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Heat supply accounts for a substantial amount of terminal energy usage. However,

along with price rises in primary energy, there is an urgent need to reduce the

average cost of energy consumption during the purchasing of thermal services.

Electric heating, an electricity-fed heating production and delivery technology, has

been suggested as a promisingmethod for improving heating efficiency, due to the

ease of scheduling. However, the traditional centralized operating methods of

electricity purchasing rely on explicit physical modeling of every detail, and

accurate future predictions, the implementation of which are rarely practical in

reality. To facilitate model-free decisions in the field of electricity purchasing, heat

storage, and supply management, aimed at cost saving in a real-time price

environment, this study proposes a scheduling framework based on deep

reinforcement learning (DRL) and the existence of responsive users. First, the

structure of a distributed heating system fed by regenerative electric boilers

(REBs), which facilitate shiftable heat-load control, is introduced. A terminal heat

demand response model based on thermal sensation vote (TSV), characterizing the

consumption flexibility of responsive users, is also proposed. Second, due to thermal

system inertia, the sequential decision problemof electric heating load scheduling is

transformed into a specific Markov decision process (MDP). Finally, the edge

intelligence (EI) deployed on the demand side uses a twin delayed deterministic

policy gradient (TD-3) algorithm to address the action space continuity of electric

heating devices. The combination of a DRL strategy and the computing power of EI

enables real-time optimal scheduling. Unlike the traditional method, the trained

intelligent agent makes adaptive control strategies according to the currently

observed state space, thus avoiding prediction uncertainty. The simulation results

validate that the intelligent agent responds positively to changes in electricity prices

and weather conditions, reducing electricity consumption costs while maintaining

user comfort. The adaptability and generalization of the proposed approach to

different conditions is also demonstrated.
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1 Introduction

Heat, the most significant component of energy end-use,

accounted for nearly half of all global final energy

consumption in 2021 (IEA, 2021). Worldwide, nearly 90%

of heat is generated by fossil fuels, and China consumes nearly

70% of coal used for district heating globally. Generally, the

source-side centralized unit generates the heat that is

delivered through the heat network, with inevitable losses

in traditional heating systems. Moreover, during winter in

northern China, the operation mode of the thermal power

unit—‘fixing power based on heat’—limits its ability to

promptly follow the changing load and peak regulation

capacity (Li J. et al., 2021). Because of the requirement to

meet carbon neutrality targets, Beijing has proposed

renovating more than 120 million square meters of

buildings with intelligent heating by the end of the 14th

Five-Year Plan. In addition, with traditional fossil energy

sources depleted and primary energy prices growing, the cost

of traditional heating is skyrocketing. Therefore, improving

energy use efficiency, and reducing the cost of heating services

have become huge challenges.

To alleviate this problem, electric heating devices (EHDs)

on the load side provide an excellent means of improving

thermal efficiency. Liu et al. (2019) analyzes the influence of

power-to-heat devices on the operational reliability of energy

hubs. EHDs can be integrated with renewable energy

resources, thereby contributing to a significant reduction in

the carbon emissions of the heating sector (Javanshir et al.,

2022). Due to the ease of electricity scheduling, EHDs can also

provide flexibility to the distribution grid through demand

response (DR) (Chen et al., 2019). Li et al. (2020) exploit the

thermal inertia of buildings in district heating networks to

improve the flexibility of the distribution network. Alipour

et al. (2019) propose a DR management model for electricity

and heat consumers, demonstrating the impact of electricity

price fluctuations on heat loads over different time scales. In

addition, the combination of heat storage and EHDs can

further improve the system’s operational flexibility (Tan

et al., 2022). Regenerative electric boilers (REBs) are typical

of such hybrid systems supplying distributed electrical heating

users. Hence, it is expected that in the near future REBs will

play an integral role in the efficiency of district heating

systems.

However, access to a large number of REBs is prone to spike

loads, due to the large-scale and potentially undiversified nature

of electric heating loads (Li S. et al., 2022). Hence, reliable

automation control technology is essential for secure grid

operation. In general, numerous model-based methodologies

are applied to electric heating load management problems. Li

Z. et al. (2021), for example, transform the nonlinear microgrid

operation problem involving thermal energy flow into a mixed-

integer linear programming (MILP) model, effectively

coordinating active/reactive power and thermal flow

scheduling. Gonzato et al. (2019) present a hierarchical model

predictive control (MPC) methodology to manage the heat

demand of the building network, and thereby reduce peak

demand. Ostadijafari et al. (2020) propose an approximate

economic linearized model for temperature control of

intelligent buildings based on price response, while meeting

occupant comfort levels. Li et al. (2022b) propose an MPC

method combined with approximate dynamic programming

(ADP), to enable coordinated management of electrical and

thermal energy in practical microgrids. Despite several

potential benefits, model-based optimization methods also

have certain pitfalls: 1) costly detailed physical models are a

prerequisite, and it is challenging to ensure accuracy (Zhang

et al., 2021), especially given the high-order nature of such

modeling (Zhang et al., 2019). 2) For load scheduling

problems, model-based optimization relies heavily on the

accuracy of price forecasting data (Song et al., 2021). Thus,

prediction deviations can easily contribute to significantly

unsatisfactory heating performance. 3) The long computing

time of the iterative algorithm barely enables online

applications (Liu et al., 2022).

