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In the present study, the natural transform iterative method (NTIM) has been

implemented for the solution of a fractional Zakharavo–Kuznetsov (FZK)

equation. NTIM is a relatively new technique for handling non-linear

fractional differential equations. The method is tested upon the two non-

linear FZK equalities. The solution of the proposed technique has been

compared with the existing perturbation–iteration algorithm (PIA) method

and residual power series method (RPSM). From the numerical results, it

is clear that the method handles non-linear differential equations very

suitably and provides the results in very closed accord with the accurate

solution. As a result, the NTIM approach is regarded as one of the finest

analytical techniques for solving fractional-order linear and non-linear

problems.
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1 Introduction

Entropy and fractional calculus are appealing concepts that are increasingly being

used to investigate the dynamics of complicated systems. Fractional calculus (FC) has

been increasingly used in numerous sectors of research in recent years. Fractional

differential equalities (FDEs) efficiently depict the natural evolution associated with

viscoelasticity, models of porous electrodes, thermal stresses, electromagnetism, energy

transmission in viscous dissipation systems, relaxing oscillations, and thermoelasticity.
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Most of the mathematical models are obtained through real-

world problems which can be modeled via differential equations

of the integer order or of the fractional order. The differential

equations may arise in diverse areas of technological sciences and

biological sciences. In engineering sciences, they may be in the

field of fluid dynamics, aerodynamics, the nuclear decay, climate

changes, electronic circuits, etc. In biosciences, these models may

be of the blood flow, population growth, and decay problems of

some kind of species of organisms like bacteria or virus and may

be the study of some rate of flow of some gas models or may be

the concentration control of some liquids in some other liquids.

Similarly, differential equations may also model some problems

related to social sciences as in the fields of banking and finance.

The customer may be satisfied by preparing a fractional model of

interest or premium according to the required efforts of a person.

Fractional calculus plays an essential role in these kinds of

problems.

Fractional calculation is the generalization of the classical

calculus which is an ancient branch of mathematics. The

fractional calculus received much more attention of

researchers during the last few decades. Fractional calculus

has great achievements in the fields of physics, engineering,

biology, medicine, hydrology, economics, and finance [1-5].

The models of differential equations may be linear or

nonlinear; linear models can be solved easily by different

methods and do not require too much difficulty for obtaining

the exact solution. But most of the problems of the real world

occur non-linearly and cannot be solved easily. They are very

hard to solve by simple methods. Most of the non-linear

problems do not have exact solutions. Therefore, researchers

use different approaches to solve them.

Researchers use numerical methods to solve non-linear

problems, but they have discretization issue, are costly, and

time-consuming. The famous numerical methods are the

following: the collocation method, finite difference technique,

finite element procedure, and radial basis function technique [6-

8]. Similarly, perturbation methods need small or large

parameter assumptions which are very difficult [9, 10]. Non-

perturbation methods are the Adomian decomposition

methodology (ADM) and differential transformation

methodolgy (DTM). These methods work on repetition and

that is why these types of problems can be solved with the

help of computer software easily. Some well-known iterative

methods are the variational iterating methodology (VIM), new

iterating methodology, modified variational iteration method

(MVIM), etc. [11, 12]. The Zakharov–Kuznetsov (ZK)

equation is an enticing modeling formula for studying vortices

in geophysics flows. The ZK difficulties appear in many areas of

material sciences, implemented arithmetic, and design. It occurs

particularly in the realm of physical sciences. The ZK issues

govern the behavior of weak non-linear particle acoustic plasma

waves, such as cold nanoparticles and hot adiabatic electrons, in

the presence of smooth magnetism. The non-direct higher order

of the expanded KdV criteria for geometrical removal was used to

generate solitary wave configurations. The accurate expository

structures of various non-linear advancement equations in

numerical materials engineering, namely, space time-fractional

Zakharov–Kuznetsov and altered Zakharov–Kuznetsov

formulas, were found using a fractional technique. Many

approaches, including the new iterating Sumudu

understanding of the complex, homotopy perturbation

transform method, expanded direct algebra methodology,

natural decomposition technique, and q-homotopy analysis

transform methodology, have been used to examine it during

the last few decades. In this research work, we will find the

approximate solution to the fractional order of the

Zakharova–Kuznetsova FZK equation (13). The general form

of the FZK equation is

Dβ
tφ + a(φp)x + b(φq)xxx + c(φr)yyx � 0, 0≤ t, 0< β≤ 1, (1)

