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The steel plant integrated energy system (SPIES) is an important form in the steel

industry. Improving the utilization efficiency of steam, electricity, coal gas and

other energy flows is of great significance for both economic and

environmental benefits. In this paper, a SPIES scheduling model is

established according to the operation characteristics of coal gas holders,

boilers and other equipment in steel plants. Meanwhile, to cope with the

uncertainty of byproduct coal gas, this paper adopts an imprecise Dirichlet

model (IDM) to construct a fuzzy set containing multisource coal gas

production information. Then, according to duality theory and the big-M

method, the original distributed robust optimization (DRO) model is

transformed into a traditional mixed integer linear programming (MILP)

model, which is solved by the column-and-constraint generation (CC&G)

algorithm. Finally, a real steel production system is given in a case study.

Case study illustrate that compared with the traditional robust method, the

method proposed in this paper for a SPIES can effectively reduce the

conservatism of the scheduling decision. Numerical simulation show that

the proposed method can reduce total cost by 55,307.1¥, accounting for

1.91% of the total cost compared with robust optimization method and save

1,326.94 s of computational time compared with the stochastic optimization

method, thus reaching balance between conservatism and computational

efficiency.
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1 Introduction

With the wide application of renewable energy power generation technologies,

integrated energy systems (IESs) is of great significance for improving energy

efficiency, realizing the complementary and coupling operation between various

energy flows, thus peaking carbon dioxide emissions and achieving carbon neutrality
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(Wang et al., 2022)- (Clegg and Mancarella, 2016). However, the

uncertainty and complex coupling relationship between multiple

energy sources make it difficult to solve IESs optimal scheduling

problem quickly and accurately. Therefore, it is of realistic

importance to study the accurate and intelligent optimal

scheduling decision-making method of IESs (Mo et al., 2022).

In this backdrop, some scholars have carried out research

around IESs. Most of existing research objects of IESs mainly

focus on buildings (Hannan et al., 2018), parks (Chen et al.,

2020) and large communities (Ma et al., 2019). But large

industrial loads are often ignored. Among them, steel industry in

China has developed very quickly, along with the durative and

steady growth of the national economy. Compared with the above

objects, steel plants have more diversified production modes and

intensive energy consumption. In the industrial process of iron and

steel production, a large number of secondary energy source can be

reused, including blast furnace gas (BFG), coke oven gas (COG),

Linz Donawitz process gas (LDG) and steam, accounting for

approximately 50%–60% of the total energy consumption of steel

plants, which indicate great utilization potential (Li et al., 2021)- (He

et al., 2015). Therefore, establishing an IES model for steel plant and

scheduling the multi-coupling energy flow in the plant will

significantly improve the economic and environmental benefits.

Current researches on the energy management for steel plants

mainly focus on single energy flow scheduling. From the

perspective of coal gas scheduling, reference (Xia et al., 2016)

uses a multi-step optimization algorithm to solve the coal gas

scheduling problem in steel plants, which effectively improves the

utilization efficiency of coal gas; (Wang et al., 2013) proposed a

hierarchical scheduling method for coal gas in energy-intensive

enterprises and solved it online in real time using the simplex

method. On the other hand, some literature analyzed the electrical

power consumption behavior of steel plant. In (Jin et al., 2017)-

(Chen et al., 2015), considering the production privacy of enterprises

and the uncertainty of renewable energy output, steel plant can be

seen as flexible and adjustable resources in the area of demand

response. Through the electricity price incentive signal, they are

guided to participate in the consumption of new energy and peak

shaving ancillary services, effectively alleviating the pressure on the

power supply and demand of the regional power system.

Meanwhile, energy management mathematical model in the

power system or industrial production processes was complex,

especially including some unilinear parts or integer variables. To

overcome this issue, some intelligence methods have been applied in

energy system, for example, tree-seed algorithm proposed in (Kiran

and Yunusova, 2022) was investigated on the long-term energy

estimation model of Turkey and (Dehghani et al., 2019) illustrated

the current status of each biofuel technologies and demonstrating

each trend with using the technology life cycle, which avoid

unreasonable energy production and inefficient energy use.

However, the abovementioned strategies do not consider the

uncertainty of byproduct coal gas. In fact, the uncertainty of the

coal gas production in steel plants mainly comes from the

following two aspects: 1) In the process of coal gas generation,

storage and transmission, coal gas needs to go through the pipe

network, gas holder, etc. There are many pieces of measuring

equipment installed in each link, causing inevitable measurement

errors between the general meter and submeter, even as high as

10%–20% (Xuan et al., 2020). 2) The production of coal gas is

closely related to the production equipment status. Affected by

the adjustment of the production and maintenance plan, the

production of coal gas will fluctuate accordingly. In addition, the

production of gas is also affected by the external environment,

such as pressure and temperature, which all lead to uncertainty of

the gas production (Sun et al., 2019). If the coal gas production

uncertainty is ignored, it will lead to an increase in coal gas

discharge loss and a reduction in the economic benefits, which is

not conducive to the long-term development of steel plants.