In contrast to model-based methods, a forecasting process

before decision-making is not compulsory in reinforcement

learning (RL), i.e., a “model-free” control approach. Hence,

data-driven methods do not rely on prediction accuracy. Deep

reinforcement learning (DRL) replaces agent reward tables or

function settings in traditional Q-learning with deep neural

networks (DNNs). As a result, it has better representational

capabilities to adapt to more complex control problems, thus

enabling “end-to-end” control (Duan et al., 2016). In recent

times, DRL has been widely used in energy management to

improve the operational performance of power systems , and

without the need to acquire precise physical system models (Du

and Li, 2020; Wang et al., 2021). Compared to electrical loads,

heat loads offer greater flexibility in the balancing process, i.e., a

larger state-action space, which fits well with the fast decision-

making ability of DRL in a high-dimensional solution space.

Claessens et al. (2018) demonstrate the validity of a convolutional

neural network (CNN) in Q-iteration under thermal loads

response settings. Zhang et al. (2019) apply DRL to the

thermal management of office buildings, based on the

building energy model, thereby increasing the possibility of

reducing heating demand. Zhao et al. (2022) utilize a dueling

network to cope with the hysteresis of the heat transfer process in

a district heating system (DHS) in order to optimize the

scheduling of heating loads in industrial parks. Yang et al.

(2021) propose a double deep Q-network (DDQN) with an

experience replay mechanism to adaptively control the indoor

environment of temperature and CO2.

However, there are a few drawbacks to the data-driven

scheduling approach: a large amount of data from different

scenarios, as well as computational power, is required to train
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the model. Therefore, it is imperative to combine DRL and edge

computing with powerful computational power in a technology

known as edge intelligence (EI) (Lee, 2022). In recent years, the

application of EI in smart power systems has been emerging

rapidly worldwide. Cen et al. (2022) demonstrate the

applicability of microservices and edge computing

apparatuses in the distribution grid computational resource

configuration. An integrated cloud-edge architecture,

combined with reinforcement learning to facilitate cost-

effective smart buildings, is proposed by Zhang et al. (2021).

Fang et al. (2020) exploit the distributed structure of EI to

reduce the computing burden on the cloud, thus enabling

economic scheduling of virtual power plants. A single-edge

computing apparatus allows integration of multiple input

sources, and accomplishes application in multiple scenarios

simultaneously. Hence, EI is well-suited for the automatic

control of numerous distributed EHDs. Nevertheless,

research into this has not been widely conducted. To better

exploit the potential of distributed electric heating loads, and to

respond effectively to changes in dynamic electricity prices, we

propose an EI-based DRL process of optimizing REB

scheduling.

Themain contribution of the study is as follows. First, a study

of the optimized distribution of terminal electric heating to

customers under dynamic environmental conditions is

conducted. In light of building characteristics,

meteorological conditions, and user preferences, we propose

a demand response model for electric heating users based on a

thermal sensation vote (TSV). Second, the multi-objective

optimal scheduling problem is formulated as a specific

Markov decision process (MDP), with a reward in energy

costs and a discomfort penalty. We propose a DRL control

strategy based on a twin delayed deterministic policy gradient

(TD3) algorithm to address the action space continuity of

EHDs. The combination of the powerful computing power

of EI with DRL enables optimal control of EHDs in real time. In

comparison with work relying on accurate forecasting data and

a detailed model, here the trained agent makes an adaptive

control strategy decision according to the observed state-space.

In this way undesirable actions attributed to prediction

uncertainty can be avoided. Finally, the feasibility of the

proposed approach in frequently changing external

environments is validated, for it maintains good adaptability

to extreme weather and user preferences that are significantly

different from the training process. By learning electricity price

patterns, DRL performs better at decreasing electricity costs

than traditional methods.

2 Problem formulation

The system shown in Figure 1 is taken as an example. The

existing electric heating market consists of the power grid, load

aggregator (LA), and heat loads. LAs sign heating contracts

with distributed users and receive dynamic electricity prices

from the grid. As aggregation service providers, LAs

negotiate with the power grid on behalf of a group of

small-scale heating users to participate in DR schemes

with the aim of cost reduction. In the DR model, LAs

compensate terminal users when demand cannot be

satisfied so as to encourage them to participate in demand

response based on their different heating requirements.

During peak hours, customers participating in DR are

often asked to reduce their demand appropriately in

exchange for lower heating bills. Furthermore, due to the

high price of electricity, LAs would sometimes rather work at

low levels of heating power and pay compensation to achieve

reduced costs. With thermal storage capacity, LAs can take

advantage of the peak-to-valley difference in electricity

prices to reduce their costs.

