlinearly and continuously (referred to as

nonlinear programming–NLP), or nonlinearly and non

continuously (referred to as mixed-integer nonlinear

programming–MINLP) (Kallrath, 2013). The decision to

formulate the optimization depends on the task and the time

at hand. In general, nonlinear problems can depict physical

systems more in detail–e.g., modeling temperature gradients

along a pipe segment (Krug et al., 2020)—but require higher

computational time. Mixed-integer variables were often used for

control strategies in energy systems (on/off) or designing

components (Elsido et al., 2017). The introduction of those

variables causes increased computational time as well. Mixed-

integer variables were commonly used to design DHS (Sameti

and Haghighat, 2017); therefore, the category method only

consisted of the subcategories linear and nonlinear.

Besides the problem formulation, the solver can also influence

the computational time. It can be distinguished between classic

optimization (mathematical programming) and soft computing

(heuristics and metaheuristics). However, this work focused on

classic optimization because most energy system optimizations

applied this method (Sameti and Haghighat, 2017). Therefore,

most publications used global solvers such as cplex, gurobi, or

ipopt (open-source) (Sameti and Haghighat, 2017). Nevertheless,

some publications solved problems with heuristic solvers such as

NSGA-II (van der Heijde et al., 2019).

The significant difference is that a heuristic solver can quickly

find a solution; however, might be a local minimum and not a

global one (Silveira et al., 2021). Silveira et al. (2021) suggested

that heuristic solvers were better suited for large-scale systems.

The category solver contained global and heuristic as

subcategories.

Some problems required too much computational effort

independent of the solving method. If that was the case,

measures were considered to reduce the problem. The

aggregation of space and time was one of those measures, e.g.,

one year is represented by a few days (van der Heijde et al., 2019),

or two buildings were aggregated to one. Another measure

decomposed the problem into several stages (Mavromatidis and

Petkov, 2021). Based on the efforts to reduce computational time,

the category computational time consisted of time aggregation,

spatial aggregation, staged process/decomposition, and others.

Applying measures to reduce the computational time,

simplifying the mathematical formulation of the physical

system, or having uncertainties in the input data always

caused errors. The technical validity of the results can be

ensured by performing a detailed simulation after the

optimization (Quaggiotto et al., 2021). Dealing with

uncertainties in the input data can be done with a sensitivity

analysis to examine the influence of inputs on the results. A more

sophisticated approach would be a Monte Carlo method;

however, that requires additional knowledge of the inputs and

enormous computational power (Kausche, 2018, pp. 71–77).

Therefore, the category validity of results consisted of

simulation, sensitivity analysis/scenarios, and uncertainties.

Figure 6 shows the literature distribution for the mentioned

supercategories. The figure compares Sameti and Haghighat’s

(2017) results for the method and the solver. The results indicate

that the optimizations of nonlinear problems using heuristic

solvers had declined; however, this SLR was applied from

2012 until 2022. In addition, the search string included linear

and nonlinear programming that might have excluded

publications using heuristic solvers.

Most publications (~80%) formulated a linear programming

model and solved it with a global solver (~90%). Computational

efforts were mostly (~30%) reduced by time series aggregation.

Elsido et al. (2017) used a two-stage process to solve a MINLP

problem. Other methods were the relaxation of constraints. This

method was applied by Krug et al. (2020), resulting in decreased

computational time. Most of the viewed literature (~80%)

validated their results with different scenarios or a sensitivity

analysis. The technical validation of results with a detailed

simulation or an uncertainty analysis for the input data was

rarely performed in the literature.

Modeling of district heating systems in
optimization

Equations
A DHS consists of consumers, production units, and the grid

transports the heat, as shown in Figure 7. The modeling of DHS

was divided into several energy balances for consumers (marked

lilac), production units (marked red), pipes, and nodes (marked

grey and blue). For a better understanding, equations for these

energy balances were explained (see Table 2 for symbols). All

equations used in the literature assumed incompressibility with a

constant density over space and time and constant velocity over

space (Krug et al., 2020). Furthermore, the following equations

assumed that the flow directions are known. Krug et al. (2020)

derived an approach to solving the problem of unknown flow

directions. The constraints were initialized through a node set

with V � [1, . . . , 8] and a pipe set with γ �
[12, 23, 34, 41, 56, 67, 78, 85] (Krug et al., 2020). The following

equations excluded boundary constraints.