Therefore, it is necessary to consider the uncertainty of

byproduct coal gas when formulating a steel plant integrated

energy system (SPIES) scheduling strategy. The mature methods

dealing with uncertainty mainly include robust optimization

(RO) (Kamwa et al., 2000)- (Niu et al., 2019) and stochastic

optimization (SO) (Liu et al., 2016)- (Garcia-Torres et al., 2021).

RO can ensure that a feasible solution exists under the worst

scenario, but the final solution tends to be conservative; SO

obtains the optimization strategy by obtaining the probability

distribution of uncertain parameters. SO can satisfy the existence

of feasible solutions under some scenarios. Compared with RO,

SO reduces the conservatism of feasible solutions and improves

the economy of the scheduling scheme. However, in practice, it is

difficult to obtain the probability distribution of uncertainty

directly, and scenario selection increases the computational

complexity. DRO combines the advantages of RO and SO and

achieves a balance between robustness and economy, and it has

been widely used in the optimal dispatching of IESs (Huang et al.,

2022)- (Zhou et al., 2020). By constructing fuzzy sets, DRO only

needs partial probability distribution information for uncertain

variables. According to the different methods for constructing

fuzzy sets, DRO can be divided into moment uncertainty-based

DRO models and probability distance-based DRO models. The

former usually uses expectation and covariance to describe the

distribution characteristics of samples, and the constructed

uncertain probability distribution confidence set cannot

converge to the real distribution, resulting in the accuracy

deviation of the final result (Wang et al., 2016); the latter,

represented by Kullback-Leibler divergence and Wasserstein

probability distance, uses normal form distance to describe

the difference size of elements in the set, and the result is still

conservative (Chen et al., 2018).

To overcome these issues and make full use of byproduct coal

gas, a DRO scheduling method considering the byproduct coal

gas uncertainty is proposed in this paper. The contributions of

this paper can be summarized as follow: 1). Different from

previous studies that only focus on single energy flow in the

steel plant, this paper establishes a detailed SPIES mathematical
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model, which fully considers the coupling relationship between

various energy flows, thus avoiding unreasonable energy

production and ineffectual energy use; 2). In this paper, a

distributed robust optimization model of SPIES is given,

which takes into account the multiple production

uncertainties of coal gas. Compared with the traditional RO

and SO methods, this paper uses the imprecise Dirichlet model

(IDM) to construct fuzzy set, which not only ensures the safe

operation of the system, but also reduces the conservatism of

scheduling decisions.

The remainder of the paper is organized as follows. First, the

SPIES operation framework is given. Then, an IDM method is

adopted to construct the cumulative distribution function (CDF)

of coal gas production, and the fuzzy set is mapped to the upper

and lower bounds of the uncertainty model. Next, a two-stage

DRO scheduling model for a SPIES is established. The initial

model with bilinear terms is transformed into MILP form using

dual theory and the big-M method, and the CC&G algorithm is

introduced to improve the solution efficiency. Finally, the

feasibility of the proposed method is verified by an actual steel

plant.

2 Steel plant integrated energy
system operation framework

Figure 1 shows the SPIES operation framework, which is

composed of a gas system, steam system and power system.

Among them, the gas system mainly includes a blast furnace,

coke oven, converter and coal gas holder. The gas holder is

responsible for the storage and release of coal gas. When the gas

production exceeds a certain threshold, to ensure the pressure

safety of the pipe and maintain the dynamic balance of the coal

gas, the excess gas should be released. The steam system mainly

produces enough steam with a certain enthalpy and pressure to

meet the steam demand of vaporization cooling, steel rolling and

other production links. The steel plant usually owns a self-

serviced power plant, which can provide power for plant and

load in the industrial park distribution network. Meanwhile, steel

plant can adjust power generation according to electricity price

information, production demand and tie line power constraints,

and surplus power can be sold to the main network to obtain a

profit.

Meanwhile, considering that the mathematical model of

SPIES is extremely complex, a detailed nomenclature is

provided below to help the readers gain a better understanding.

3 Uncertainty modeling of byproduct
coal gas

In this paper, an imprecise Dirichlet model (IDM) is used to

construct fuzzy sets for DRO. Compared with the deterministic

Dirichlet model, the IDM adopts a set of prior density functions

for parameter estimation, which overcomes the problem of

parameter estimation deviation caused by the traditional

Dirichlet model using a single density function under limited

data samples. The specific principle is briefly described as follows.

FIGURE 1
SPIES operation framework.
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For event ξ, there are n occurrence states. The state set and

corresponding state probability set are constructed as shown in

Eqs. 1,2, respectively.