LAs apply edge intelligence technology to coordinate the

direct control of distributed electric heating devices to satisfy

the needs of terminal users. Thus, the EI is integrated into the

control module of the REB. The REB near to the distributed

heat load is responsible for consuming electricity, storing heat

and supplying thermal loads. Temperature sensors are

deployed in the load building to collect relevant data.

Outdoor temperature and solar radiation information is

available from a weather station. Information on electricity

prices is published by the grid. The EI of the LAs summarizes

and analyzes all the above information. Accordingly, a

thermal service management strategy to autonomously

control the REB operation is developed. In this study, the

indoor temperature field distribution is assumed to be

uniform.

2.1 Building heating load

The indoor temperature variation of a building is mainly

influenced by the heat supplied, the outdoor temperature, the

building’s thermal characteristics, and the category of heating

devices (Li et al., 2022c). Typically, there is a positive

correlation between heat demand and the difference between

the indoor and outdoor temperature of the building. The

greater the temperature difference, the more energy is

required for heating. However, accurate thermodynamic

models representing a natural system are fairly complicated,

while the black-box models barely understand the underlying

processes. Therefore, by combining the above properties, the

gray-box model is available to simplify the precise physical

model (Lork et al., 2020). Meanwhile, the state-space

representing the temperature of a building can be

transformed into a discrete set of difference equations. The

indoor temperature variation can be calculated by the following

equation:
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T in
i,t+1 � T in

i,t −
T in

i,t − Tout
i,t

Ri−a × Ci
− T in

i,t − Te
i,t

Ri−e × Ci

+ (ui
b,t · Qheat

i,t + Pinter
i,t + Aw × Isolt ) × β

Ci
, (1)

Te
i,t+1 � Te

i,t −
Te

i,t − T in
i,t

Ri−e · Ce

+ (ui
b,t · Qheat

t + Pinter
i,t + Aw · Isolt ) · (1 − β)

Ce
, (2)

where Tin
i,t and Tout

i,t are the indoor and outdoor temperature of

building i at time t, respectively. Te
i,t is the non-observable building

envelope temperature. Ri−a is the overall thermal resistance

between the interior and the ambient conditions of the

building, including conduction and ventilation losses. Ce and Ci

are the building materials and interior heat capacity, respectively.

Ri−e is the thermal resistance between the air and the building

envelope. Qheat
i,t is the heat demand of user i. Pinter

i,t is the internal

heat gain associated with indoor appliance utilization and

occupant activity. Isolt is the energy flux from the sun through

the windows. Aw is the effective window area. Lastly,β is a

coefficient that sets the share between the heat injected into the

interior, and the material, which in this study is assumed to be 1.

2.2 Regenerative electric boiler

The REB consists of an electric boiler (EB) and a heat

accumulator (HA) device. The structure of the REB is shown

in Figure 2. The advantage of the REB is that it can be used not

only as a heat source for direct heat supply but also to achieve

adjustable load shift with the storage property of the heat

accumulator. Furthermore, the REB boosts power

consumption at low electricity prices and releases stored heat

during peak hours to reduce peak-to-valley load variation. In this

study, the electrode-type electric boiler with water tank storage is

used. It utilizes the property of high thermal resistance of the

medium to achieve heating electrification. By adjusting the depth

of submergence of the electrode in water, the current through it

can be changed to achieve continuous regulation of the heating

power. The thermal power of an electric boiler can be expressed

by the following constraints:

QEB
t � ηebP

EB
t , (3)

QEB
t � QEB

d,t + QT
in,t , (4)

0≤PEB
t ≤PEB,max , (5)

Qheat
t � QEB

d,t + QT
out,t , (6)

where QEB
t and PEB

t are the thermal and electrical power of

the electric boiler at time step t, respectively, and ηeb is the

conversion efficiency of the electric boiler. The heat output of the

electric boiler comprises two parts QEB
d,t and QT

in,t, one of which is

supplied directly to the heat load, and the rest stored in the

water tank.

The HA stores surplus heat produced by the boiler and

supplies it to users when needed. In this study, the heat

accumulator employs water as the heat accumulator medium.

FIGURE 1
Distributed heating system model.
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There is an inevitable loss during energy conversion with the

outside of the tank, which is caused by the difference in water

temperature between the injected and output tanks (Alipour

et al., 2019). Hence, the efficiency of heat charging and

discharging is considered. The loss is represented by the

relationship with the previous state of heat stored. At time t,

the amount of available heat in the tank is calculated by the

following equation:

Et � (1 − ηs)Et−1 + (Ic,tηcQT
in,t −

Id,tQT
out,t

ηd
)Δt, (7)

where Et and Et−1 are the heat stored in the thermal tank at time

step t and t − 1, respectively, and ηs, ηc, and ηd are the dissipation

efficiency, the heat charging and discharging efficiency of the HA,

respectively. Ic,t and Id,t are binary decision variables indicating

the charging and discharging modes of the tank at time t;

Ic,t, Id,t ∈ {0, 1}. Ic,t � 1 when the tank operates in the

charging model; otherwise, Id,t � 1. However, the water tank

is unable to store and release heat at the same time due to

mechanical limitations, so the following constraint needs to be

ensured:

Ic,t × Id,t � 0. (8)

Furthermore, to model the practical state of the heat

accumulator facility, the limit charging and discharging rate,

and the capacity of storage are constrained as

Emin ≤ Et ≤Emax , (9)
0≤QT

in,t ≤Q
T,max
in , (10)

0≤QT
out,t ≤Q

T,max
out , (11)

where Emax and Emin are, respectively, the upper and lower

capacity bounds of the HA. QT,max
in and QT,max

out are the

maximum heat charging and discharging rates, respectively.