where φ � φ(x, y, t), 0< β≤ 1 signifies an order of the fractional

derivative, and a, b and c are optional fixed factors. The integers

p, q, r control the behavior of weak non-linear ion acoustical

waves in hemoglobin-containing coolant ions and hotness

isotherm electrons in the existence of a consistent magneto

force. Numerous researchers have tried to solve the FZK

equation by using different approaches such as VIM, OHAM,

PIA method, and RPSM [14]. We have obtained the solution of

the FZK equation by NTIM which is an extension of the natural

iterating methodology NIM presented by Gejji and Jafari [15, 16]

to obtain the estimated solution of linear and non-linear

differential equalities. NTIM was recently applied by Nawaz

et al. [17] for solving the fractional order differential equation.

In the proposed methodology, NIM is combined with the natural

transform for the solution of the FZK equation.We observed that

the proposed method was easy to implement and provide an

encouraging approximate solution for the linear and non-linear

differential equalities of fractional- and integer-order derivatives.

2 Basic definitions

Definition 2.1 [14]: The fractional integral operator Iα of order

α≥ 0 in the Riemann–Liouville idea of a function is described as

Iαf(χ)� 1
Γ(α)∫0

χ

χ − s α−1f s ds, α, χ > 0,)()( (2)

where I0f(χ) � f(χ) and Γ is the well-known function.

Definition 2.2 [14]: Riemann–Liouville fractional derivative can

be defined if g(r) ∈ C[a, b] then

Iαa �
1

Γ(α)∫a

r g(χ)(r − χ)1−α dχ. (3)

Some properties of the fractional derivative and integral are

given as f ∈ Cμ, μ≥ 1, α, β≥ 0 and λ> − 1 then
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•IαIβ � Iα+βf(χ),
•IβIα � Iα+βf(χ),
•Iαχλ � Γ(λ + 1)

Γ(λ + 1 + α)χ
λ+α.

Definition 2.3: Natural transubstantiate is specified as [18]

N+[ϕ(t)] � R(s, u) � 1
u
∫
0

∞
e

−st
u (ϕ(t))dt, s, u > 0. (4)

u and s are the transformation variables.

Definition 2.4 [18]: The inverse of the natural transubstantiate

R(s, u) is defined as

N−[R(s, u)] � ϕ(t) � 1
2πi

∫
c−i ∞

c+i∞
e

st
u(R (s, u))ds. (5)

s � a + bi is the complex plan for executing the integral along

s � c, where c ∈ R.

Definition 2.5 [18]: If ϕ(t) is a function and ϕn(t) is its nth

derivative, then the natural transubstantiate of ϕ(t) is

N+(φn(t)) � Rn(s, u) � sn

un
R(s, u) −∑n−1

k�0
sn−(k+1)

un−k (φn( 0 )),
n≥ 1.

(6)
Theorem 2.6: If k(t) and h(t) are defined on a set A and have the

natural transforms K(s, u) and H(s, u), respectively, then
N[k*h] � uK(s, u)H(s, u),

where [h*k] is the convolution of h and k.

2.1 Natural Transform Iterative Method
(NTIM)

Consider the fractional order PDE in the manner

Dβ
t [φ(y, t)] � g(y, t) + L[φ(y, t)] +N[φ(y, t)],

n − 1< β≤ n, (7)

where Dβ
t is the Caputo’s fractional derivative operator of order

β, k ∈ N, and y � y 1 + y2 +/ + yk. L andN represent the non-

linear function. g(y, t) is the resource bound. The initialization
constraint is

φ(y, 0) � f(y). (8)

Taking the natural transform of (7), we have

N+[Dβ
t (φ(y, t))] � N+[g(y, t)] +N+[L(φ(y, t))