Ωξ : � { ξ � ξ1, ξ2, . . . , ξi, i � 1, 2, . . . , n } (1)
Ωθ: � { θ � θ1, θ2, . . . , θi, i � 1, 2, . . . , n } (2)

According to the principle of Bayesian statistics, the prior

Dirichlet probability density function of event state probability

can be written in the form shown in Eq. 3.

f(θ) � Γ(s)∏n
i�1

θs·ri−1i /∏n
i�1

Γ(s · ri), ri ∈ Ωr (3)

Ωr: � { 0≤ ri ≤ 1, ∑n
i�1
ri � 1} (4)

After obtaining the observed value of the Mth sample, the

posterior Dirichlet probability density function about the

event state probability is derived, as shown as follows in

Eq. 5:

f(θ|M) � Γ(s +M)∏n
i�1

θmi+s·ri−1
i /∏n

i�1
Γ(s · ri +mi), ri ∈ Ωr, mi ∈ Ωm (5)

Ωm: � { 0≤mi ≤M, ∑n
i�1
mi � M} (6)

In (5), mi represents the occurrence number of the event state. If

the value of ri is known, the posterior occurrence probability of

the event state ξi can be obtained from Eq. 7 as follows:

E(θi) � mi + ri
s +M

, ri ∈ Ωr (7)

Obviously, the maximum and minimum values of E(θi)
can be obtained when the values of ri are 0 and 1, respectively,

as shown in Eq. 8. The total number of samples M is in the

denominator position. Therefore, when the value of M is

larger, the range of the IDM interval is narrower, i.e., the

precision of the obtained results is higher.

E(θi) ∈ [E(θi)min, E(θi)max] � [ mi

s +M
,
mi + 1
s +M

] (8)

When the system operators give the confidence γ, the confidence

interval can be obtained from Eq. 9 (Walley, 1996).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

θi � 0, �θi � G−1(1 + γ

2
), mi � 0

θi � H−1(1 − γ

2
), �θi � G−1(1 + γ

2
), 0<mi < n

θi � H−1(1 − γ

2
), �θi � 1, mi � n

(9)

Here, H represents the cumulative distribution function

(CDF) of the beta distribution with α � mi, β � s + n −mi; G

is the CDF of the beta distribution with α � s +mi, β � s −mi.

Then, a fuzzy set can be constructed, as shown as follows in

Eq. 10:

ΩΡ: � {P ∈ P0(∣∣∣∣∣ξ low, ξupp∣∣∣∣∣)∣∣∣∣P[X≤ ξ i] ∈ [θi, �θ]} (10)

Here, P0(|ξlow, ξupp|) represents the set of all probability densities
within the estimated range |ξlow, ξupp| of the true value of the

random variable. Meanwhile, the upper bound ξupp and lower

bound ξlow of the uncertain parameters can be obtained by the

given confidence level and fuzzy set.

Ωv: �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

~vBt
~vCt
~vLt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

~vBt � vBt + ΔvBt zB+t − ΔvBt zB−t ,∑T
t�1
(zB+t + zB−t )≤ }B

~vCt � vCt + ΔvCt zC+t − ΔvCt zC−t ,∑T
t�1
(zC+t + zC−t )≤ }C

~vLt � vLt + ΔvLt zL+t − ΔvLt zL−t ,∑T
t�1
(zL+t + zL−t )≤ }L

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(11)

The uncertain variables considered in this paper are the

production of BFG, COG and LDG. The gas production fuzzy

set is constructed by using historical data samples and the IDM

method mentioned above, and then the gas production uncertainty

interval can be determined by the given confidence level. After

obtaining the interval, the gas production uncertainty set is

constructed according to the box model shown in Eq. 11.In Eq.

11, vBt represents the mean value of BFG production, which can be

calculated according to vBt � (�vBt + vBt )/2; ΔvBt can be calculated

according to ΔvBt � (�vBt − vBt )/2; zB+t , zB−t are 0–1 variables that are

introduced to normalize the expression of uncertain parameters.

When the value of ϒ is 0, it means that operators ignore the

existence of uncertainty, and the initial optimization problem

becomes a deterministic optimization problem; as the value of ϒ
increases, the conservatism of the DRO problem becomes stronger.

The definitions of the uncertainty parameters of COG and LDG

production are similar to those of BFG production and will not be

described in detail here.

4 two-stage distributed robust
optimization scheduling of a Steel
plant integrated energy system
considering byproduct gas

As shown in Figure 2, the SPIES DRO scheduling framework

considering of byproduct coal gas uncertainty ismainly composed of

two parts. The first part is based on the day-ahead scheduling stage,

with the goal of minimizing the total scheduling cost. The second

part is the real-time rescheduling stage, in which units and

equipment can be readjusted to cope with the gas production

uncertainty. It should be noted that the SPIES needs to send the

power purchase and sale information to the upper power grid in the

day-ahead stage, i.e., the electricity sale and buy quantity are

determined in the day-ahead stage and remain unchanged in the

real-time stage. Therefore, the SPIES DROmathematical model can

be written in the general form shown in Eq. 12.
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min
x
[Cda(x)] +max

v
min
y

Cadj(v, y)
s.t.{ Hda(x)≤ 0

Hadj(v, y)≤ 0

(12)

4.1 Description of the day-ahead
scheduling model

The objective function of the day-ahead scheduling model is

shown in Eq. 13.

