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With the increasing development of smart grid technology, short-term load

forecasting becomes particularly important in power system operation.

However, the design of accurate and reliable short-term load forecasting

methods and models is challenging due to the volatility and intermittency of

renewable energy sources, as well as the privacy and individual characteristics

of electricity consumption data from user data. To overcome this issue, in this

paper, a novel cloud-edge collaboration short-term load forecasting method is

proposed for smart grid. In order to reduce the computational load of edge

nodes and improve the accuracy of node prediction, we use the method of

building a model pre-training pool to train multiple pre-training models in the

cloud layer at the same time. Thenwe use edge nodes to retrain the pre-trained

model, select the optimal model and update the model parameters to achieve

short-term load forecasting. To assure the validity of the model and the

confidentiality of private data, we utilize the model pre-training pool to

minimize edge node training difficulty and employ the approach of

secondary edge node training. Finally, extensive experiments confirm the

efficacy of our proposed method.
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1 Introduction

As the usage of renewable energy grows, the world is seeing a historic energy

revolution. Renewable energy, on the other hand, poses significant hurdles to the

smart grid due to its volatility, intermittency, and unpredictability (Meliani et al.,

2021). To achieve reliable and economical operation of power systems, accurate

short-term load forecasting (STLF) is essential (Yin and Xie, 2021). Since the ultimate

goal of the smart grid is to effectively control energy supply and balance, accurate STLF

plays a crucial role for the energy stakeholders of the smart grid.

Smart grid devices usually produce a large amount of data. Processing and analyzing

these data can objectively reflect the operation of smart grid. However, if the data of smart

grid devices are uploaded to the cloud for processing, it will cause great pressure on the
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cloud computing center, and the upload rate will also be affected

by the delay and bandwidth, resulting in the data cannot be

processed in time, making it difficult to deal with emergencies.

Recently, a large number of literatures on load forecasting have

been examined. The three basic categories of load forecasting

methods are statistical learning approaches, machine learning

methods, and deep learning methods. For statistical analysis,

statistical learning methods commonly employ historical time

series data. Statistical learning methods are easy to use and

understand, but they are poor for solving nonlinear problems

and are typically bound by assumptions (Li, 2020). To overcome

the constraints of physical and statistical models, machine

learning approaches can integrate external information such

as meteorological data. Because of their high generalization

capacity, deep learning approaches have also garnered a lot of

interest in the prediction and management of smart grids (Song

et al., 2021a). However, machine learning methods and deep

learning methods have many shortcomings, such as being easy to

fall into local optimum, overfitting, and low convergence speed

(Feng et al., 2017; Li, 2020; Kotsiopoulos et al., 2021). At the same

time, the data of power users often have privacy and personality

characteristics, the privacy data cannot be used for model

training directly, and the global model cannot represent the

user’s personality characteristics (Chen et al., 2021).

In response to the above problems, this paper proposes a

short-term load forecasting method for smart grids based on edge

computing, which aims to achieve effective STLF of smart grids

while protecting user privacy. The main contributions of this

paper are as follows:

(1) A method of constructing a model pre-training pool is

proposed to reduce the computational load of edge nodes

and improve the accuracy of node prediction.

(2) A pre-training model for secondary training of edge nodes is

proposed, the optimal model is selected and the model

parameters are updated to achieve short-term load

forecasting.

(3) Considering that a single model may lead to large prediction

deviations, an optimal optimization method for multi-model

selection is proposed to improve the prediction accuracy.

This paper is organized as follows: The related work is

presented in Section 2. Section 3 introduces the framework of

an edge computing-based STLF system. Section 4 introduces a

short-term load forecasting method based on edge computing.

Section 5 provides experiments and corresponding analyses.

Finally, the conclusion is given in Section 6.

2 Related work

Edge computing refers to the use of an open platform that

integrates network, computing, storage, and application core

capabilities on the side close to the object or data source to

provide the nearest end service (Wang et al., 2021). In China, the

edge computing alliance ECC is working hard to promote the

integration of three technologies, that is, the integration of OICT

(Operational, Information, and Communication Technology).

The computing objects of edge computing are mainly in four

fields, namely the device field, the network field, the data field and

the application field (Dong et al., 2022), (Song et al., 2022).

Smart grid is the future development direction of the power

industry. Luo et al. (2019) proposed a short-term energy

prediction system based on edge computing. Song et al. (Taïk

and Cherkaoui, 2020) proposed a method based on cloud-edge

collaboration to identify equipment defects in smart grids. Taïk

et al. (Song et al., 2020) proposed a method for power load

forecasting using edge computing and federated learning. Feng

et al. (2021) realized the technology roadmap of edge computing

for smart grid from the perspective of the power industry. Song

et al. (2021b) proposed a smart grid intrusion detection method

based on a multi-classifier architecture. Samie et al. (2019)

studied edge computing solutions for smart grids. Zhang et al.