The consumer balance can be modeled temperature-

dependent (Krug et al., 2020) or independent with (Schütz

et al., 2018)

_Qi,t

μ
� _Q

in

i,t − _Q
out

i,t � _mi,tcp(Tin
i,t − Tout

i,t ) for t ∈ τ, i ∈ [a, b, d],
(3)

where for the independent case _Q
in
i,t flowed from the forward-flow

node into the consumer i and _Q
out
i,t flows from the consumer i into
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the backward-flow node. The right part of the equal sign was

temperature-dependent, and models _mi,t, Tin
i,t and Tout

i,t as

variables resulting in a nonlinear constraint. μ represents the

efficiency of the transfer station. With the development of new

DHS in the 5th generation, prosumers were modeled in the

literature for an efficient design. In Figure 7, at node 1, a

prosumer was depicted, which can consume or convert

energy. The left-hand side of Eq. 3 would transform to
_Q
con
i,t

μ −
_Q
pro
i,t μ with _Q

pro
i,t representing the converted energy at the

prosumer (Wirtz et al., 2020). The concept of prosumers was

a subcategory for the supply system as decentral.

The mass balance in the nodes was given by (Baehr and

Kabelac, 2006, p. 85, p. 85)

∑
i∈δin(u)

_mi,t � ∑
i∈δout(u)

_mi,t for t ∈ τ, u ∈ V, (4)

where δin(u) was a set describing pipes, consumers, or

production units entering the node u.

The fluid left the node with a mixing temperature Tmix
u,t (Krug

et al., 2020) given by

Tin
i ∈ δout(u),t � Tmix

u,t � ∑i∈δin(u) _mi,tTout
i,t∑i∈δin(u) _mi,t

for t ∈ τ, u ∈ V, (5)

where Tin
i ∈ δout(u),t refers to the temperature entering pipe i and

leaving node u. If temperatures were neglected, Eq. 5 would be

irrelevant. The energy balance in the nodes was given by (Baehr

and Kabelac, 2006, p. 85, p. 85)

∑
i∈δin(u)

_Q
out

i,t � ∑
i∈δout(u)

_Q
in

i,t for t ∈ τ, u ∈ V, (6)

where _Q
out
i,t left the pipe i and entered node u.

The thermal energy balance at production units was modeled

analogously to Eq. 3 (Krug et al., 2020), with

_Qi,tμ � _Q
out

i,t − _Q
in

i,t � _mi,tcp(Tout
i,t − Tin

i,t) for t ∈ τ, i ∈ [c], (7)

where _Q
in
i,t flowed from the backward-flow node 4 into the

production unit and _Q
out
i,t flowed from the production unit

into the forward-flow. The equations for the optimization

were formulated positively; therefore, the signs changed

(Wirtz et al., 2019). _Qi,t can calculate the operation of the

production unit at node 4. Further information on thermal

storage equations can be found in van der Heijde et al. (2019).

In the design optimization of DHS, the capacity of

production units was a crucial variable to be optimized due to

high investments (Steinbach et al., 2020). The investment curve

for technologies usually behaved nonlinearly. A solution to

model nonlinear functions in a MILP or LP problem is

FIGURE 6
Literature distribution over the supercategories method, solver, computational time, and validity of results with comparison to (Sameti and
Haghighat, 2017); low numbers of publications (<15%) are marked red as an indication of a potential research gap.

FIGURE 7
Exemplary DHS with two consumers–node 2 and 3—one
production unit–node 4—one prosumer–node 1 (Krug et al.,
2020).
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Special Ordered Set 2 (SOS2) (Williams, 2013). For the

investment curve of a technology i, a table with N points for

nominal power _Q
nom
i,j and investment Cpoints

i,j needed to be given.