Cday � Cost(G) + Cost(F) + Cost(P) + Cost(S) + Cost(R)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cost(G) �∑T
t�1
f(GBFG

t ) +∑T
t�1
f(GCOG

t ) +∑T
t�1
f(GLDG

t )
Cost(F) � Cgas

COG∑T
t�1
∑I
i�1
FCOG
i,t + Cgas

BFG∑T
t�1
∑I
i�1
FBFG
i,t + Cgas

LDG∑T
t�1
∑I
i�1
FLDG
i,t + Ccoal∑T

t�1
Fcoal,t

Cost(P) �∑T
t�1
Cele

buy,tPbuy,t −∑T
t�1
Cele

sell,tPsell,t

Cost(S) � CS1∑T
t�1
∑I
i�1
S1i,t + CS2∑T

t�1
∑I
i�1
S2i,t

Cost(R) � CR
S1∑T

t�1
RS1
t + CR

S2∑T
t�1
RS2
t + CR

P∑T
t�1
RP
t

(13)

Here, Cost(G) is the position adjustment cost of the gas

holder; Cost(F) is the total combustion cost of gas and coal;

Cost(P) is the cost of purchasing and selling electricity; Cost(S) is

the production cost of steam; Cost(R) is the compensation cost of

steam and electricity demand response. Steam S1 represents high-

pressure steam with a pressure value of 2.5–3.5 Mpa and steam S2
represents medium-pressure steam with pressure value of

0.8–1.3 Mpa.

It should be noted that the position adjustment of the gas

holder can effectively improve the pressure distribution of the

pipe network and plays an important role in ensuring the stable

supply of gas. However, due to the existence of adjustment

capacity and safety constraints, the position offset from the

central position should not be too large. Therefore, this paper

describes the relationship between the adjustment cost and

position offset of a coal gas holder by the piecewise

linearization method. As shown in Figure 3, the gas holder

position is divided into five levels, representing the lowest

position (G−−), lower position (G−), middle position (G0),
higher position (G+) and highest position (G++) from left to

right.When the adjustment range of the gas holder is between the

higher and lower position, i.e., the blue area in Figure 3, the unit

adjustment cost is low, and the maximum adjustment cost of this

part is M1; when it is located between the lower and lowest

position or the higher and highest position, i.e., the yellow areas

in Figure 3, due to the large pressure of the pipe network, it may

lead to potential risks in the operation of the gas system, so the

unit adjustment cost is high, and the maximum total adjustment

cost is M2. Detailed information about the division of the gas

holder and unit adjustment cost is given in the Tables 1,2.

In the day-ahead stage, the production constraints and some

other physical constraints of boilers Eqs. 14–19 are mainly

considered.

{ S1,min
i,boi ≤ Sboi,1i,t ≤ S1,max

i,boi

S2,min
i,boi ≤ Sboi,2i,t ≤ S2,max

i,boi

(14)

{ΔS1,min
i,boi ≤ Sboi,1i,t − Sboi,1i,t−1 ≤ΔS1,max

i,boi

ΔS2,min
i,boi ≤ Sboi,2i,t − Sboi,2i,t−1 ≤ΔS2,max

i,boi

(15)

FIGURE 2
Schematic diagram of DRO scheduling.
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⎧⎪⎪⎨⎪⎪⎩
FBFG,min
i,boi ≤FBFG,boi

i,t ≤FBFG,max
i,boi

FCOG,min
i,boi ≤FCOG,boi

i,t ≤FCOG,max
i,boi

FLDG,min
i,boi ≤FLDG,boi

i,t ≤FLDG,max
i,boi

(16)

⎧⎪⎪⎨⎪⎪⎩
ΔFBFG,min

i,boi ≤FBFG,boi
i,t − FBFG,boi

i,t−1 ≤ΔFBFG,max
i,boi

ΔFCOG,min
i,boi ≤FCOG,boi

i,t − FCOG,boi
i,t−1 ≤ΔFCOG,max

i,boi

ΔFLDG,min
i,boi ≤FLDG,boi

i,t − FLDG,boi
i,t−1 ≤ΔFLDG,max

i,boi

(17)

FCOG,boi
i,t hCOG + FLDG,boi

i,t hLDG + FBFG,boil
i,t hBFG � Sboi,1i,t hS1

ηboi,S1i,t

+ Sboi,2i,t hS2
ηboi,S2i,t

(18)
FCOG,boi
i,t hCOG + FLDG,boi

i,t hLDG + FBFG,boi
i,t hBFG ≥ hboi,Fi,g (FCOG,boi

i,t

+ FLDG,boi
i,t + FBFG,boi

i,t ) (19)

Here, Eq. 14 represents the steam production constraint; Eq.

