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A new deep-learning-based surrogate model is developed and applied for

predicting dynamic temperature, pressure, gas rate, oil rate, and water rate with

different boundary conditions in pipeline flow. The surrogate model is based on

the multilayer perceptron (MLP), batch normalization and Parametric Rectified

Linear Unit techniques. In training, the loss function for data mismatch is

considered to optimize the model parameters with means absolute error

(MAE). In addition, we also use the dynamic weights, calculated by the input

data value, to increase the contribution of smaller inputs and avoid errors

caused by large values eating small values in total loss. Finally, the surrogate

model is applied to simulate a complex pipeline flow in the eastern part of the

South China Sea. We use flow and pressure boundary as the input data in the

numerical experiment. A total of 215690 high-fidelity training simulations are

performed in the offline stage with commercial software LeadFlow, in which

172552 simulation runs are used for training the surrogate model, which takes

about 240 min on an RTX2060 graphics processing unit. Then the trained

model is used to provide pipeline flow forecasts under various boundary

conduction. As a result, it is consistent with those obtained from the high-

fidelity simulations (e.g., the media of relative error for temperature is 0.56%,

pressure is 0.79%, the gas rate is 1.02%, and oil rate is 1.85%, and water is 0.80%,

respectively). The online computations from our surrogate model, about

0.008 s per run, achieve speedups of over 1,250 relative to the high-fidelity

simulations, about 10 s per run. Overall, this model provides reliable and fast

predictions of the dynamic flow along the pipeline.
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1 Introduction

Pipe network simulation has essential research value in oil and gas production. In the

realistic gas pipeline on the sea, the gas-liquid two-phase flow and the terrain both are

complex and variable; any change in the environment will directly affect the normal

operation of the gathering transportation network. On the other hand, the long oil and gas

gathering pipeline will cause significant instability in transportation. All these will

complicate the pipeline’s simulation calculation and operation management.
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Due to the complexity of the gas-liquid two-phase flow, it is

not easy to accurately simulate the distribution law along the

submarine oil-gas mixed transportation pipeline. Countries

worldwide have invested a lot of human and material

resources to study the calculation of oil-gas mixed

transportation pipeline networks and formed commercial

simulation software, including PipePhase, PipeSIM, PETITE,

OLGA, and LedaFlow. The reference (Xie et al., 2022)

established a wax deposition model in a submarine pipeline

using the OLGA wax deposition module. Using this model,

they analyzed the influence of five factors on oil-gas-water

three-phase wax deposition: oil flow rate, water content, inlet

temperature, gas-oil ratio, and outlet pressure. Because the cost is

expensive for commercial software, many researchers have also

explored pipeline flow problems using numerical experimental

methods. The reference (AUNICKY 1970) proposed and tested

the new empirical correlations, including the influence of the

flow length on the growth of the dispersion coefficient’s value and

the influence of the Reynolds’ number and concentration

boundary upon the final volume. They pointed out that a

Taylor-type model is not entirely satisfactory since the

dispersion coefficient seems to increase with the length of the

pipe and not stay constant. The reference (Rachid et al., 2002)

presented a model for predicting the contaminated mixing

volume arising in pipeline batch transfers without physical

separators. They considered the time-dependent flow rates

and accurate concentration-varying axial dispersion

coefficients. In addition to this, they coupled the finite

element method and Newton’s method to solve the governing

equation. In this way, they exhibited the best estimate over the

whole range of admissible concentrations investigated. The

reference (Al-Sarkhi and Hanratty., 2002) used a laser

diffraction technique to measure the drop size distributions

for air and water flowing in an annular pattern in a 2.54 cm

horizontal pipe. The reference (de Freitas Rachid et al., 2002)

proposed a new model for estimating mixing volumes arising in

batch transfers in multiproduct pipelines when variations of the

line diameter and injection and withdrawal of products are

present. The reference (Lain and Sommerfeld. 2012) studied

the problem of pneumatic conveying for spherical particles in

horizontal ducts, a 6 m long rectangular cross-section horizontal

channel, and a circular pipe. They calculated the three-

dimensional numerical by the Euler–Lagrange approach in

connection with the k–ε and a Reynolds Stress turbulence

model accounting for full two-way coupling. In the reference

(Kang et al., 2014), the mechanism of factors affecting wax

deposition, which are related to mitigation technologies, was

presented. The reference (Aman et al., 2016) used a single-pass,

gas-dominant flow loop to study the effect of gas velocity on

hydrate formation and deposition rate in the pipeline. In the

reference (Xiong et al., 2022), the opposition-based learning

strategy and the adaptive T-distribution mutation operator

were introduced to overcome the DELM effect’s effect on the

random input weight in each ELM-AE and improve the

quantitative prediction performance. The reference (Marfatia

and Li. 2022) simplified the commonly used model in the

FCMP. It was extended to address a pipeline network, for

which the mixing effect at the pipeline junctions is addressed.