+N(φ(y, t))]. (9)

By employing the differentiate characteristic of the natural

conversion to Eq. (9), we have

sβ

uβ
N+[φ(y, t)] − sβ−1

uβ
φ(y, 0) � N+[g(y, t)] +N+[Lφ(y, t)

+Nφ(y, t)].
(10)

Using the initial condition and rearranging Eq. (10), we

obtain

N+[φ(y, t)] � f(y)
s

+ uβ

sβ
(N+[g(y, t)]) + uβ

sβ
(N+[L(φ(y, t))

+N(φ(y, t))]).
(11)

As the linear term Lφ(y, t) can be created in the structure of

infinite series as

L(∑∞
m�0φm(y, t)) � ∑∞

m�0L(φm(y, t)) (12)

and N(φ(y, t)), the non-linear term is proposed as

N(∑∞
m�0φm(y, t)) � N(φ0(y, t)) +∑∞

m�1{N(∑i

j�0φj(y, t))
−N(∑m−1

j�0 φj(y, t))}.
(13)

Applying Eq. (13) in Eq. (11), we obtain

0.9!N+[∑∞
i�1φi] � f

s
+ uβ

sβ
(N+[g]) + uβ

sβ
[N+[∑∞

m�0L(φm)
+N(φ0) +∑∞

m�1{N(∑m

j�0φj)
−N(∑m−1

j�0 φj)}]].
(14)

The recursive relation of Eq. (14) by the use of natural

transform is

0.9!

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N+[φ0(y, t)] � g(y)
s

+ uβ

sβ
N+[g(y, t)],

N+[φ1(y, t)] � uβ

sβ
N+[I(φ0) +N(φ0)],

N+[φ2(y, t)] � uβ

sβ
N+[L(φ1) +N(φ0 + φ1) −N(φ0)]

..

.

N+[φi+1(y, t)] � uβ

sβ
N+⎡⎣L(φi) + ℵ(φ0 + φ1 +/ + φi)

−N(φ0 + φ1 +/ + φi−1) ⎤⎦, i≥ 0.

(15)

Utilizing the inverted natural transmute to Eq. (15), the solution

component can be obtained as

Frontiers in Energy Research frontiersin.org03

Zada et al. 10.3389/fenrg.2022.979773

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.979773


0.9!

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ0(y, t) � N−[g(x)
s

+ uβ

sβ
N+[g]],

φ0(y, t) � N−[uβ

sβ
N+[L(φ0) +N(φ0)]],

φ0(y, t) � N−[uβ

sβ
N+[L(φ1) +N(φ0 + φ1) −N(φ0)]],

..

.

φi+1(y, t) � N−⎡⎢⎢⎢⎢⎢⎣uβ

sβ
N + ⎡⎢⎢⎢⎢⎢⎣L(φ0 + φ1 +/ + φi)

−N(φ0 + φ1 +/ + φi−1)⎤⎥⎥⎥⎥⎥⎦⎤⎥⎥⎥⎥⎥⎦ , i≥ 0.
(16)

The n bounds approximated the solution of Eqs. 7 and 8 by

the proposed method, which is obtained by adding the

components as

~φ(y, t) � φ0(y, t) + φ1(y, t) + ... + φn−1(y, t). (17)

2.2 Convergence of the NTIM

Theorem 2.7 [18]: If N is analytic in a neighborhood of ϕ0 and����Nm(φ0)���� � sup{Nm(φ0)(b1, b2, .....bn)/‖bk‖≤ 1, 1≤ k≤m}≤ l
for any m and for certain real l> 0& ‖φk‖≤M< 1

e, k � 1, 2, ...,

then the series ∑∞
m�0Gm is absolutely convergent and more

over

‖Gm‖≤ lMmem−1(e − 1), m � 1, 2,/

To appear in the boundaries of ‖φk‖, for every k, the

conditions on N(j)(φ0) are provided which are appropriate to

assure convergence of the sequence. The satisfactory

constraint for the convergent is provided in the subsequent

theory.

Theorem 2.8: If N is C∞ and ‖Nm(φ0)‖≤M≤ e−1∀m, then the

sequence ∑∞
m�0Gm is absolutely convergent. These are the required

conditions for the convergence of the series ∑φj.