(2022) proposed a scheme that can aggregate multi-dimensional

data at the distribution edge for privacy protection of smart grids.

These studies demonstrate the great potential of edge computing

for smart grid applications.

3 Framework of a short-term load
forecasting system based on edge
computing

Figure 1 shows the STLF architecture of the smart grid based

on edge computing. The architecture mainly consists of four

parts: cloud layer, main grid, edge node layer, and multi-energy

network. In order to share the pressure of cloud computing

center and minimize data transmission delay, edge computing

nodes can be deployed at IOT devices. Edge computing is more

suitable for local and real-time data processing and analysis. Edge

computing nodes have certain computing capabilities, can be

responsible for data storage and processing within the

deployment scope, can independently judge and deal with

problems, and support the real-time intelligent decision-

making and execution of local businesses. At the same time,

the data processed by edge computing nodes is of great value, and

these data still need to be gathered and concentrated in the cloud

computing center. The cloud computing center carries out data

mining, data sharing, training and upgrading of algorithmmodel.

The upgraded algorithm can be applied to edge side data analysis.

3.1 Cloud layer

The main function of the cloud layer is to pre-train the

model and pass the pre-trained model to the edge nodes. The
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responsibility of the cloud layer is not only to provide pre-

trained models for energy devices, but also to ensure that the

proposed models meet the computing needs of edge nodes. In

the proposed architecture, the cloud layer connects the main

grid to obtain electricity consumption data, trains the data,

obtains a pre-trained model and transmits it to the edge

nodes. We consider arranging a set of STLF models based on

machine learning in the cloud layer to form a prediction

model pool, and use the data provided by the main grid to

pre-train the model in the model training stage. The model

pool we used here consists of eight models with three

machine learning algorithms and different training

algorithms. Specifically, we choose three artificial neural

networks (ANN), namely the standard back-propagation

network, the momentum-augmented back-propagation

network, and the elastic back-propagation network. We

selected three Support Vector Regression (SVR) models

whose kernels are linear, polynomial, and radial basis

functions. We chose 2 gradient boosting machine (GBM)

models, namely the GBM model with squared loss function

and Laplacian loss function. These models are trained in the

cloud layer and passed to edge nodes as initial models for

nodes.

3.2 Main grid

The main grid is in charge of gathering power use statistics

from users, transferring data to the cloud, and supplying energy

to electrical devices. The main grid is the major network that

provides power to users and acts as a secure data transmission

centre.

FIGURE 1
Framework of STLF system based on edge computing. 1: Data exchange between the cloud layer and the main grid; 2: The cloud layer sends
pre-trained models to edge nodes; 3: Data exchange between the main grid and edge nodes; 4: Edge nodes control electrical equipment and
receive consumption data; 5: The main grid transmits electricity to electrical equipment; 6: Controllers control electrical equipment; 7: Controller
controls the operation of electrical equipment.

TABLE 1 Model pool.

Algorithm Model Training algorithm

ANN M1 Standard back propagation network

M2 Momentum enhanced back propagation network

M3 Elastic back propagation network

SVM M4 Linear kernel

M5 Polynomial kernel

M6 Radial basis function kernel

GBM M7 Square loss function

M8 Laplace loss function
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3.3 Edge node layer

Edge nodes can be deployed at gateways, base stations, etc. to

calculate, cache, and transmit energy data. Edge nodes are

connected to energy devices through different communication

technologies, such as 5G, WIFI or in-vehicle networks. The edge

node layer receives the pre-trained model from the cloud service

layer, and adopts the reinforcement learning-based method for

model selection and retraining. Because user data often has

personalized characteristics and involves sensitive privacy

issues, users are often reluctant to disclose specific electricity

consumption information. Considering the similarity of users’

electricity consumption habits, we adopt edge nodes to receive

pre-trained models from the cloud layer for secondary training to

improve training efficiency and improve model accuracy. The

prediction results of edge nodes can help the stable operation and

load shedding of the local energy network (Song et al., 2018).

3.4 Multi-energy network

A multi-energy network consists of multiple energy devices.

An energy device can be any entity, user, or device in the network

that provides and requires energy. Multi-energy devices are

connected to edge nodes through controllers. Energy devices

can collect and generate energy data according to their species

(Liu et al., 2019).

4 Short-term load forecasting
method based on edge computing

In this section, we provide an edge computing-based short-term

load forecasting approach. It comprises two sections in our scheme:

(1) the collaboration model deployed at the cloud layer; (2) the edge

RL model deployed at the edge nodes. The cloud layer pre-trains its

pre-made model using data supplied by the main network in the

FIGURE 2
Cloud collaboration model.