Assuming (Wirtz et al., 2019)

_Q
nom

i ≥ _Qi,t for t ∈ τ, i ∈ [c], (8)

where _Q
nom
i was the variable for the nominal heat flow. Auxiliary

variables were introduced to calculate the correct investments for

the technology with (Wirtz et al., 2019)

bi _Q
nom,min

i ≤ _Q
nom

i − (1 − bi) _Qnom,max

i ≤ ∑
j∈N

_Q
nom

i,j ωi,j, i ∈ [c], (9)

where _Q
nom,min /max
i represented the upper and lower boundary

for the production unit and bi its buying decision. Eq. 9 calculated

the auxiliary variables with the condition bi∈[c] � ∑
j∈N

ωi∈[c],j
passed into

Ci∈[c] � ∑
j∈N

Cpoints
i,j ωi,j. (10)

∑i∈[c]Ci was implemented in the objective function for the

CAPEX of all production units. SOS2 was applied so that two

neighboring auxiliary variables can be two at most (Williams,

2013). This methodology can be used to design other

components of the DHS. (Wirtz et al., 2019)

TABLE 2 Declarations of symbols with variables in the top and parameters in the bottom.

Symbol Explanation Unit

bi Buying decision as binary variable of technology i —

Ci Capex for technology i €

_mi,t Mass flow in component i at timestep t kg s−1

Δpi,t Pressure difference in component i at timestep t Pa

_Qi,t Heat flow in component i at timestep t W

_Q
nom
i

Heat flow of component i W

_Q
in
i,t

Heat flow into component i at timestep t W

_Q
out
i,t

Heat flow leaving component i at timestep t W

Tin
i,t Temperature entering component i at timestep t K

Tout
i,t Temperature leaving component i at timestep t K

Tmix
u,t Mixing temperature in node u at timestep t K

va,t Velocity at timestep t m s−1

ωi,j ∈ [0, 1] Auxiliary variable for component i and investment point j —

Am
i lateral surface of pipe i m2

cp Specific heat capacity J kg−1 K−1

Cpoints
i,j

Points of investment curve for technology i €

Di Diameter of pipe i m

g Gravitational force N

hi Height difference of two pipes i m

KPI Key performance indicator —

KPImax Max. of the key performance indicator —

KPImin Min. of the key performance indicator —

Li Length of pipe i m

mi Mass of pipe i kg

_Q
loss
i,t

Static heat flow loss of component i W

_Q
nom,max
i

Max. nominal heat flow of technology i W

_Q
nom,min
i

Min. nominal heat flow of technology i W

Δt Length of one timestep in optimization s

Tsoil
t

Temperature of the soil at timestep t K

Ui Heat transfer coefficient of pipe i W m−2 K−1

λi Friction factor of pipe i —

ρ Density of the system’s fluid kg·m−3

εi supplementary ε-constraint —
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The thermal energy balance of the pipes can be modeled with

different degrees of freedom. The first degree was only to model

the heat flow with (Weinand et al., 2019)

_Q
in

i,t − _Q
out

i,t − _Q
loss

i,t � 0 for t ∈ τ, i ∈ γ, (11)

where _Q
in
i,t was the heat flow entering pipes, _Q

out
i,t leaving the pipes

and _Q
loss
i,t were the losses of the pipes. Another approach was to

model losses in dependency on the temperature inside the pipe

and the soil temperature with (Quaggiotto et al., 2021)

cpmi

Tout
i,t−1 − Tout

i,t

Δt
+ _Q

in

i,t − _Q
out

i,t − UiA
m
i (Tout

i,t − Tsoil
t ) � 0

for t ∈ τ, i ∈ γ.
(12)

The first term of the equation described the storage capacity

of the grid. The last term represented the thermal losses

influenced by the pipe’s surface Am
i , the soil temperature Tsoil

t ,

and the heat transfer coefficient Ui. The heat transfer coefficient

was estimated based on the material and diameter of pipe and

insulation (Nussbaumer et al., 2018). Some publications based

their thermal losses on empirical calculations (Wirtz et al.,

2021b). Eq. 12 can be rewritten by applying the first law of

thermodynamics such as (Krug et al., 2020)

cpmi

Tout
i,t−1 − Tout

i,t

Δt
+mi,tcp(Tin

i,t−1 − Tout
i,t ) − UiA

m
i (Tout

i,t − Tsoil
t ) � 0

for t ∈ τ, i ∈ γ.