However, due to the complexity of the pipe network simulation

calculation, neither software nor numerical methods can quickly

simulate the whole pipeline system in real-time. At the same

time, considering the oil and gas reservoir uncertainty, the

development process often needs many simulations of the

whole pipeline network under different production conditions.

So, it is challenging to meet the demand for the pipeline

network’s traditional simulation-based steady/unsteady flow

calculation method. Therefore, how to build fast surrogate

models has become the focus of many researchers.

With the rapid development of deep learning in image and

natural language processing, more and more researchers are

constructing corresponding reservoir surrogate models based

on deep learning techniques. The reference (Wang et al.,

2018) used the long and short-term memory (Gers et al.,

2000) networks to approximate the flow dynamics model in a

low-dimensional subspace constructed by POD. The reference

(Bruyelle and Guerillot, 2019) applied the network architecture

based on image processing to geological modeling. The proposed

approach provided accurate prediction results to speed up and

improve the history matching process. The reference (Tang et al.,

2020) introduced a proxy model R-U-NET based on deep

learning to predict the flow response of different geological

models. They could quickly and accurately simulate reservoir

changes and be used to solve history matching problems. The

reference (Zhou et al., 2022) proposed a novel dynamic

simulation method based on an interpretable shortcut Elman

network (Shortcut-ENN) model for the pipeline network. The

Shortcut-ENN model is derived from the state-space equations.

Based on the Shortcut-ENN model, the pipeline’s connection

relationship and mechanism characteristics are retained. The

reference (Spandonidis et al., 2022) constructed a 2D-

Convolutional Neural Network model that undertakes

supervised classification in spectrograms extracted by the

accelerometers’ signals on the pipeline wall. Then, the model

was used to immediately detect leaks in metallic piping systems

to transport liquid and gaseous petroleum products.

Because we have fast and accurate reservoir simulation

based on machine learning, we consider using the deep-

learning model to simulate the pipeline change in oil or gas

transport. In this paper, we reduce the work of pipeline

simulation to a regression problem and use multiplayer

perceptron (MLP) based on full connected (FC) to

construct our surrogate model. We propose three key

improvements in our model. Firstly, the FC + PReLU + BN

structure is used to construct the surrogate model; this proves

that deep learning can be used in pipeline simulation. Then

PReLU is used to solve the problem of neuronal necrosis
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caused by ReLU in the activation operation. Finally, the

weights of the loss function are dynamically decided by the

value of the input.

The content of this paper proceeds as follows: In the second

section, we give the detail of the surrogate model proposed in this

paper. We introduce the structure of the surrogate model, the loss

functions, and the data preprocessing process. In the third

section, we use a realistic gas pipeline on the sea to illustrate

the performance of our surrogate model. Finally, the conclusions

are summarized, and future work is discussed.

2 Principle of model framework

In the pipeline, we use the flow boundary of every well and

the pressure boundary at the endpoint as the input data. The flow

boundary contains gas flow rate, oil flow rate, water flow rate, and

temperature. The pressure boundary is mainly the pressure at the

endpoint of the pipeline. In this paper, we mainly use the

surrogate model to get the change in gas flow rates, oil flow

rates, water flow rates, pressures, and temperatures at each point

along the pipeline. Therefore, the process can be reduced to a

regression network model. At the same time, since a one-

dimensional structure is often used to represent pipelines, we

use an MLP as the basis to construct the surrogate model. In this

part, we will introduce some detailed information about MLP,

then the overall model architecture will be described, and finally,

the loss function and data processing will be introduced.