3 Implementation of the NTIM to the
FZK equation

Example 3.1. Consider the FZK equation in the following

form [13]:

Dβ
tφ + (φk)

x
+ 1
8
(φk)

xxx
+ 1
8
(φk)

yyx
� 0, 0≤ t, 0< β≤ 1.

(18)
Together, the initial condition is

φ(x, y, 0) � f(x, y). (19)

Eq. (18) is written in the implicit form as

Dβ
tφ � −(φk)

x
− 1
8
(φk )

xxx
− 1
8
(φk)

yyx
. (20)

Using natural conversion to Eq. (20), we get

N+[Dβ(φ)] � N+[ − (φk)
x
− 1
8
(φk)

xxx
− 1
8
(φk )

yyx
]. (21)

Utilize the differentiation characteristic of the natural convert as

FIGURE 1
3D plots obtained by the first order (A) NTIM and (B) exact
solution for β � 1.0, y � 0.1, λ � 0.001 for Example 3.2.
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sβ

uβ
N+[φ] − sβ−1

uβ
φ(x, y, 0) � N+[ − (φk)

x
− 1
8
(φk)

xxx

− 1
8
(φk)

yyx
]. (22)

Using the initial condition in Eq. (20) and rearranging, we have

N+[φ] � f(x, y)
s

+ uβ

sβ
N+[ − (φk)

x
− 1
8
(φk)

xxx
− 1
8
(φk)

yyx
].
(23)

As φ(x, y, t) is the infinite series given as

∑∞
m�0φm(x, y, t), (24)

applying natural transform to Eq. (25) and using the idea

explained in the method

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N+[φ0(x, y, t)] � f(x, y)
s

,

N+[φ1(x, y, t)] � uβ

sβ
N+[ − (φk

0)x − 1
8
(φk

0)xxx − 1
8
(φk

0)yyx],

N+[φ2(x, y, t)] � uβ

sβ
N+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−((φ0 + φ1)k)x − 1

8
((φ0 + φ1)k)xxx − 1

8
((φ0 + φ1)k)yyx

−( − (φk
0)x − 1

8
(φk

0)xxx − 1
8
(φk

0)yyx)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

..

.

(25)

Now, by taking the inverted natural transmute of Eq. 25, we

obtain the solution elements as

FIGURE 2
3D plots obtained by the first order (A) NTIM and (B) exact
solution for β � 1.0, t � 0.1, λ � 0.001 for Example 3.2.

FIGURE 3
(A) shows the absolute error and (B) shows the behavior of β
on the solution of the NTIM for diverse amounts of β when x �
y � 0.1, λ � 0.001 for Example 3.2.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ0(x, y, t) � N−[f(x, y)
s

],
φ1(x, y, t) � N−[uβ

sβ
N+[ − (φk

0)x − 1
8
(φk

0)xxx − 1
8
(φk

0)yyx]],

φ2(x, y, t) � N−
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
uβ

sβ
N+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−((φ0 + φ1)k)x − 1

8
((φ0 + φ1)k)xxx − 1

8
((φ0 + φ1)k)yyx

−( − (φk
0)x − 1

8
(φk

0)xxx − 1
8
(φk

0)yyx)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

..

.

(26)

The n − terms approximate solution of Eqs. 18 and 19 by NTIM

is presented as

φ(x, y, t) � φ0 + φ1 + ... + φm−1. (27)

Example 3.2. Regarding the FZK (2, 2, 2) equality of the

structure [13]

cDβ
tφ + (φ2)x + 1

8
(φ2)xxx + 1

8
(φ2)yyx � 0, 0< β≤ 1. (28)

With preliminary conditions

φ(x, y, 0) � 4
3
λsinh2(x + y). (29)

FIGURE 4
3D plots obtained by the first order (A) NTIM and (B) exact
solution for β � 1.0, y � 0.1, λ � 0.001 for Example 3.3.