Since the heat accumulator can transfer energy in two

directions, the REB has the integrated characteristics of source

and load, i.e., it can be regarded as both a heat producer and

consumer.

2.3 Heat demand response model

Aside from economic factors, user comfort levels cannot

be ignored when optimizing the scheduling of heat loads.

There is a certain degree of variability in users’ temperature

perceptions: User comfort is not affected by changing the

indoor temperature within a specific range, which thus

FIGURE 2
Regenerative electric boiler structure.

FIGURE 3
Thermal sensation vote.

Frontiers in Energy Research frontiersin.org05

Fan et al. 10.3389/fenrg.2022.976294

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.976294


provides flexibility to regulate the heat demand as part of the

price response. Thus, the thermal sensation vote (TSV) is

introduced to evaluate user satisfaction with the indoor

temperature, as shown in Figure 3.

When TSV = 0, the coziest experience for occupants is

provided, and Tcom is the most comfortable indoor temperature.

When TSV<0.1, the temperature range is [Tb
low, T

b
high], and the user

has no significant sensation of temperature variation. When

TSV<0.5, the temperature range is [Tmin, Tmax], in which users

perceive the temperature change, but it is still acceptable.When this

is exceeded, the user experiences noticeable discomfort. Tmax and

Tmin are the upper and lower limits of temperatures permitted by

users. For users not participating in the DR, the room temperature

will be kept within a small range close to the coziest temperature.

Therefore, user preferences for non-participation in DR are set as

follows:

Tb
low ≤Ti,t ≤Tb

high. (12)

During peak hours, the indoor temperature of customers

participating in DR is allowed to fluctuate within an acceptable

range, i.e., [Tmin, Tmax]. From the view of economic cost, the

indoor temperature is unlikely to remain in the interval

[Tb
high, Tmax]. Therefore, the indoor temperature preference

setting for users participating in DR satisfies the following

constraint:

Tmin ≤Ti,t ≤Tb
high. (13)

When the temperature of the load departs from the set

comfort zone, the user will experience discomfort. It is

comparatively easier to describe the level of the user’s

discomfort. Therefore, the discomfort level of the heat load

can be represented as

ρn �
esott − 1
e − 1

,∀t > 0, (14)

soth � |Tt − Tcom|
Thig − Tmin

,∀t > 0, (15)

where soth indicates the percentage of deviation from the

preferred temperature.

Then, according to Eq. 1,2, the demand regulation of the heat

user’s response can be obtained:

Qmin
i ≤Qheat

i,t ≤Qhigh
i . (16)

The EI determines the initial heating action based on

economic goals. However, in order to maintain the comfort

level of the end-user, the edge intelligence center adjusts the

heating mode according to the comfort constraint:

χif ,t �
⎧⎪⎨⎪⎩

0 if Tl
t >Thigh

χit if Tmin <Ti
t <Thigh

1 if Ti
t <Tmin

, (17)

where Ti
t is the operational temperature of the building at time t,

andχif,t is the final decision action of the controller.

2.4 Objective function

The objective of thermal service management for LAs is to

minimize operating costs while maintaining indoor temperature

within the desired range for users. Specifically, the LAs

compensate customers for deviations from the preferred

temperature range. The goal is to minimize the energy costs

and compensation fees. The objective function can be defined as

follows:

min f � ∑T

t�1{ω1[λt · PEB
t · Δt] + ω2 · ζ · ρn,dc}, (18)

where the first item on the right side of the equation is associated

with the cost of electricity consumption, and the second item is

the penalty due for a violation of the comfort zone. T is the total

time steps in a complete heat loadmanagement period.ω1 andω2

are weighting factors for each item based on the user’s preference;

λt is the real-time electricity price from the grid. The factor ζ is

introduced to compensate for the indoor temperature discomfort

level. Different kinds of trade-offs between energy profit and

discomfort penalty can be achieved by adapting the weighting

factors in Eq. 17. Raising the weight of ω2 means a higher priority

on comfort. Under some tariff conditions, and to minimize long-

term costs, the REB would rather cease operating and pay

compensation for violations. The constraints of the electric

heating load management problem are shown as Eqs. 1–17.

3 Methods

The optimal scheduling problem of EHL is to control the

electric boiler’s direct supply power and the heat storage’s heat

exchange rate at each time step to minimize total operating costs.