FIGURE 3
Model selection and parameter update method based on Q-learning method.
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collaborative DRL model of the cloud layer. To perform network

edge cache updates, edge nodes employ the DRL approach to

identify the best prediction model based on user privacy data

(Song et al., 2021c). In our model, the collaborative model is

trained and offloaded to edge nodes to reduce the computational

cost, improve computational efficiency and protect users’ private

data. According to the pre-trained model from the cloud layer, the

edge node adopts the model-free adaptive dynamic programming

algorithm Q-learning to find the optimal strategy of the best

prediction model at each prediction time step.

TABLE 2 The descriptive statistical characteristics of the study samples.

Type Length Mean Max Min Median Standard

Indoor Temperature [C] 8760 23.3392 26.34 17.97 23.65 1.4471

Indoor Relative Humidity [%] 8760 46.6581 67.46 21.13 47.86 6.5663

Equipment Electric Power [kWh] 8760 24.8337 70.91 7.44 15.88 17.0915

DHW Heating [kWh] 8760 1.3871 6.59 0 0.66 1.5440

Cooling Load [kWh] 8760 63.0640 29.23 0 19.11 77.2372

Heating Load [kWh] 8760 0 0 0 0 0

FIGURE 4
The temporal relationship between power load and four key variables. (A) Indoor temperature; (B)DHWHeating; (C) Cooling Load; (D)Heating
Load.
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4.1 Cloud collaboration model

In the cloud collaborative reinforcement learning model, the

cloud layer obtains electricity consumption data from the main grid

and trains the data to obtain a pre-trained model and pass it to the

edge nodes. We consider arranging a set of STLF models based on

machine learning in the cloud layer to form a prediction model pool

and use the data provided by the main network to pre-train the

model in the model training phase. Here our prefabricated model

pool consists of eight models (As shown in Table 1), including: (1)

Three artificial neural networks (ANN), namely standard back-

propagation network, momentum-enhanced back-propagation

network, and elastic back-propagation network; (2) Three

gradient boosting machine (SVM) models, which are linear,

polynomial, and radial basis function SVM models; (3) Two

gradient boosting machine (GBM) models, which are GBM

models with squared loss function and Laplacian loss function.

We train the model at the cloud layer and pass it to the edge node as

the initial model for the edge node.

The data acquired from the energy grid is used to train the

cloud collaboration improvement model. That is, model training

is done independently on each premade model. Figure 2 depicts

the related flowchart. When the model has been learned, the

cloud layer sends it to the edge nodes.

4.2 Edge reinforcement learning methods

In the smart grid, although users often have similar electricity

consumption habits, they also have their characteristics (Xu et al.,

2022). Using user privacy data to train prefabricated models at edge

nodes not only ensures the security of user privacy but also ensures

the accuracy and efficiency of prediction results. We adopt the

reinforcement learning method for model secondary training. We

define the state space, action space, and reward function of the edge

RL model as follows:

4.2.1 State space
The state of an edge node agent consists of its requirements. For

user i, its requirement Rmin ≤Ri ≤Rmax. Then the state vector is

expressed as: [R1, R2, . . . , RN], andN is the total equipment of user i.

4.2.2 Action Space
To meet the needs of different users, we consider edge nodes

to divide devices into different categories at each decision epoch.

Therefore, after determining the predicted device type, the edge

node determines the activity set for deriving a class of devices.

4.2.3 Rewards
We use rewards to improve the accuracy of model

predictions to meet device demands. We define the immediate

reward received by edge nodes as Ri,d � Rmax,d − Rreal,d. Among

them, Rmax,d is the maximum reward that can be obtained by

estimating the power consumption of device d, and Rreal,d is the

real reward obtained by estimating the actual power

consumption of device d, and the actual score can be

obtained after each state estimation.

To train the model, we utilise the Q-learning approach, as

illustrated in Figure 3, which is stated as follows:

Step 1. The edge nodes calculate the Q function values of the

eight models based on the parameters of the prefabricatedmodels

in each cycle.

Step 2. Choose the action to conduct for a specified class of

devices using the ε -greedy technique. In this stage, the action

with the highest estimated Q-value is chosen with probability

(1 − ε) , and the action is chosen at random with probability.

FIGURE 5
Learning curves for both Q-learning training processes
without edge computing and with edge computing (ANN with
standard back-propagation).
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Step 3. Based on the score, the edge device picks the best model

as the device’s model and updates the associated parameters to

produce the best solution.

Step 4. The edge node obtains the load prediction result

according to the optimal solution, and performs energy

management.

Step 5. The device class state transition function information

will be stored in the node’s historical information and used as an

alternative state for the next state time step after the immediate

reward is observed.

Step 6. After the decision cycle is over, the state transition is

used to obtain the loss function of the edge node to update the

model parameters and perform model selection.