FIGURE 5
3D plots obtained by the first order (A) NTIM and (B) exact
solution for β � 1.0, t � 0.1, λ � 0.001 for Example 3.3.
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Here, λ is an optional fixed value. The accurate solution for β �
1.0 is given by

φ(x, y, t) � 4
3
λsinh2(x + y − λt). (30)

Utilizing the procedure of NTIM, we obtain the solution

components for Eq. (28) as

φ0(x, y, t) � 4
3
λsinh2(x + y), (31)

φ1(x, y, t) � 8λ2tβ(4 sinh(2(x + y)) − 5 sinh(4(x + y)))
9Γ(β + 1) ,

(32)

φ2(x, y, t) �

64λ3t2β⎛⎝
3Γ(β + 1)2Γ(3β + 1)(13 cosh (2(x + y))
−70 cosh (4(x + y)) + 75 cosh (6(x + y)))
−20λΓ(2β + 1)2tβ(4 sinh (2(x + y))
+8 sinh(4(x + y)) − 60 sinh(6(x + y))
+85 sinh (8(x + y)))

⎞⎠
81Γ(β + 1)2Γ(2β + 1)Γ(3β + 1) .

(33)

Adding the elements, the second-order approximated

solution can be written as

~φ(x, y, t) � φ0 + φ1 + φ2.

Example 3.3. Consider the FZK (3, 3, 3) equation of the

structure [13]

cDβ
tφ + (φ3)x + 2(φ3)xxx + 2(φ3)yyx � 0. (34)

Together with initial conditions

φ(x, y, 0) � 3
2
λ sinh(x + y

6
). (35)

Here, λ is an optional fixed amount. The exact solution for beta �
1.0 is given by

φ(x, y, t) � 3
2
λ sinh(1

6
(x + y − λt)). (36)

Using the procedure of the NTIM, the solution elements can

be acquired as

φ0(x, y, t) � 3
2
λ sinh(1

6
(x + y)), (37)

φ1(x, y, t) � 3λ3tβ cosh(x+y6 )(7 − 9 cosh(x+y3 ))
16Γ(β + 1) , (38)

FIGURE 6
(A) shows the absolute error and (B) shows the behavior of β
on the solution of the NTIM for diverse amounts of β when x �
y � 0.1, λ � 0.001 for Example 3.3.

TABLE 1 Few important expressions and their natural
transubstantiates.

Function Natural
transformation

Function Natural
transformation

1 1
s ekt 1

s−ku
t u

s sin(t) u
s2−u2

tk−1
Γ(k)

uk−1
sk

cos(t) s
s2+u2

tkβ

Γ(kβ+1)
ukβ

skβ+1
tkβ−1
Γ(kβ)

ukβ−1
skβ
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φ2(x, y, t) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 3λ5t2β

131072Γ(β + 1)3Γ(2β + 1)Γ(3β + 1)Γ(4β + 1) ×

λ4Γ(2β + 1)Γ(3β + 1)2t2β⎛⎝
9⎛⎝

1700
6

sinh(5(x + y)) + 9135
6

sinh(7(x + y))

−3412
2

(sinh(x + y)) − 10935
2

(sinh(3(x + y)))
⎞⎠

+3550
6

sinh(x + y)

⎞⎠

+16λ2Γ(β + 1)Γ(2β + 1)2Γ(4β + 1)tβ⎛⎝
9⎛⎝

75
2
cosh(x + y) + 1827

6
cosh

(7(x + y)) − 1615
6

(cosh(5(x + y)))
⎞⎠

+1385
6

cosh(x + y)

⎞⎠

−256Γ(β + 1)3Γ(3β + 1)Γ(4β + 1)(
70
6
sinh(x + y) + 765

6
sinh(5(x + y))

−621
2

(sinh(x + y))
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(39)

Adding the components, the second-order series solution can be

written as

~φ(x, y, t) � φ0(x, y, t) + φ1(x, y, t) + φ2(x, y, t). (40)