Thus, the optimization problem can be viewed as a sequential

decision problem and formulated as a Markov decision process.

Due to the excellent computing ability of DRL, it is a promising

application with traditional edge computing. The deployment of

EI enables an effective combination of the two methods. In this

study, an algorithm of an AC structure is adapted and detailed in

the following.

3.1 Conversion to Markov decision
process

In this section, the electric heating load scheduling problem is

formulated as a MDP, which considers the operational

constraints of regenerative electric boiler heating systems,

varying weather conditions, and dynamic electricity prices.
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Typically, the MDP consists of state, action, and reward

functions, which can be represented as S, A, r, where S represents

a set of states, A represents a set of actions, and r represents the

reward function, i.e., the results of the interaction of state and

action. At each step t, the agent observes the environment state,

st ∈ S, and chooses an action, at ∈ A(s), based on policy π, where
A(s) represents the set of all admissible actions at state st. The

agent then receives the reward, r(s, a), and the system evolves to

the next state, s′t ∈ S. In this scenario, the agent is the edge

intelligence control center, and the environment is the ambient

conditions observed by the agent.

State space: A state comprises a set of physical quantities that

reflect the environment. In the process of heat load scheduling,

the observed state consists of outdoor temperature, indoor

temperature, preferred indoor temperature set by users,

electricity price, solar radiation, and the available capacity of

HA. Since the scheduling of heat load involves time dependence,

the behavior of the end-users usually follows a repetitive diurnal

pattern. The agent can capture this by adding a time-state

component to the state vector.

st � [Tin
t ,T

out
t ,Tpre, λt , I

sol
t , Et , t] (19)

Action space: The agent decides the action to perform based

on the observed state. For electric heating load management, the

action includes the input power of the electric boiler, and the

charging or discharging heat rate of the HA. Due to the regulating

continuity of the electrode submersion depth, and the volume of

input or output water, the actions are continuous within

predefined ranges. Thus, the agent’s action at state st can be

denoted as

at � [PEB
t ,QT

t ]. (20)

Reward function formulation: The agent’s objective is to

minimize the total operating cost, including the energy cost

related to total power consumption, and the penalty for

indoor temperature deviation from the comfort zone.

Therefore, the reward rt obtained by the agent at step t can

be defined as

rt(st , at) � −(w1 · λt · at[0] · Δt) − w2 · τ(st), (21)

τ(St) � { 0, if Tmin ≤Tin
t ≤ high

ζ .ρn,dc, otherwise
(22)

where the minus sign at the front of the right side of Eq. 21 is to

convert the cost minimization problem into the classical reward

maximization form of MDP, and τ(st) is the penalty for

temperature violation.

The decision about which action to perform in a specific state

is determined by the policy π. The agent interacts with the

environment on the basis of the policy, and forms trajectories

of states, actions, and rewards (s1, a1, r1, s2, a2, r2 . . .). From
the perspective of MDP, the efficacy of the action at under a state

st can be evaluated by using the state-action value

function Qπ(s, a):

Qπ(s, a) � Eπ
⎡⎣∑T

k
γkrt+k

∣∣∣∣∣∣∣∣∣st � s, at � a⎤⎦, (23)

where γ ∈ [0, 1] is the discount factor for future rewards, and the
agent is to explore the optimal control policy πp to maximize the

reward received, defined as πp � argmax
a∈A

Qπ(s, a).

FIGURE 4
Framework of TD3-based DRL approach.
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3.2 Reinforcement learning structure

The DDPG is a model-free and off-policy algorithm using

actor-critic architecture. Compared to the DQN-like algorithm,

the DDPG can learn policy in continuous state-action space

without discretization, hence alleviating the curse of

dimensionality. However, the DDPG has the problem of

overestimation. To solve this, Fujimoto et al. (2018) propose a

twin delayed DDPG (TD-3), adopting the idea of double

Q-learning. TD3 consists of a pair of critic-networks along

with an actor-network (Qθ1 ,Qθ2 ,πϕ), all of which are

accompanied by their target network (Q′θ1 ,Q′θ2 ,π′ϕ). The critic

network minimizes the loss of updating itself via (23). The actor

updates the deterministic policy gradient with a sampled policy

gradient, as presented in (24),

L(θ) � arg min N−1 ∑(y − Qθi(s, a))2, (24)
ϕJ(ϕ) � N−1Σ(aQθ(s, a)

∣∣∣∣∣s�st ,a�πϕ(st )ϕπϕ(s)|s�st ), (25)
y � r + γmin

i�1,2
Qθ′i(s′, a′), (26)

a′ � πϕ′(s′) + ν, ν � clip(o(μ, σ,ω),−c, c). (27)

The agent selects the minimum value of the twin target

network outputs as shown in (25), where a′ is the target action,
which improves the algorithm’s stability. Due to the policy update

delaying strategy, the actor-network is updated after several critic

updates, which reduces the potential for mistake spreading. Plus,

the noise is introduced to the target policywhen forming the target.