(13)
Eq. 13 increased the degree of freedom for the optimizer, and

the optimization problem became nonlinear. This additional

degree of freedom allowed the calculation of the mass flow
_mi,t inside the pipe and the entering temperature Tin

i,t. To

cluster the literature based on their temperature model, Eq. 11

represented the category heat flow, Eq. 12 the category simple

temperature model, and Eq. 13 the category detailed temperature

model.

The heat transport along a pipe was realized by generating

pressure at the production units. In the literature, the

modeling of hydraulics in a pipe differed from completely

neglecting them (Szypowski et al., 2019) to pressure models

based on the 1d momentum equation with the simplification

of dρ
dt � dρ

dx � dv
dx � 0 (Krug et al., 2020)

Δpi,t � Liρ
vi,t − vi,t−1

Δt
+ gρhi + Liλi

vi,tvi,tρ

2Di
for t ∈ τ, i ∈ γ,

(14)
where the first term on the right-hand side represented the

pressure loss due to the velocity differences between timesteps

t and t − 1, and the second term represented the pressure delta

due to height differences between the end and start of the pipe

segment. The third term mathematically described the pressure

losses due to friction. The pressure losses over a consumer can be

attributed to the mass flow.

The hydraulic balance in the network can be described by

Kirchhoff’s circuit laws given by (Serway, 2004)

∑
i∈γ

Δpi,t + ∑
i∈[a,b,d]

Δpi,t � ∑
i∈[c]

Δpi,t for t ∈ τ, (15)

where Δpi,t had to be realized with (Krug et al., 2020)

Ppump
i,t μ � Δpi,t _mi,t

ρ
for t ∈ τ, i ∈ [c]. (16)

Eq. 14, Eq. 15, and Eq. 16 represented the subcategory

pressure model. The velocity along the pipe can be limited in

dependency of a max. pressure loss along the pipe, avoiding

nonlinearities (~200 Pa m−1 (Nussbaumer et al., 2018, p. 13). The

subcategory–hydraulic boundaries–represented the fixed

pressure loss.

Literature distribution
Modeling of DHS in optimization was divided into the

supercategories consumer, grid, and supply structure. High

demanding temperatures by consumers challenge the

decarbonization process (Biedermann and Kolb, 2014).

Therefore, temperature and refurbishment were subcategories

of consumer. The demand was identified as the most crucial

parameter in the design optimization of DHS; consequently, it

was used in every publication of the SLR. The temperature is

considered for half of the publications. Currently, refurbishment

is an underrepresented topic, with only one publication.

Efficient transport of heat technically and economically3

depends on the design of the grid. Therefore, the

supercategory grid had design, change of temperature level,

combination of grids, and deconstruction as subcategories for

the output. Paardekooper et al. (2018) projected an increasing

share of district heating in buildings from 12% in 2015 to 50% in

2050. Besides infrastructural changes, the temperature level is an

influential factor in the decarbonization of DHS. This influence is

caused by the high-temperature dependency of heat pumps and

their limit of a potential temperature lift which is given by the

Carnot efficiency (Arpagaus et al., 2018):

μCarnot � Tsupply − Tsource

Tsupply
→ COP � 1

μCarnot
. (17)

Heat pumps were projected to integrate environmental heat

sources (Paardekooper et al., 2018, p. 12). The complexity and

mathematical formulation of the grid modeling varied in the

literature depending on the research question, as shown in the

equation section. The grid can be modeled as one node with a

given efficiency (Wirtz et al., 2019) or with nodes and edges

spatially discretized, as shown in Figure 7 (Krug et al., 2020).