4 Results and discussion

In this work, two problems of the FZK equation have been

tested by the new developed methodology NTIM. The

obtained results are assessed by diverse plots and tabulated

data for testing the reliability of the proposed method. Figure 1

shows the 3D surfaces obtained by the NTIM and the accurate

result correspondingly for Example 3.2 in the 3D graph by

keeping the y parameter constant. By keeping the time

parameter constant, the approximate and accurate results are

shown in Figure 2 respectively, for problem 3.2. In Figure 3, the

absolute error is shown by a 3D plot by the variation of x and y

parameters while time is kept constant. A comparison for the

variation of the fractional value β is shown by 2D plots for

Example 3.2 which shows the consistency of the method by

agreeing to the amount of β tactics to the standard amount 1 of

a differential equation; the approximated result converges to the

accurate solution of the problem. Similarly, Figure 4 shows the

approximates and exacted solution by variation of the x and t

components, while Figure 5 shows the 3D graphs of the

approximated solution and exacted solution by keeping the time

parameter constant for problem 3.3. Figure 6 shows the absolute

error of the NTIM result and the exacted solution for problem 2.

Table 1 shows the comparison of data on the computational

amounts of the approximated solution of the PIA and RPS

methods for diverse amounts of β, while in Table 2, the absolute

errors of our suggested methodology have been matched with the

absolute errors of the PIA and RPS methods. Similarly, in Table 3,

the fractional value of NTIM has been compared with the third-

order RPSM and PIA methods. In Table 4, the absolute errors of

NTIM, RPSM, and PIA methods have been compared. The

approximate solution in this article is executed up to second

order for both problems. The accuracy may be increased by

obtaining a higher order of the approximate solution. From

the tables and graphs, it is so far clear that the NTIM reveals

encouraging approximated results as evaluated with other

existing methodologies in the previously published works

Table 5.

5. Conclusion

In the current investigation, the NTIM has been applied

successfully to the FZK equations. Two problems have been

tested. The proposed results reveal that the method handles

the non-linear equations in a good way and provides an

efficient approximate solution to non-linear PDEs. The

numerical values of approximate and exact solutions

through tables show the efficiency and reliability of the

TABLE 2 Comparison of the second-order NTIM with the third-order RPSM and PIA method for diverse amounts of β.

β � 0.67 β � 0.75

x y t PIA [13] R (E)PSM
[13]

N (E)TIM
(E)

PIA [13] R (E)PSM
[13]

N (E)TIM
(E)

0.1 0.1 0.2 5.31854–5 5.31244–5 5.3124653–5 5.32747–5 5.32479–5 5.32479992–5

0.3 5.28631–5 5.28410–5 5.28415918–5 5.29757–5 5.29675–5 5.29678730–5

0.4 5.25777–5 5.25897–5 5.25907412–5 5.27039–5 5.27119–5 5.27125824–5

0.6 0.6 0.2 2.95493–3 2.95185–3 7.56548023–4 2.96356–3 2.96251–3 7.57930078–4

0.3 2.92662–3 2.92709–3 7.53381879–4 2.93717–3 2.93780–3 7.54759291–4

0.4 2.90307–3 2.90522–3 7.50623656–4 2.91448–3 2.91561–3 7.51914369–4

0.9 0.9 0.2 1.068220–2 1.055060–2 1.80363649–3 1.077160–2 1.071430–2 1.80827769–3

0.3 1.044870–2 1.011990–2 1.79302639–3 1.054880–2 1.036950–2 1.79746844–3

0.4 1.027770–2 9.606060–3 1.78401363–3 1.037360–2 9.96743–3 1.78798550–3
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TABLE 4 Comparison of the second-order NTIM with the third-order RPSM and PIA method.

β � 1.0 β � 1.0

x y t PIA sol
[13]

R (E)PSM
sol [13]

N (E)TIM
sol.
(E)

PIA error
[13]

R (E)PSM
error
[13]

N (E)TIM
error
(E)