In all tests in this paper, the maximum number of iterations

N is set to 50,000, the learning rate α is set to 0.1, discount factor γ
is set to 0.95, the round iteration number n is set to 30.

Algorithm 1. Q-learning model selection and parameter update

algorithm.

5 Case study

5.1 Experiment described and evaluation
index

We test the effectiveness of our proposed method on data

from one of four anonymized climate zones in the United States.

The dataset consists of four sets of data, each from nine

buildings1. Each building contains information on DHW

demand, electrical power consumption, solar origin, and other

variables. Research data is based on hourly information as a

research sample. We take all the data of each group as global data

and each building as the data of an edge node. We divide the data

into global training set data, edge training set data, and validation

data set, of which the global training set data accounts for 50%,

the edge training set data accounts for 20%, and the validation set

data accounts for 30%. In the simulation, we consider the energy

forecast as the target indicator. The statistical characteristics of

the research sample (taking one year’s data for one of the

buildings as an example) are shown in Table 2. The load of

the building on a certain day and the time statistical data

characteristics of the four key variables are shown in Figure 4.

On this day, the load is mostly weather, DHW, and cooling, not

heating, which may be a local feature.

The model evaluation is represented by the deviation between

the actual value and the predicted value, the deviation value D is:

D � |xreal − xeval|
xeval

(1)

where xreal is the actual value, xeval is the predicted value. We use

D -value changes to assess overall forecast persistence.

5.2 Algorithm validation test

We first tested the effectiveness of the algorithm. We use

ANN with standard back-propagation to compare the

convergence efficiency of the algorithm, nodes directly using

reinforcement learning training and the convergence efficiency of

our method, as shown in Figure 5.

It can be seen from Figure 5 that under our method, the

convergence speed of edge nodes is faster and the effect is better.

This proves that our designed model guarantees the effectiveness

and efficient convergence of Q-learning.

We next verified the accuracy of the predictions. We use data

from a certain climate region as an example to evaluate and test

the validity of the model. The climate zone contains 9 buildings,

that is, there are 9 edge nodes, and we use the prediction result of

one of the nodes to prove the accuracy of our model prediction.

Figure 6 shows the time series of actual and predicted loads for a

day. Specifically, we show the prediction results of 8 prediction

models and the prediction results finally adopted, and the edge

nodes tend to choose the best model results as the prediction

results. In Figure 6, the thin line represents the model prediction

results in the model pool, the thick blue line represents the actual

load, and the thick red line represents the predicted load result.

The experimental findings in Figure 6 show that our

proposed method may fully use each model’s benefits,

increase overall forecast accuracy, overcome the constraints of

the present smart grid forecast model, and give direction for

decision-makers in the smart grid’s long-term growth. From

Figure 6 it can be seen that, because of their high generalization

capacity, machine learning approaches can integrate external

information such as meteorological data. deep learning
1 https://sites.google.com/view/citylearnchallenge/previous-edition-

2020?authuser=0.
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approaches have also garnered a lot of interest in the prediction

and management of smart grids. Compared with other

algorithms, the predicted load value curve and the real load

value curve of the proposed algorithm on the used power load

data set can be close or even coincide at most times For the

sample points that do not fit well with some single models, the

fitting degree of the model proposed in this paper has been

significantly improved. The reason comes from the fact that

machine learning methods and deep learning methods have the

issues that are easy to fall into local optimum, overfitting, and low

convergence speed. Compared with other methods, in our

method, a model pre-training pool is proposed to reduce the

computational load of edge nodes and improve the accuracy of

node prediction; a pre-training model for secondary training of

edge nodes is proposed, the optimal model is selected and the

model parameters are updated to achieve short-term load

forecasting. Finally, an optimal optimization method for

multi-model selection is proposed to improve the prediction

accuracy.

6 Conclusion

The transition from renewables to energy and power

systems can improve a city’s sustainability goals. However,

the volatility and intermittency of renewable energy and the

privacy and personality characteristics of users make short-

term load forecasting models challenging. This paper develops a

short-term load forecasting method for the smart grid based on

edge computing. We first build a model pool on the central

server and perform model pre-training to reduce the training

volume and accuracy of edge nodes. We use edge nodes to

retrain the pre-trained model, select the optimal model and

update the model parameters to achieve short-term load

forecasting. We use the model pre-training pool to reduce

the training difficulty of edge nodes and adopt the method

of secondary training of edge nodes to ensure the validity of the

model and the security of private data. The experimental results

show that the method proposed in this paper can make full use

of the advantages of each model, overcome the limitations of

the current smart grid forecasting models, and can provide

guidance for decision-makers in the sustainable development of

smart grids.
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Time series of predicted load and actual load for one day.
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