15 represents the climbing constraint of the boilers; Eqs 16, 17

represent the gas consumption and regulation constraints of each

boiler; Eq. 18 represents the energy balance constraint and Eq. 19

represents the calorific value constraint of mixed coal gas.

For combined heat and power (CHP) units, the day ahead

scheduling constraints include the following:

{ECHP
t ≥min{k0HCHP

t + k1, E
CHP,min − k2H

CHP
t }

ECHP
t ≤ECHP,max − k3H

CHP
t

(20)

{ S1,min
CHP ≤ SCHP,1

t ≤ S1,max
CHP

S2,min
CHP ≤ SCHP,2

t ≤ S2,max
CHP

(21)

ΔECHP,min ≤ECHP
t − ECHP

t−1 ≤ΔECHP,max (22)

{ΔS1,min
CHP ≤ SCHP,1

t − SCHP,1
t−1 ≤ΔS1,max

CHP

ΔS2,min
CHP ≤ SCHP,2

t − SCHP,2
t−1 ≤ΔS2,max

CHP

(23)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
FCOG,min
CHP ≤FCOG,CHP

t ≤FCOG,max
CHP

FLDG,min
CHP ≤FLDG,CHP

t ≤FLDG,max
CHP

FBFG,min
CHP ≤FBFG,CHP

t ≤FBFG,max
CHP

Fcoal,min
CHP ≤Fcoal,CHP

t ≤Fcoal,max
CHP

(24)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ΔFBFG,min

CHP ≤FBFG,CHP
t − FBFG,CHP

t−1 ≤ΔFBFG,max
CHP

ΔFCOG,min
CHP ≤FCOG,CHP

t − FCOG,CHP
t−1 ≤ΔFCOG,max

CHP

ΔFLDG,min
CHP ≤FLDG,CHP

t − FLDG,CHP
t−1 ≤ΔFLDG,max

CHP

ΔFcoal,min
CHP ≤Fcoal,CHP

t − Fcoal,CHP
t−1 ≤ΔFcoal,max

CHP

(25)

FCOG,CHP
t hCOG + FLDG,CHP

t hLDG + FBFG,CHP
t hBFG + Fcoal,thcoal

� SCHP,1
t hS1
ηCHP,S1

+ SCHP,2
t hS2
ηCHP,S2

+ 3600ECHP
t (26)

FCOG,CHP
t hCOG + FLDG,CHP

t hLDG + FBFG,CHP
t hBFG ≥ hCHP,F

g (FCOG,CHP
t

+ FLDG,CHP
t + FBFG,CHP

t )
(27)

Eq. 20 describes the thermal electrical characteristic of the CHP

units. Eqs 21,22 represent the steam production capacity

constraints and power ramping constraints; Eq. 23 represents

the generation steam regulation constraint; Eqs 24,25 represent

the regulation constraints of gas and coal combustion,

respectively; Eq. 26 represents the energy balance constraint;

and Eq. 27 represents the minimum calorific value constraint for

the blended fuel.

As mentioned above, the SPIES power generation not only

provides the power needed by the equipment and industrial

processes in the plant but also needs to supply power to the

distribution network of the external park. To simplify the

distribution power flow calculation process, this paper adopts

the second-order cone relaxationmethod shown as follows in Eqs

28–32:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pj � ∑

k∈Θj

Pjk − ∑
i∈Ψj

(Pij − ~Iijrij) + gj
~Vj

qj � ∑
k∈Θj

Qjk − ∑
i∈Ψj

(Qij − ~Iijxij) + bj ~Vj

(28)

~Vj � ~Vi − 2(Pijrij + Qijxij) + ~Iij(r2ij + x2
ij) (29)�����������

2Pij

2Qij
~Iij − ~Vj

�����������
2

≤ ~Iij + ~Vj (30)

I2ij ≤ ~Iij ≤ �I
2
ij (31)

V2
j ≤ ~Vj ≤ �V

2
j (32)

In addition, the dynamic balance constraints of various

energy flows need to be considered, including Eqs 33–36:

FIGURE 3
Schematic diagram of coal gas holder adjustment cost.

TABLE 1 Position division of the coal gas holder.

Object G++ G+ G0 G− G−−

BFG holder/km3 260 200 150 100 50

COG holder/km3 130 100 80 60 40

LDG holder/km3 70 60 40 20 10

TABLE 2 Unit adjustment cost coefficient of the coal gas holder.