2.1 Base introduce of deep learning and
surrogate model

Multilayers perceptron (MLP) is a deep feedforward neural

network model. It is commonly used for the problem of vector

regression. The essence of MLP is fully connected (FC). In MLP,

we introduce one to multiple hidden layers among the input layer

and out layer. In order to better describe the internal computing

logic of MLP, we give a simple structure with two hidden layers in

Figure 1. In Figure 1, we use a vector with two elements, which

refers to X � (x1, x2), as the input data, and a vector with three

elements, which refers to Y � (y1, y2, y3), as the output data.

“Hidden layer” is a hidden layer used to extract features.

We generally use the FC structure to conduct forward

conduction in the calculation process. The specific calculation

in “Hidden layer1” is expressed as follows:

h11 � σ⎛⎝∑n
i�1
w1

1ixi + b1⎞⎠ � σ(w1
11x1 + w2

12x2 + b111) (1)

h12 � σ⎛⎝∑n
i�1
w1

2ixi + b1⎞⎠ � σ(w1
21x1 + w1

22x2 + b121) (2)

h13 � σ⎛⎝∑n
i�1
w1

3ixi + b1⎞⎠ � σ(w1
31x1 + w1

32x2 + b131) (3)

According to Eqs 1–3, when we need to synthesize the

features extracted from the previous layer, each node of the

FC layer is connected with all nodes of the upper layer. So, the FC

networks make the best use of information from the previous

layer but have the most parameters. It is suitable for small input

and output. In order to simplify the expression of calculation. We

use a matrix to express the process as follows:

H1 � ⎡⎢⎢⎢⎢⎢⎣ h11h12
h13

⎤⎥⎥⎥⎥⎥⎦ � σ⎛⎜⎜⎝⎡⎢⎢⎢⎢⎢⎣w1
11 w1

12

w1
21 w1

22

w1
31 w1

32

⎤⎥⎥⎥⎥⎥⎦[ x1
x2

] + ⎡⎢⎢⎢⎢⎢⎢⎣ b
1
11

b121
b131

⎤⎥⎥⎥⎥⎥⎥⎦⎞⎟⎟⎠ � σ(W1X + b1)

(4)
Where the variable H1 is the hidden layer output, and X is the

input data. The variables W1 and b1 are the trainable weights

decided in the training process. The function σ is an activation

operation that gives the model some nonlinear expression ability.

Similar to Eq. 4, we define the output of “Hidden layer two” asH2,

the final output is Y, and the value can be calculated by:

H2 � σ(W2H1 + b2), (5)
Y � σ(W3H2 + b2), (6)

Similar to Eq. 4. The variablesW2,W3, b2, and b3 are the trainable

weights decided in the training process. According to Eqs 4–6, we

can see that the output data of previous layers is the input data of

this layer in networks. In this way, we can constantly extract new

features by increasing the number of layers in the network.

In Eqs 4–6. We all need an activation function (σ). Activation

functions are essential for artificial neural network models to

learn and understand complex and nonlinear functions. Suppose

we do not use the activation functions. In that case, each layer is

the linear relationship between the input and output, and no

matter how many layers there are in the neural network, the

output always is a linear combination of the input. Using linear

FIGURE 1
The calculation process of MLP.
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relations to estimate the change between input and output is

unreasonable. So, we introduce a nonlinear factor to the neuron.

It makes neural networks approach any nonlinear function

arbitrarily so that neural networks can be applied to many

nonlinear models. In our model, we use Parametric Rectified

Linear Unit (PReLU), a member of the corrected Linear function

(Leaky ReLU). The definition of PReLU is as follows:

PReLU(x) � { x, if x ≥ 0
ax, otherwise

(7)

According to Eq. 7, when the input variable x ≥ 0, the gradient of
PReLU is a. It can avoid the phenomenon that the gradient is

0 on negative numbers and solve the gradient not updating

problem. At the same time, slope a can also be learned in model

training to reduce the trouble caused by artificial settings.

In order to better build the model and increase the convergence

rate, the batch normalization (BN) method is also used after FC

layers. The primary purpose of BN is to normalize the learned

features into the specified distribution. It can be used to increase the

convergence speed of learning and reduce the occurrence of the

over-fitting phenomenon. The calculation process is as follows:

μb �
1
m
∑m
i�1
xi, (8)

σ2
b �

1
m
∑m
i�1
(xi − μb)2, (9)

~xi � xi − μb����
σ2
b+

√ , (10)

yi � γ~xi + β � BNγ,β(xi), (11)

Where the variable m represents the size of the batch, the

variables γ and β are the weights decided in the training

process.