3 The specific investments for a grid can typically be approximated with
700 €/m (year 2020 in Germany) Steinbach et al. (2020).
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For larger systems, geoinformation systems (GIS) can be a

helpful tool to support planers in the design process of DHS (Bill,

2010; Weinand et al., 2019). In general, GIS are information

systems that support the analysis, caption, editing, organization,

and presentation of spatial data (Bill, 2010). Another important

modeling element is the grid’s water inertia (or storage capacity)

(Wirtz et al., 2021b). Some publications modeled the forward-flow

(grey lines in Figure 7) and the backward-flow (blue dashed lines in

Figure 7) (Krug et al., 2020), while others neglected the backward-

flow of the grid (Weinand et al., 2019).

Figure 8 shows that in the grid modeling, some subcategories

were underrepresented (>12%) in the literature: GIS, storage

capacity, detailed temperature modeling, and pressure modeling.

A spatial dimension was used in 60% of the publications, and the

forward-flow was modeled in every publication. Some

publications focused on the hydraulics of the DHS causing the

neglection of the heat flow in the grid (Li and Svendsen, 2013).

The design of DHS was considered in half of the publications. The

change of temperature level was viewed three times, and the

combination of grids or infrastructural deconstruction was never

content of the published work.

Besides the grid, the supply structure is crucial in the

decarbonization process for DHS. Paardekooper et al. (2018)

suggested a combination of DHS and individual heat pumps as

decentral solutions for more minor dense. Therefore, this work

differentiated between central and decentral units (Sameti and

Haghighat, 2017). In general, the heat roadmap Europe projected a

more versatile system for DHS in the future. A potential system

would consist of geo- and solar-thermal heat, Power-to-Heat (PtH)

technologies, large-scale heat pumps, biomass boiler, CHP, and

excess heat. Furthermore, it was shown that CHP and large-scale

heat pumps would cover 45–65% of the demand. Boilers were

projected to cover peak demands up to 10% over the year. The

storage capacities further increased the system’s flexibility to react

to the electricity market. It was differentiated between short-term

storages and long-term or seasonal storages in the subcategories

(Paardekooper et al., 2018, pp. 10–13).

Due to the high dependency on fossil fuels in Europe, with

40.1% in 2020 (Corscadden et al., 2021, p. 34), fossil boiler was

another subcategory of the supercategory supply structure.

Furthermore, the connection to the electricity market is given

by sector-coupling technologies such as mainly CHP and heat

pumps. The combination of photovoltaic cells (PV) and PtH

technologies further increased the efficiency of the system. In

addition, fuel cells were considered a subcategory for the SLR

because they are sold for household solutions by companies like

Viessmann (Rosenkranz, 2020). Regarding the modeling of

storage and energy converters, heat flow and temperature

dependency were subcategories of the supply structure. The

output of the supply structure was represented by the design,

deconstruction, operation, and location.

Figure 9 illustrates the literature distribution over

technology types, installations, and output. The literature

focused more on central units than on decentral units.

Individual heat pumps (~40%), fossil boilers (~60%), CHP

(~60%), and short-term storages (~65%) can be identified as

one of the essential solutions in the literature. Solar thermal

(~20%), PtH (~20%), biomass boilers (~20%), excess heat

(~20%), and PV (~27%) were in the mid-range. In contrast,

geothermal energy (~10%), large-scale heat pumps (~4%),

fuel cells (0%), and long-term storages (~1%) were

underrepresented. The operation of production units was in

92% part of the research, while the design decision was in 75%

of the publications part of the undergone research. The location

of the production units was optimized in about 20% of the

literature, and deconstruction was never part of the

optimization.

Significant findings of the literature

This section gathers crucial findings and results of the

discussed literature. The findings divide into technical findings

regarding technologies and methodologies. The citation

FIGURE 8
Literature distribution for the supercategory grid and the sublevels grid modeling and output; low numbers of publications (<15%) are marked
red as an indication of a potential research gap.
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frequency has been used to filter literature with the most

significant impact on the scientific community.

The grid extension is crucial for grid operators and planners

because infrastructural changes are connected to high costs.

Bordin et al. (2016) developed a planning tool to address grid

expansion changes. They assumed static conditions for the

hydraulics, and the decision to connect a new consumer to

the grid was dependent on the length and diameter of the

pipe. The objective is to maximize the net profit consisting of

investments for grid expansion and the cash flow. The

computational time rised with the increase of potential users.