Object G+ − G++ G0 − G+ G− − G0 G−− − G−

BFG holder/km3 40 20 20 40

COG holder/km3 35 25 25 35

LDG holder/km3 20 15 15 20
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ftotal
BFG,t + GBFG

t−1 � FBFG,CHP
t +∑I

i�1
FBFG,boi
i,t + GBFG

t +DBFG
t

Ftotal
COG,t + GCOG

t−1 � FCOG,CHP
t +∑I

i�1
FCOG,boi
i,t + GCOG

t +DCOG
t

Ftotal
LDG,t + GLDG

t−1 � FLDG,CHP
t +∑I

i�1
FLDG,boi
i,t + GLDG

t +DLDG
t

(33)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
S1,totalt − RS1

t � SCHP,1
t +∑I

i�1
Sboi,1i,t

S2,totalt − RS2
t � SCHP,2

t +∑I
i�1
Sboi,2i,t

(34)

b1Pbuy,t + ECHP
t � b2Psell,t + Etotal

t + Pd,t − RP
t (35)

b1 + b2 ≤ 1, b1, b2 ∈ {0, 1} (36)

Eq. 33 represents the dynamic production and consumption

balance of the three types of coal gas; Eq. 34 represents the

dynamic balance of steam; Eq. 35 represents the power balance;

Eq. 36 represents the power purchase and sale status constraint,

i.e., the SPIES cannot purchase and sell power at the same time.

4.2 Description of the real-time
rescheduling model

To reduce the discharge loss of byproduct coal gas caused by

uncertainty in the real-time stage, it is necessary to make real-

time adjustments on the basis of day-ahead scheduling. The

objective function of this stage is given in Eq. 37.

Cadj � Cos tadj(G) + Cos tadj(F) + Cos tadj(D) + Cos tadj(R)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cos tadj(G) �∑T
t�1
f(ΔGBFG

t ) +∑T
t�1
f(ΔGCOG

t ) +∑T
t�1
f(ΔGLDG

t )
Cos tadj(F) � Cadj

BFG
⎛⎝∑I

i�1
∑T
t�1
ΔFBFG,boi

i,t + ΔFBFG,CHP
t

⎞⎠ + Cadj
COG
⎛⎝∑I

i�1
∑T
t�1
ΔFCOG,boi

i,t + ΔFCOG,CHP
t

⎞⎠
+Cadj

LDG
⎛⎝∑I

i�1
∑T
t�1
ΔFLDG,CHP

i,t + ΔFLDG,CHP
t

⎞⎠ + Cadj
coal∑T

t�1
ΔFcoal,t

Cos tadj(D) � Cpun
BFG∑T

t�1
Dadj,BFG

t + Cpun
COG∑T

t�1
Dadj,COG

t + Cpun
LDG∑T

t�1
Dadj,LDG

t

Cos tadj(R) � Cadj,R
S1 ∑T

t�1
Radj,S1
t + Cadj,R

S2 ∑T
t�1
Radj,S2
t + Cadj,R

P ∑T
t�1
Radj,P
t

(37)

Objective Eq. 37 minimizes the sum of the depreciation cost

of the units Costadj(F), the penalty cost of gas discharge loss

Costadj(D), the readjustment cost of the gas holder Costadj(G) and

the compensation cost for the demand response of the steam/

electric load Costadj(R).

y � f(xc): � xc ± Δxadj

xc ∈ {FCOG,boi
i,t , FLDG,boi

i,t , FBFG,boi
i,t , FCOG,CHP

t , FLDG,CHP
t ,

FBFG,CHP
t , Fcoal,CHP

t , GCOG
t , GLDG

t , GBFG
t

} (38)

The constraints in the real-time rescheduling stage are

similar to those in the day-ahead scheduling stage, mainly

including steam/power production constraints, ramping

constraints, energy balance constraints of controllable units,

etc. The difference is that, as shown in Eq. 38, the value of

the decision variable y in the real-time rescheduling stage should

be the sum of the decision variable xc in the day-ahead stage and

the adjustment amount Δxadj in the real-time stage.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

~vCt + GCOG
t−1 ± ΔGCOG

t−1 � FCOG,CHP
t ± ΔFCOG,CHP

t +∑I
i�1
FCOG,boi
i,t

±∑I
i�1
ΔFCOG,boi

i,t + GCOG
t ± ΔGCOG

t +DCOG
t ± ΔDCOG

t

~vLt + GLDG
t−1 ± ΔGLDG

t−1 � FLDG,CHP
t ± ΔFLDG,CHP

t +∑I
i�1
FLDG,boi
i,t

±∑I
i�1
ΔFLDG,boi

i,t + GLDG
t ± ΔGLDG

t +DLDG
t ± ΔDLDG

t

~vBt + GBFG
t−1 ± ΔGBFG

t−1 � FBFG,CHP
t ± ΔFBFG,CHP

t +∑I
i�1
FBFG,boi
i,t

±∑I
i�1
ΔFBFG,boi

i,t + GBFG
t ± ΔGBFG

t +DBFG
t ± ΔDBFG

t

~vBt , ~v
C
t , ~v

L
t ∈ Ωv

(39)
On the other hand, according to the uncertainty description

method in Section 3, the IDM method and uncertainty interval

transformation are adopted to modify the coal gas production

and consumption dynamic balance constraint Eq. 33 into the

form shown in Eq. 39.