Based on the introduction above, we use the structure of “FC

+ BN + PReLU” to construct the minimum cell of feature

extraction. The network structure of our surrogate model is

shown in Figure 2. The whole model is composed of five large

layers. The first four layers (L1, L2, L3, and L4) are constructed by

“FC + BN + PReLU”; their dimensions are L1 = 32, L2 = 64, L3 =

512, and L4 = 256, respectively. The last layer is only an FC layer

with the dimension of L5 = N*M. It is used to map high-

dimensional features to the dimensions of the output. In the

last layer, N represents the number of nodes in the pipeline that

need to be output, and M represents the properties (gas flow, oil

flow, water flow, temperature, and pressure) that need to be

simulated for each node. This structure can effectively simulate

the pipeline change based on the surrogate model.

2.2 Loss function and data preprocessing

In deep learning, we often use reverse conduction to optimize

model parameters, so we set a standard to measure the quality of the

training process, which refers to the loss function. The training

objective is to minimize the metric between full-physics model

production and prediction production during the offline stage. In

this case, the simulation results are gas flow, oil flow, water flow,

temperature, and pressure. So, in order to quantify the model’s

overall performance in predicting the output state variables, we

divide the total loss function into five parts: gas flow loss (Lg), oil

flow loss (Lo), water flow loss (Lw), temperature loss (LT) and

pressure loss (Lp). Those specific definitions are as follows:

Lg � 1
N
∑N
i�1

⎧⎨⎩∑nw
k�1

μgκ
����gk − ĝk

����⎫⎬⎭
i

, (12)

Lo � 1
N
∑N
i�1

⎧⎨⎩∑nw
k�1

μgoκ ‖ok − ôk‖
⎫⎬⎭

i

, (13)

Lw � 1
N
∑N
i�1

⎧⎨⎩∑nw
k�1

μgwκ ‖wk − ŵk‖
⎫⎬⎭

i

, (14)

LT � 1
N
∑N
i�1

⎧⎨⎩∑nw
k�1

μTκ ‖Tk − T̂k‖
⎫⎬⎭

i

, (15)

Lp � 1
N
∑N
i�1

⎧⎨⎩∑nw
k�1

μpκ
����pk − p̂k

����⎫⎬⎭
i

, (16)

We use variables without ‘hats’ to denote the proper solution

(e.g., g o, w, T andp) and the variables with ‘hats’ to

designate solutions approximated by the surrogate model

(e. g., ĝ ô, ŵ, T̂ and p̂). The variable N represents the total

number of training data sets and nw is all output pipeline

FIGURE 2
The detailed structure of the surrogate model.
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nodes, g represents gas flow rate, o represents oil flow rate, w

represents water flow rate, T represents temperature, and p

represents pressure. The variable μw (ω � g o, w, T and p) is a

transformable weight, and the values are decided by the

actual input data. In this paper, those are calculated by:

μω(x) � { 1, if x≥ 1e − 3
1/x, if x< 1e − 3

, (17)

According to Eq. 17, we can dynamically modify each node’s

weight and increase the smaller data’s contribution to the loss. In

this way, we also can avoid errors caused by large values eating

small values in total loss. According to Eqs 12–16, the final total

loss function is as follows:

Lall � λLg + βLo + αLw + δLT + μLp (18)

In the flow process, due to the small range of temperature and

pressure, the regression difficulty is relatively small, so the weight

setting of this part is relatively minor. At the same time, due to

the broader range of gas flow change (10,000 m3/day-m3/day)

and close attention, we set the weight of gas loss as the maximum.

The weights are λ = 50, β = 1, α = 1, δ = 1, μ = 1.

Data preprocessing is essential for the practical training of deep

neural networks. Constraining training data values to be near zero

with proper data normalization can enhance deep neural network

training in many cases. In this study, the input data of the surrogate

model are the gas flow rate, oil flow rate, water flow rate, temperature,

and the pressure of the terminal (pipe network endpoint). At the

same, the output is the change of gas flow rate, oil flow rate, water

flow rate, temperature, and pressure at each point along the line. Due

to differences in data units and actual production, the range of

variation between different data is enormous. In order to improve the

learning process and output quality, we need to normalize the input

data. The normalization method is as follows:

α0 � α − 0.001α min

100pα max − 0.001pα min
, (19)

The variable α represents the value of each variable in the pipeline,

the variable α0 is the value after normalization, the variable α min is

the lower boundary of that variable, and αmax is the maximum

observable value of that variable. In this paper, to ensure the range of

data is [0,1] in the generalization, we use 100 and 0.001 to expand the

limitation of max and min data.