In this study, the noise is generated by the Ornstein–Uhlenbeck

process, which can improve the exploration efficiency in inertial

systems, where ] is the clipped OU noise and c is the edge value.

This smoothing method will keep the action close to the original

target, improving algorithm stability and convergence in the

stochastic domain.

The framework of the TD3-based autonomous EHL

management approach for the REB system is shown in

Figure 4, where the key step is the clipped double Q-learning

process and the delayed policy update. Specifically, the trained

actor-network chooses an action under the current observed state

st. The action is then executed by the EB and HA systems. The

environment transits to the next state, which the agent regards as

st+1, and the agent receives present rewards. Finally, the transition

of states, actions, rewards, and next states are stored in the

experience memory P. For centralized training, each agent will

sample a mini-batch of size Np(st, at, st+1, rt) from P. The

parameters of the critic will be updated by minimizing the time

difference error via (23), and the actor will be updated by the policy

gradient via (24). The target networks will be updated as follows:

θ′i1 ← τθi1 + (1 − τ)θ′i1, (28)
θ′i2 ← τθi2 + (1 − τ)θ′i2, (29)
ϕ′i ← τϕ′i + (1 − τ)ϕ′i, (30)

where τ≪ 1 is the target update parameter. Thus, the slow update

of the target will improve learning stability. As time progresses, this

process continues. As we can see from the agent’s interaction with

the environment, the proposed method requires only instantaneous

observation for the decision at each time step. Therefore, the

developed data-driven method enables direct mapping from

known states to heat load management decisions without the

uncertainty of predictive information. The training procedure of

the proposed TD3-based approach can be found in Algorithm 1.

Algorithm 1. Training procedure of the proposed TD3-based

EHD scheduling strategy

3.3 Edge intelligence solution

The proposed DRL approach can gradually explore the correct

policy by interacting with the environment. The appropriate

decision-making model is developed in an extensive training

process. Because of the excellent ability of edge computing, it is

inevitable that DRL will be combined with edge computing.

Moreover, the REB can be integrated by EI with effective

technologies, such as information technology and suitable

software control. Edge Intelligence consists of edge nodes and

terminal nodes. The terminal nodes collect the output, the state of
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the heating equipment, and the users’ data, such as preference setting

and temperature state. The edge nodes receive the information

uploaded by the terminal nodes, and carry out effective filtering

and calculation. After processing, the edge nodes transmit the

required gradient information back to the terminal devices. This

is beneficial for real-time control and online training of the model.

Because of the actor-critic structure of DRL, we implement

the model in a hybrid way. The actor is deployed on the terminal

nodes to make adaptive control decisions locally in real time. It is

not necessary to upload all the data collected from the devices and

users to the edge. The critic is deployed on the edge nodes to collect

all the decisions made by the terminal nodes. The critic trains the

model with the gradient information from the actor. Instead of

complete data information, only limited gradient and state

information is transmitted between edge and terminal nodes for

training and expanding the experience pool. Thus, the requirement

for communication delays and bandwidth is reduced.

4 Case study

4.1 Simulation setup

In this study, a simulation where the LA provides a service

for 10 terminal electric heating users in a region is created to

test the proposed approach. The LA receives the price signal

from the power grids, and the weather information from the

local meteorologic station. The edge intelligence center is

deployed on the REB for optimal scheduling. The parameters

of the REB and the heating load characteristics of a single

house in this study are shown in Table 1. The day-ahead

electricity price data and weather data of Norway are applied.

Data from November 2018 to December 2019 are used as the

training dataset, and data from the same period in the

following year are used for testing verification. The

distribution of the dataset is shown in Figure 5.

Furthermore, the users’ preferred comfort temperature is

set to 21°C. When the temperature deviates from the

comfort zone, the LA needs to compensate the user, where

the compensation factor ζ is set to 0.05.

The proposed algorithm applied by edge intelligence is based

on the actor-critic structure. The actor-double critic network of

the proposed method has different hidden layers, however. A

rectified linear unit (ReLU) is used as the activation function for

the hidden layers, while the tanh function of the actor-network in

the output layer is used to solve the vanishing gradient problem,

and fits exactly with the action space of the heat accumulator. The

structure of the actor-critic network is shown in Figure 6, while

the rest of the hyperparameters of the agent training are shown in

Table 2.

4.2 Results

4.2.1 Comparison with other approaches
In this study, the feasibility and accessibility of the EI

learning scheme is illustrated by feeding the well-trained

DRL-based agent with arbitrary testing data of the external

environment, including time-varying prices and heat demand.

TABLE 1 Parameters of DHS.