5 Solution algorithm

Solving the full problem of two-stage DRO directly is very

difficult. In order to solve the practical large scale problem,

CC&G algorithm is introduced. For the convenience of

explanation, the form shown in Eq. 12 is extended to a

general DRO model with a coefficient matrix, as shown as

follows in Eq. 40:

min
x
(cTx) +max

v
min
y
(dTy + eTv)

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ax � H
Bx≤ I

Cx + Dy � J
Ex + Fy≤K
Gy≤ v

(40)

In (40), c, d and e represent the coefficient matrix in the

objective function; A, B, C, D, E, F and G represent the

coefficients in the constraints; and H, I, J and K represent the

constant terms of the corresponding constraints, and the specific

values can be obtained by Eqs 13–39. Among them, A, C and E
represent the variable coefficient matrix of equality constraints,

andH and J represent the constant matrix of equality constraints;

B, E, F, and G represent the variable coefficient matrix of equality

constraints, and I, K represent the constant matrix of inequality

constraints. The determination of each matrix needs to consider

the types of variables contained in the constraints.
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Obviously, the variables in the DRO model Eq. 40 are

mutually coupled and cannot be solved directly. Therefore,

the CC&G algorithm (Zhou et al., 2020) is adopted in this

paper to decompose the original problem Eq. 40 into a master

problem (MP) and a slave problem (SP), i.e., Eqs 41,42.

min
x
(cTx) + ω

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ω≥ dTyi+1 + eTvi+1
Ax � H
Bx≤ I
Cx + Dy � J
Ex + Fy≤K
Gy≤ v

(41)

max
v

min
y
(dTy + eTv)

s.t.
⎧⎪⎨⎪⎩

Cx + Dy � J
Ex + Fy≤K

Gy≤ v

(42)

In 41) and (42), ω represents the returned SP solution. MP is

essentially a simple second-order cone programming problem

with integer variables, which can be solved directly by mature

commercial software such as CPLEX or GUROBI. The max-min

problem of SP is transformed into a general max problem

through duality theory. The specific mathematical model is

shown as follows in Eq. 43:

max vTλ + JTα − xTCTα + KTβ − xTETβ

s.t.
⎧⎪⎨⎪⎩

DTα + FTβ + GTγ � d
γ≤ 0, β≤ 0
λ � e + γ

(43)

Eq. 43 contains the bilinear term vTλ. In this paper, the

big-M method is used to linearize the bilinear term. The

bilinear term can be written in the form Eq. 44, and a new

constraint Eq. 45 needs to be added into the SP to ensure

equivalence before and after conversion. It should be noted

that the effect of the big-M method depends on the value of M.

M cannot be too small or too large. If the value of M is small, it

may lead to infeasible solutions, and if the value of M is too

large, it may lead to constraint failure. In this paper, the value

of M is set as 1,000, which can ensure that the optimization

problem can find a feasible solution and converge successfully.

Also, some other methods such as McCormick envelope

method can achieve more accurate solutions, which will be

used in future researches.

�vλ+ + v λ− + vpre(1 − λ+ − λ−) (44)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−M(1 − z+i ) + λi ≤ λ+i ≤M(1 − z+i ) + λi
−M(1 − z−i ) + λi ≤ λ−i ≤M(1 − z−i ) + λi
−Mz+i ≤ λ+i ≤Mz+i ,−Mz−i ≤ λ

−
i ≤Mz−i

z+i + z−i ≤ 1,∑T
i�1
(z+t + z−t )≤ }

z+i , z
−
i ∈ {0, 1}

(45)

After the above transformation, the SP is transformed into a

MILP model. Finally, through the iterative solution of the MP

and SP, the final results can be obtained, and the flow chart of the

CC&G algorithm is given in Figure 4 below.

6 Case study

In this paper, a real steel plant is used for a case study, and the

IEEE-33 node test system is integrated as the park distribution

network. The detailed system topology is shown in Figure 5. The

scheduling cycle is 24 h. Detailed information about the

parameters of each unit, coal gas production prediction curve,

power/steam demand curve and time-of-use (TOU) price are

given in the Tables 1–5; Supplementary Material S1. The

conservative parameter of uncertainty } selected in this

paper is 8. The test case is carried out by a desktop computer

with MATLAB 2016a and the GUROBI solver installed. The

computer is configured with a Win-10 Pro system, Intel i5-

7300HQ and 8G memory.