3 Network simulation

3.1 The introduction of example

The gas field group in the eastern part of the South China Sea

comprises one gas field and two pipelines (Figure 3). Gas file A is

the deep-water gas field developed by underwater wellhead +

marine pipe connection. In this gas file, we have two wells,

A1 and A2, and the gas produced by those wells is transported

downstream for further processing by pipeline (Gas file A to

Platform1, Platform1 to Platform2, and Platform2 to terminal).

In this gas field group, the driving types of gas reservoirs are diverse,

the size of pipes are wildly different, and the coordination degree is

low. At the same time, the flow simulation in pipelines is challenging

due to the influence of downstream gas fluctuation. Therefore, under

such a complex background, it is significant to simulate the flow of

pipe networks quickly and accurately. Based on the actual pipe

network flow of the gas field group, this paper simulated the internal

flow condition for three pipelines in Figure 3. In order to introduce

the result of our surrogate model in pipeline simulation, we use Gas

file A to Platform1 as an example for a detailed description.

The total length of the sea pipe of gas file A to platform 1 is

about 24 km, and an output point is taken every 2km, so there

are 13 output nodes (including the beginning and end). In the

data preparation stage, we first used LedaFlow to simulate the

FIGURE 3
Production device layout of gas field group.

FIGURE 4
LeadFlow model of gas field pipeline.
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pipeline (see Figure 4 for the model). We then built multi-case

numerical models based on the actual production data of the

pipeline in 2015, 2019, and 2020. The range of input data of

multiple calculation examples is shown in Table 1.

According to table 1, we can see that the input data is

constructed by the gas rate, the water rate, the oil rate, the

temperature, and the pressure of the endpoint of the pipeline. So,

the input data is a 1D vector with nine elements. In data

preprocessing, we first produced 215690 calculation examples

with the random number within the specified range. Then, we

first use the commercial software LeadFlow to get the result of

every node in the pipeline and use Eq. 19 to deal with the data set.

Finally, we use 80% of the data (172552) as the training set and

20% of the data (43,138) as the test set to train and test the model.

The training of the surrogate model can be accomplished

efficiently, though the specific training time depends on many

factors. These include the training data, training set size, batch

size, optimizer setup, learning rate, and the graphics processing

unit (GPU) performance. Through the numerical experiments,

the weights of those losses are λ = 50, β = 1, α = 1, δ = 1, μ = 1. The

most effective optimizer is Adam; the initial learning rate is

0.00001. Regarding time, our training process converges in

240 min on an RTX2060 GPU using Tensorflow. The

convergence process of the total loss on both training and testing

data sets is presented in Figure 5. It shows that the losses converge

quickly after 40 epochs of training, and the trend and value are both

TABLE 1 The input data range of pipeline simulation for multi-example.

Nodes attribute Well A1 Well A2 Pipeline terminal

Gas rate (m3/day) [3000,660000] [1000,960000]

Oil rate (m3/day) [0,42] [0, 62]

Water rate (m3/day) [0,12] [1, 30]

Temperature (°C) [0,85] [2,110]

Pressure (kPa) [7000,13200]

FIGURE 5
The convergence trend of total loss in train and test (red line is
train process, the blue line is test process).

FIGURE 6
The change of temperature along the pipeline between
surrogate mode and LeadFlow simulation.

FIGURE 7
The change of pressure along the pipeline between surrogate
mode and LeadFlow simulation.
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similar for training and testing data sets, indicating that the optimal

hyper parameters are credible with no problem of overfitting.

4 Result of test case

In this part, we mainly analyze the simulation results.

Without losing any generality, we pick the outputs from one

test case for a detailed description, and the test results are

shown in Figures 6–10. In the figures, the green dotted line

represents LeadFlow results; the red line represents our surrogate

model results.We can see that ourmodel results and the commercial

software LeadFlow have the exact change trend. In numerical, our

model results closely match the results from LeadFlow simulations

in temperature and some more enormous differences in pressure,

gas rate, oil rate, and water for all nodes.