Parameter Value Parameter Value

PEB,max 100 kW Ri−e 0.69 °C/kW

Emax 720 GJ Ce 3.8 kWh/°C

QT,max
in

40 kW Aw 8 m2

QT,max
out 40 kW Ci 0.417 kWh/°C

ηeb 0.98 Ri−a 3.4k °C/kW

ηs 0.01 ηc 0.98

ηd 1.03 Δt 1h

FIGURE 5
Distribution of the training dataset: (A) ambient temperature,
(B) solar radiation, and (C) electricity price.
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In detail, the average time for determining a temporal set of

strategies containing the output power of EB and the exchange

power of HA is 16 ms, demonstrating that the real-time

electric heating load scheduling is effectively enabled by the

approach as presented. Specifically, the optimal results of the

desired relatively long-term rewards over the course of a week

are obtained through 168 iterations, without any prerequisite

for forecasting information.

The comparative results of three different

methods—MPC, DDPG, and the TD3 approach—are

FIGURE 6
Actor and critic network structure.

TABLE 2 DRL training parameters.

Parameter Value Parameter Value

Episode 2000 μo 0

ε0 1 γ 0.99

εdecay 0.998 bsize 32

αa 0.0004 Nmemory 168e3

αc 0.003 τ 0.001

θo 0.1 σo 0.2

TABLE 3 Simulation results.

Approach Average temperature deviation Energy costs Compensation costs

MPC −0.86 278.61 109.45

DDPG 0.15 304.16 20.37

TD3 0.28 240.93 45.62
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shown in Table 3, while Figure 7 details the information about

energy cost and temperature deviation of each iteration. It can

easily be seen that although the MPC method results in lower

electricity costs by providing 7.9% less heat than DDPG, it

causes higher temperature deviation and variation compared

to the relatively fixed coziest temperature. Hence, the

temperature constraint is violated. Unless the LA raises the

compensation fee considerably, the terminal users will not

accept the heating service, which means that MPC-based

scheduling is hardly applicable.

By contrast, the DRL approach is able to output the indoor

temperature, which is much closer to the preset preference

value, and guarantee the fluctuation is maintained within

quite a small range. As a result of higher quality thermal

services, the compensation expenses and total thermal service

costs are significantly reduced through a DRL-based

approach. In particular, the TD3-based approach saves

26.2% in energy costs, but compensate users a bit more

than the DDPG method. Nevertheless, the method

presented here achieves the lowest total cost of heating

service among all methods mentioned. This demonstrates

that the TD3 approach makes the felicitous trade-off

between energy costs and terminal users’ comfort.

Moreover, although the TD3 approach consumes 0.79%

more power than the MPC method, energy costs are

reduced by 13.5%. It can be concluded that the proposed

approach is more adept at taking advantage of changes in

electricity prices, and at exploiting the capacity potential of

heat storage.

4.2.2 Strategy sensitivity analysis
The effects of environmental conditions on the control

strategy of EBs and HAs, including electricity prices, and

indoor and ambient temperatures, are examined in this

section. An example of the decision-making model

generated by a well-trained agent through the training set

is shown in Figure 8, which neglects solar radiation. The

generated strategy determines the control decisions on the

output power of EBs, and the exchange power of HAs in

confronting different state spaces. As shown in Figure 8,

fluctuations in price and temperature have different

influence on the REB action-space. Regardless of the

electricity price, the EB always inclines toward the same

output action under the same temperature. However, when

the temperature drops, there is a significant increase in EB

output power. By contrast, the higher the electricity price,

the more likely the HA is to work in discharging mode.

Typically, there is a clear difference in HA action patterns

with 45 €/GWh as the boundary at a fixed ambient

temperature. The HA is inclined to release more heat at a

lower electricity price, implying a higher response priority to

electricity price changes. In short, the action-spaces of EBs

and HAs are more sensitive to temperature and price

variations, respectively. The different sensitivities to

diverse factors guarantees that the proposed approach

ensures a higher level of user comfort while exploiting the

energy storage capacity to save costs. Nevertheless, the final

strategy decision is not only associated with temperature and

price, but is also limited by the currently available heat in the

HA. The optimal daily scheduling results are presented in the

following section.

4.2.3 Adaptability to different conditions
The EI deployed on the distributed REBs employs the

decision-making model generated by a trained agent for

optimal scheduling. In this section, different scenarios

FIGURE 7
Comparison of different methods of testing results: (A) each step average energy cost and (B) average temperature deviation from the most
comfortable level.
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demonstrate the adaptability of DRL-based decision strategies to

address system uncertainty. Specifically, the demonstration is

performed in 4 different scenarios, with diverse weather

conditions, electricity prices, and terminal user preferences

that deviate from the training process. The different scenarios

and results are as follows.

Scenarios 1&2: These scenarios are set up to test the optimal

scheduling validity of the proposed approach under different

weather and price conditions. Specifically, the variation in the

action and state space within a 1-day cycle of dispatch is shown in

more detail. The entire heating season is divided into two parts: the

early heating period, with an average ambient temperature of 4°C,

and the late heating period, with an average ambient temperature

of 0°C, corresponding to scenarios 1 and 2, respectively. The

scheduling results of a random day during different period are

shown in Figure 9. Due to the relatively lower electricity prices and

the greater indoor–outdoor temperature difference, the REB in

scenario 2 operates at a higher power, and supplies 35.34% more

heat than scenario 1. Moreover, the electricity price has significant

peaks from 8:00 to 11:00 and 18:00 to 20:00, resulting in the

strategy following habitual daily patterns. Since the solar irradiance

and outdoor temperature are higher from 9:00 to 16:00, the EB

operates at low power during this period. At peak hours, the heat

storage releasesmore heat, while the EB is inclined towork at lower

power. It will even shut down if the available heat in the HA is

sufficient in the daytime. Due to the low electricity price from 1:

00 to 7:00 and 13:00 to 15:00, the energy consumption during this

period is substantial and the HA stores the surplus heat.