For the biggest test case—1,000 potential users and 500 existing

users–the model was solved in 29 s. While for 100 potential and

100 existing users, the solution was reached in less than a second.

Figure 10 illustrates the connection rate depending on the

ratio of potential and existing users. The connection rate was

generally high, between 60% and 80%. If the number of potential

users were assumed to be twice as high as the existing users, the

connection rate would decrease. Bordin et al. (2016)focused on

grid expansion setting general rules for the physical description

of the system. The focus was less on the technology selection and

sizing but on infrastructural decisions providing a valuable

expansion algorithm.

Compared to Bordin et al. (2016), Morvaj et al. (2016) also

considered decisions for designing energy converters and

storages besides the expansion of the grid. Consumers could

either supply themselves or connect to the DHS. The viewed

technologies were gas boilers, PV, CHP, and thermal storages.

The examined system is relatively small, allowing for a more

detailed approach. Binary decision variables were used for

infrastructural decisions, design decisions, and controlling

CHP plants. The optimization runs were divided into different

scenarios with different carbon emissions limitations. The

buildings were operated as prosumers, and the greenfield

scenario’s connection rate was exceptionally high. They were

able to decrease carbon emissions by 33%, and the greenfield

FIGURE 9
Literature distribution over the supercategory supply structure and the subcategories unit type, energy supply, modeling, outputs, and a
comparison regarding the unit type with (Sameti and Haghighat, 2017); low numbers of publications (<15%) are marked red as an indication of a
potential research gap.

FIGURE 10
Sample of the distribution for connecting to the grid in dependency of the ratio potential vs. existing users; the capacity for the supplying plant
was assumed as very high (Bordin et al., 2016).
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scenario–all technologies were available–resulted in the best case

for carbon emissions and costs.

Furthermore, it was highlighted that the electric grid

modeling was neglected. This neglection might cause

instability if consuming or producing technologies are

connected to the electric grid without representation. With an

increase in carbon emissions, the connection rate and the use of

PV decreased. These results showed that for decarbonizing DHS.

• modeling the grid combined with the supply system affects

the design of the grid,

• decentralized units gain more importance with a higher

share of renewables,

• thermal grid-connected energy becomes crucial for

decarbonized thermal systems,

• sector-coupled DHS requires a representation of the

electric grid.

Bracco et al. (2013) optimized a four-node system consisting

of a residential complex, a swimming pool, a school, and a city

hall. The objective was the optimal connection between the nodes

and the design and operation of gas engines, boilers, and

turbines. The mathematical model is based on energy balances

between the buildings and the grid. They reduced the primary

energy consumption and emissions by 43% and the costs by 47%.

The system was gas-based, and the gas turbine was used as a base

load while the gas boilers were utilized during peak demands.

Compared to Bracco et al. (2013), Wirtz et al. (2020) vastly

increased the technology variety and optimized a bidirectional

low-temperature network. The network could supply heating and

cooling energy to the connected consumers. The energy was

provided in an energy hub, and the mathematical model

describes the system with energy balances. The residential

building also provided decentral units. The technologies in the

energy hub were gas boiler, CHP unit, electric boiler,

compression chiller, absorbtion chiller, cooling tower, and PV.

The technologies in the buildiing were heat pump, electric boiler,

compression chiller, direct cooler, and a cooling tower. Figure 11

illustrates the results for the technologies’ capacities in Wirtz

et al. (2020). Most publications before 2017 based their energy

supply on gas being quite the contrary in Figure 11.

Discussion and identification of
research gaps and potential
developments

The results already showed potential research gaps in the

literature, and the comparison with Sameti and Haghighat (2017)

identified potential trends and developments in the design

optimization of DHS. One major trend was using multi-

objective optimization with economic and ecologic factors.

Social factors did not influence the optimization outcome in

the viewed literature and can be identified as a potential research

gap. In addition, economic decisions by end-consumers were

never part of the optimization, even though multi-objective

optimization would give the possibility to depict several

decisions. One scenario could be the decision for a consumer

to connect its building to the grid for a given heat price vs. an

individual solution as one objective and the cost-efficient design

and operation of the DHS as the second objective for the grid

operator. The depiction of this conflict of interest could be of

high relevance for designing the grid.