In order to metric the degree of difference in numerical, we

calculate the relative error through Eqs 20–22.

Ek
j �

1
N
∑N
i�1

�����yikj − ŷikj
�����, (20)

Pk
j �

1
N
∑N
i�1

�����yikj �����, (21)

REk
j �

Ek
j

Pk
j

, (22)

Where k represents nodes, J represents attributes (gas, oil, water,

temperature, and pressure), and N represents the number of all test

sets. The variable y indicates the solution of the LeadFlow

simulation, ŷ is the result of the surrogate model. The variable

Ek
j indicates the average absolute error of the attribute j at the node k

for all test sets, and Pk
j indicates the average value of attribute j at the

node k for all test sets.REk
j represents the average relative error of the

attribute j at the node k for all test sets.

In order to illustrate that the results of our surrogate model and

full-physics model are close, we calculate the relative errors for

pressure, gas rate, oil rate, and water for all nodes using Eqs 20–22 in

the above test case. In this way, we get the max relative error in

pressure is 0.42%, the gas rate is 0.44%, the oil rate is 1.63%, and the

water rate is 1.36%. So, it proves that our model has good accuracy.

In order to avoid sampling differences, we will analyze the

general performance for all test cases. We calculate the relative error

for every case using Eqs 20–22 with N = 1. The result is shown in

Figure 11. The orange line in the center of each box represents the

median error; the bottom and top edges of the box represent the

25th and 75th percentile errors; the “whiskers” protruding from the

box represents the minimum and maximum errors. Though the oil

FIGURE 8
The change of gas rate along the pipeline between surrogate
mode and LeadFlow simulation.

FIGURE 9
The change of oil rate along the pipeline between surrogate
mode and LeadFlow simulation.

FIGURE 10
The water rate change along the pipeline between surrogate
mode and LeadFlow simulation.
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rate’s relative error is higher than others, the overall errors are

both low, and the max value is about 6.01%. In terms of

numerical results, the medial relative error for temperature is

0.56%, pressure is 0.79%, gas rate is 1.02%, oil rate is 1.85%,

and water rate is 0.80%.

In Figure 11, the green circle is the average error for all cases and

nodes. In order to metric average relative errors for all cases, we use

N = 43,138 in Eqs 20–22. The result is shown in Figure 12. It can be

seen from the figure that the relative errors of the results obtained by

our surrogate model are all low, and the max value is about 2%.

Therefore, ourmodel has a specific guiding value in actual production.

4.1 Computing speed

In this part, we mainly discuss the time costs of LeadFlow

simulation and our surrogate model. LedaFlow usually simulates

a case with 10 s on Intel Xeon (R) W-3275m dual CPU with

28 cores machine. However, it has complex concurrency, and the

run time is unstable. The convergence of the entire simulation

may take about 22 s when we use some special parameter

settings. On an RTX2060 GPU node with 6 GB video

memory, our surrogate model can run 16 examples in 0.15 s,

and the average time of each example is 0.008 s (8 ms), and the

speed is nearly 1,250 times higher.

5 Conclusion

In this work, we propose a surrogate model with MLP to

solve the problem of pipeline simulation on gas transport.

We use “FC + BN + PReLU” to construct the surrogate

model. In the training process, the weights of the loss

function are dynamically decided by the input data value.

We use our model in an existing pipe network. Compared

with traditional LedaFlow, the max relative error is about

6%, and our model’s average relative errors are below 2%. In

addition, the trend of our simulation results is highly

consistent with LedaFlow simulation results, and our

model can provide about 1,250 times acceleration. In

summary, our surrogate model could provide a highly

accurate and super-fast surrogate for a realistic pipeline

system. The model could be beneficial when a large

amount of simulation runs is required for allocation of

optimization.

Future research is to be carried out from two aspects. First,

we would expand this model to deal multi pipelines with one

model because there are many pipelines in realistic gas

transport. If we construct a model for every pipeline, we

need many models, which are expensive for the hardware.

Second, we are interested in building an integrated model for

the gas reservoir and pipeline network, which can

automatically simulate the pipeline flow changes caused by

any gas reservoir changes.
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FIGURE 11
The distribution of relative error for all test cases and nodes.

FIGURE 12
The average relative error for all test cases at different nodes.
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