0.1 0.1 0.2 5.00091–5 5.00091–5 5.00091–5 5.00091–5 5.00091–5 5.00091–5

0.3 5.00090–5 5.00091–5 5.00091–5 5.00090–5 5.00091–5 5.00090–5

0.4 5.00090–5 5.0009–5 5.00091–5 5.00090–5 5.00091–5 5.00090–5

0.6 0.6 0.2 3.02003–4 3.02004–4 1.75397–4 3.02003–4 3.02004–4 3.02003–4

0.3 3.02003–4 3.02004–4 1.75397–4 3.02003–4 3.02004–4 3.02003–4

0.4 3.02003–4 3.02004–4 1.75397–4 3.02003–4 3.02004–4 3.02003–4

0.9 0.9 0.2 4.56780–4 4.5678–4 2.51159–4 4.5678–4 4.56780–4 4.56780–4

0.3 4.56780–4 4.5678–4 2.51159–4 4.56780–4 4.56780–4 4.56780–4

0.4 4.56780–4 4.5678–4 2.51159–4 4.56780–4 4.56780–4 4.56780–4

TABLE 5 Comparison of the second-order NTIM with the third-order RPSM and PIA method.

β � 1.0 β � 1.0

x y t PIA sol
[13]

R (E)PSM
sol [13]

N (E)TIM
sol.
(E)

PIA error
[13]

R (E)PSM
error
[13]

N (E)TIM
error
(E)

0.1 0.1 0.2 5.00091–5 5.00092–5 5.00092–5 4.99592–5 4.99519–8 5.00091–5

0.3 5.00091–5 5.00091–5 5.00091–5 4.99342–5 7.49278–8 5.00091–5

0.4 5.00091–5 5.00091–5 5.00091–5 4.99092–5 9.99037–8 5.00091–5

0.6 0.6 0.2 3.02003–4 3.02004–4 3.02004–4 3.01953–4 5.08987–8 3.02003–4

0.3 3.02003–4 3.02004–4 3.02004–4 3.01927–4 7.63479–8 3.02003–4

0.4 3.02003–4 3.02004–4 3.02004–4 3.01902–4 1.01797–7 3.02003–4

0.9 0.9 0.2 4.56780–4 4.5678–4 4.5678–4 4.56728–4 5.21227–8 4.56780–4

0.3 4.56780–4 4.5678–4 4.5678–4 4.56702–4 7.81839–8 4.56780–4

0.4 4.56780–4 4.5678–4 4.5678–4 4.56676–4 1.04245–7 4.56780–4

TABLE 3 Comparison of the second-order NTIM with the third-order RPSM and PIA method.

β � 1.0 β � 1.0

x y t PIA sol
[13]

R (E)PSM
sol [13]

N (E)TIM
sol.
(E)

PIA error
[13]

R (E)PSM
error
[13]

N (E)TIM
error
(E)

0.1 0.1 0.2 5.35536–5 5.355360–5 5.3553572–5 3.85217–7 3.852170–7 3.8520–7

0.3 5.33082–5 5.330820–5 5.3308223–5 5.75911–7 5.759120–7 5.75853–7

0.4 5.30641–5 5.306410–5 5.3064197–5 7.65350–7 7.653520–7 7.65214–7

0.6 0.6 0.2 2.98987–3 2.989870–3 2.9900091–3 4.66337–5 4.66389–5 4.64983–5

0.3 2.96717–3 2.96715–3 2.9676221–3 6.86056–5 6.86314–5 6.81568–5

0.4 2.94523–3 2.94515–3 2.9462709–3 8.98243–5 8.99046–5 8.87798–5

0.9 0.9 0.2 1.10248–2 1.10227–2 1.1041339–2 5.12131–4 5.14241–4 4.95639–4

0.3 1.07964–2 1.07861–2 1.0848876–2 7.38186–4 7.48450–4 6.85665–4

0.4 1.05742–2 1.05429–2 1.0691791–2 9.57942–4 9.89139–4 8.40313–4
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method. Also, the graphs verify the efficiency of the proposed

method through 3D and 2D plots. The fractional

approximation through 2D graphs also shows the

consistency of the method by approaching the fractional

value β of the equation to the conventional amount 1, so

an approximate result converges to the exacted result of the

problems. This strategy is also effective when the answer to the

integer order model is unknown. As a result, we decided that

the current technique is trustworthy and effective in obtaining

estimated solutions for various classes of linear and non-linear

fractional formulations of ordinary and partial differential

equations.
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