Scenario 3: There is sometimes abnormal extreme

weather, such as low temperatures caused by a cold wave,

which challenges the electric heating system operation.

Therefore, this scenario is designed to test the adaptability

of the proposed approach to the sort of extreme weather not

observed during the training process. The ambient

temperature is assumed to be on average 6°C lower than

the training dataset, and the solar irradiance is assumed to be

weak. The optimal scheduling results of scenario 3 are shown

in Figure 10. It can be observed that the indoor temperature is

still maintained close to the preferred 21°C, but is widely

variable. In addition, the indoor temperature is violated a

little bit at 12:00. Compared to the case above, the REB

provides substantially more heat, and the EB sometimes

even operates at full capacity. To be more specific, the heat

supply is increased by 69.13% and 24.96% in contrast to

FIGURE 8
Control strategy of electric boiler and heat storage under (A/C) fixed indoor temperature of 21°C and (B/D) fixed ambient temperatures of 0°C.
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scenarios 1 and 2, respectively. Moreover, the HA is fully

charged at low prices to adequately exploit its capacity

potential. Consequently, the HA continues to release heat

at peak hours until there is no available capacity. This

demonstrates that the proposed approach has

generalization ability for extreme weather conditions

deviating from the training process. The applicability

under actual anomalous weather conditions is achieved by

the DRL-based stochastic exploration process.

Scenario 4: The load scale accessed by LA and user preference

settings are dynamically changing. Accordingly, the LA has to

adjust the REB scheduling policy properly. This scenario aims to

evaluate the adaptability of the proposed approach in satisfying

heating quality and quantity demands that differ from the

training setup. Hence, there are 2 new terminal users added to

the aggregated group. Furthermore, the most comfortable

preferred temperature for all users is increased to 26°C. The

optimal scheduling results of scenario 4 are shown in Figure 10. It

can be observed that the indoor temperature is maintained

within [24°C, 26.5°C] except from 16:00 to 17:00. The REB

operating mode is more variable than scenarios 1 and 2, given

the higher quality of heat service demand. Thus, there is a bit of

indoor temperature violation, i.e., 0.03°C and 0.15°C. This

scenario validates the excellent adaptability of the proposed

method to different user scales and preferences. However,

given the capacity limitation of the device, the temperature

variation is greater than the case above. Therefore, it is

recommended that LA expands the capacity of REB for larger

regulation capability.

In brief, the scheduling results of 4 different scenarios

provide evidence that the proposed TD3-based optimal

scheduling approach makes adaptive strategies in different

conditions to minimize users’ electricity costs while satisfying

their preferences. In addition, the agent can make appropriate

trade-offs between energy costs and comfort. In other words, the

EI employing DRL-based strategy has learned the formulation of

the autonomous optimal electric heating service scheduling

policy.

5 Conclusion

In this study, an automated EI-based DRL control

framework is presented, allowing direct optimization

FIGURE 9
Scheduling results of 1 day in Scenarios 1 (left column) and 2 (right column) heating period: (A/B) output power of REB and average indoor
temperatures, (C/D) input power of REB and electricity prices, and (E/F) available heat stored in heat accumulator and ambient temperatures.
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decisions on distributed electric heating users in a cost-

effective way. A heat demand-response model based on

TSV is proposed to quantitatively characterize the price

response of users with different preferences. The data-

driven TD3-based reinforcement learning approach

employed by EI addresses the continuity of REBs action-

space properly. The combination of the powerful

computing power of edge computing and reinforcement

learning enables optimal control of EHD in real time. The

decision-making and critic aspects of EI are deployed at the

terminal and edge nodes, respectively, to improve response

efficiency and accuracy. The simulation results show that

electric boiler and heat storage control strategies are more

sensitive to temperature and price, respectively. Compared to

the traditional method, the proposed approach will save 13.5%

in electricity purchasing costs, and maintain the indoor

temperature close to the desired comfort level with minor

deviation. In particular, the proposed approach demonstrated

excellent adaptability and generalization in face of extreme

weather, and changes in user preferences.

However, this study does not account for the computing

resource and communication costs of an applied edge

computing apparatus, which are sometimes considerable,

nor does it consider the issue of competitive strategies

among multiple aggregators. In future work, we will further

investigate the computational resource cooperation and

allocation problem in edge intelligence and apply the

achievements of this work to the optimization problem of

cloud-edge collaboration systems in distributed electric

heating networks.
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