With the increasing demand for multi-objective

optimization, the demand for faster computing is increasing

simultaneously. Methods like time series aggregation were

gaining more importance, and difficulties were identified

regarding seasonal storages (van der Heijde et al., 2019).

Aggregating input data temporal or spatial might result in

errors and predicting the input data itself. However,

sophisticated uncertainty analyses of input data were only

done twice in the SLR and can be identified as a research

gap. In addition, the need for optimizing DHS supplying cities

that require decarbonization strategies in the following years is

FIGURE 11
Distribution of the total capacity across the dimensioned technologies with separat focus on gas-based technologies from Wirtz et al. (2020).

Frontiers in Energy Research frontiersin.org13

Sporleder et al. 10.3389/fenrg.2022.971912

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.971912


rising; therefore, the demand for decreased computational time is

high. The computational time depends not only on the system’s

size but also on the model complexity. In general, the model

complexity should always fit the research question. Suppose the

research question focused on the thermal design of grid or

production units. A detailed pressure model seems

unnecessary because the CAPEX for energy converters and

storages determine the design optimization (A. Rieder et al.,

2013). However, boundaries for the flow in the pipes dependent

on the diameter should be considered. Most publications can

solve their design optimization with a MILP or LP model with

reduced complexity regarding hydraulic equations (see Eq. 14,

Eq. 15, and Eq. 16).

Besides model complexity, computational time, and multi-

objectivity, the supply system is the key to transforming the DHS.

Fuel cells had never been viewed in the literature; however, their

significance seems relatively low regarding the results of the heat

roadmap Europe. Nevertheless, excess heat from electrolyzes

could be a coupling option for DHS. Considering the rising

connection to the electric market due to sector-coupling

technologies, the importance of storage capacities becomes

significant. The total storage capacity in the grid can only be

exploited by modeling the forward-flow and the backward-

flow–a potential research gap. The design of the DHS’s

components was a well-known subject, but their

deconstruction in the optimization model had not been done yet.

In addition to the deconstruction of components, the

integration of low-grade heat sources is highly relevant for

decarbonization favored by a low system temperature. Lowering

the system’s temperature can be identified as a research gap in the

literature. Wirtz et al. (2019) examined different temperature levels

for theDHS to find the optimal operation point for a large-scale heat

pump. The heat pump’s efficiency–also called the coefficient of

performance (COP)—heavily depends on the sink and source

temperature. Usually, the COP is calculated a priori with a

model from the literature, e. g. in Jesper et al. (2021). Wirtz

et al. (2019) performed a parameter study to calculate different

resulting costs in dependency on the forward-flow temperature of

the grid. However, the grid was not spatially discretized and worked

as one consumer in the optimization. Methods to lower the

demanding temperature were combining central and

decentralized units, which had only been done for a few

publications (see Figure 12), or refurbishment inside the

optimization. Both methods are potential research gaps. Besides

lowering the system’s temperature, integrating solar thermal energy

and PV supports the transformation process. PV and solar thermal

energy were represented in the midrange of the literature, but both

technologies require space and are competing technologies. This

problem was not addressed in the literature for large-scale systems

and is a potential research gap. Additionally, geothermal energy and

long-term storages are potential research gaps of high significance

because they were identified by the heat roadmap Europe as one of

the technologies in a future supply system of a DHS.

In Section 3.2, four significant publications were analyzed

concerning the design decisions of the grid and its supply system.

The increased computational power allows the calculation of

complex systems, including infrastructural and supply system

choices. Utilizing mathematical optimization to support

decision-making processes decreases costs and emissions, as

shown in the literature. Morvaj et al. (2016) showed that the

grid’s design is influenced not only by the consumers but also by

the design of the supply system. Optimization algorithms depict

these dependencies; however, the analyzed systems are often

relatively small. To reduce the computational effort, the grid’s

and the supply system’s design are often separated, e. g. in Wirtz

et al. (2020). The decarbonization and electrification of the

heating sector increase the complexity of the optimization.

Optimizing larger systems with design decisions for the grid, a

great variety of different technologies, and sector-coupling

dependencies is a key challenge for the upcoming years.

Limitations

The major limitation of the SLR came with its advantage;

publications with relevance to the topic might have been

excluded due to the performed method. The exclusion can occur

due to the limitation of databases, keywords, years, or quality

measures. In addition, the derived categories might have

excluded crucial topic information. The presented equations in

Section 3.1.3 were representative, and the mathematical model

can significantly vary from publication to publication. The

mathematical description should always fit the problem at hand.

Nevertheless, Section 3.1.3 showed the most critical energy balances

for a problem dealing with designing a DHS thermally.

Conclusion

This work’s main findings were identifyingmodel complexity

to answer the research question of design optimization for

FIGURE 12
Combination of decentral and central units in dependency of
system’s size and temperature.
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decarbonized DHS and potential research gaps in the literature.

The literature did not yet provide the results to design and

transform a large-scale high-temperature DHS into a

sustainable system.

Most publications used linear programming models solved

with a global solver like Gurobi. If a large-scale system was

optimized, a heuristic solver might result in a more efficient

solution. Hydraulic equations were primarily neglected in the

design optimization of a thermal supply system or grid. Some

publications used hydraulic boundaries for the flow velocity,

ensuring max. pressure loss in the pipe is not reached. The

mathematical description of a DHS is divided into energy

balances for pipes, nodes, consumers, and production units.

Mostly, the objective was to find a cost-efficient design of the

supply system and the grid. Sometimes ecologic factors were

integrated, which led to multi-objective optimization. Multi-

objective optimization can be performed with two different

functions, a weighted sum function, or to run several

optimizations with different boundaries for a KPI, e. g. CO2

emissions. The optimization chose technologies like CHPs,

boilers, individual heat pumps, and short-term storages. Most

optimization problems concentrated on the central installation of

the supply system. In conclusion, this work identified four major

research fields:

• depiction of different stakeholder decisions in the DHS

regarding the design;

• performance improvement of computational efforts

through methods like spatial and temporal aggregation,

especially regarding the problem of designing seasonal

storages;

• uncertainty analysis for input data and the results;

• structure of a sustainable supply system, including

measures for lowering the demanding temperature,

integrating energy converters and heat sources like

geothermal energy, large-scale heat pumps, seasonal

storages, and other low-grade heat sources.

The depiction of different stakeholder decisions is often not

the case. The optimizer usually finds a global minimum.

However, this minimum might select the decisions of building

owners they would never choose. Therefore, the depiction of

those decisions, e. g. the connection to DHS, could be interesting

for further investigation. Additionally, reducing computational

time is always one of the key challenges in optimization. Some

researchers apply spatial and temporal aggregation methods

causing difficulties in designing seasonal storages due to the

shift of time dependencies.

Furthermore, most optimization models base their results on

one demand curve per consumer. This curve implies perfect

foresight and might result in an energy system not being capable

of supplying its consumers if the perfect foresight fails. One

solution is the calculation of several scenarios. Then the output

data can be analyzed to design a robust energy system. Other

solutions often include methods like Monte Carlo simulations

resulting in high computational times. Therefore, the analysis of

uncertainties is also an important research field. Finally, all

questions concerning the design of the grid and the supply

system are key challenges in the optimization of DHS.

Besides the research gaps in the existing literature,

several trends can be seen in the results. Generally, a

carbon-free system benefits from grid-based energy

resulting in high connection rates for potential

consumers. The supply system’s design shifted from a gas-

based supply to an electric-based design. The

decarbonization of DHS leads to increased complexity in

handling central and decentral units, thermal and electric

energy flows and more restrictive boundary conditions due

to the limited availability of renewable energies.

Mathematical optimization can handle this complexity

and increase the efficiency of those systems with cost

reduction between 30 and 40%. However, increased

complexity often requires higher computational effort.

Handling this increased complexity efficiently will be a

significant challenge in the optimization community.
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