6.1 Analysis of the scheduling results

Figure 6 shows the operation state of each piece of equipment

under the day-ahead scheduling stage. In the SPIES, the CHP

unit is mainly responsible for steam production and power

supply, so its BFG and COG consumption amounts are the

largest. The LDG and coal consumption of the CHP unit are

complementary because the cost of LDG is lower than the cost of

purchased coal, i.e., when LDG production is high, the CHP unit

reduces coal consumption to make profits. Similarly, when the

FIGURE 4
Flow chart of the CC&G algorithm.
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production of LDG is low, the purchased coal is used to guarantee

the production demand. Figure 6 1) shows the consumption of

BFG. BFG consumption of 130 t boiler and start-up boiler

changes with coal gas production fluctuation. Comparing the

BFG and COG consumption of the 130 t boiler in Figures 6A,B, it

can be found that their consumption basically shows a

complementary trend to achieve the efficient utilization of

coal gas. Obviously, CHP unit consumes the most BFG and

COG, and the consumption remains at a stable level for most of

the time. This is because the production task of CHP unit is

heavy, and it is necessary to take into account both power

production and steam production, which need to consume a

great amount of coal gas. It can also be seen from Figure 6D that

the gas holder position is basically maintained near the central

gas holder position G0 to avoid exceeding the highest and lowest

limits, this can reduce the adjustment cost of gas holder position

at this stage. Meanwhile, when the byproduct coal gas production

fluctuates greatly, the gas holder position can be adjusted to

ensure the safety of the pipe network.

Affected by the production state of the blast furnace, coke

oven and converter and themeasurement error of the monitoring

equipment, there is a certain difference between the actual gas

production and predicted gas production. Under the uncertainty

of byproduct coal gas, the operation status of each piece of

equipment needs to be adjusted in the real-time rescheduling

stage. The specific results of this stage are shown in Figure 7.

Figure 7A shows the adjustment of BFG. Compared with the

other two types of coal gas, BFG has the maximum yield, so its

adjustment amount in the real-time stage is also the largest.

Figure 7B and Figure 7C show that a large regulation fluctuation

occurred at 0:00–2:00 for controllable units that consume COG

and LDG. This is mainly because during this period of time, the

production status of the coke oven and that of the converter

change sharply due to the production task adjustment of the next

day, resulting in large fluctuations in the corresponding

byproduct coal gas production. As shown in Figure 7D, at the

beginning and end of the day, the adjustment range of the COG

gas holder position and that of the LDG gas holder position are

also large to reduce the negative impact of production fluctuation

and coordinate controllable units to ensure gas supply and

system safety.

The SPIES also carries the burden of responsibility to meet

the power demand of the park distribution network. Figure 8

shows the power supply information from the SPIES to the park

distribution network and the power sales information to the

upper power grid. It should be noted that the maximum amount

of electricity provided to the park distribution network during

FIGURE 5
The topology of SPIES.

TABLE 3 Fuel-steam heat (enthalpy) value information.

Object Value Object Value

hBFG/kJ/m3 3,066 hCOG/kJ/m3 17,960

hLDG/kJ/m3 7,136 hS1/kJ/kg 3,300

hS2/kJ/kg 3,050 hcoal/kJ/kg 21,800

hboi,Fi,g /kJ/m3 3,600

TABLE 4 Controllable unit information.

Object Start-up boiler 130t boiler CHP unit

BFG/km3/h 0–60 0–290 0–360

COG/km3/h 0–10 0–20 0–45

LDG/km3/h — — 0–150

Steam/t/h 0–70 0–260 —

Power/MW — — —

TABLE 5 Cost per unit of production/consumption.

Object Value Object Value

Cpun
BFG/¥/km

3 150 Cpun
COG/¥/km3 450

Cpun
LDG/¥/km

3 200 CS1/¥/t 50

CS2/¥/t 70 Ccoal/¥/t 600

Cgas
BFG/¥/km

3 40 Cgas
COG/¥/km3 350

Cgas
LDG/¥/km

3 80 Cadj
BFG/¥/km3 40

Cadj
COG/¥/km

3 55 Cadj
LDG/¥/km3 80
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8–10 h and 16–20 h is 12.75MW, which is determined by

transmission power constraints of the tie line. Since the unit

power generation cost of the SPIES in this paper is lower than the

unit power purchase cost of the power grid, the power generation

amount of the SPIES can meet its own industrial production

demand and it is always in the state of electricity selling, which is

consistent with the actual situation. In fact, steel plants,

electrolytic aluminum plants and other energy-intensive

enterprises tend to own self-served power plants to reduce the

cost of purchasing power. Meanwhile, excess electric energy will

be sold to the upper power grid. The SPIES will increase

electricity sales during periods when the electricity sales price

is high, such as 8–10 h and 16–20 h, to obtain more profits.

6.2 Results comparison of different
optimization methods

To further illustrate the effectiveness of the proposed

method, other methods, including the deterministic

programming method (DP), RO method, and SO method,

are used for comparison. It should be noted that the value

range of } is [0, 24]. Robust optimization is to find the

feasible solution in the worst scenario, so } = 24 means an

extreme case of robust optimization in the worst scenario. In

FIGURE 6
The operation status of each piece of equipment under day-ahead scheduling. (A): Consumption of BFG (B): Consumption of COG (C):
Consumption of LDG and coal (D): Gas holder position.

FIGURE 7
The operation status of each piece of equipment under real-time rescheduling. (A): Adjustment of BFG (B): Adjustment of COG (C): Adjustment
of LDG and coal (D): Adjustment of the gas holder position.

FIGURE 8
Power supplied to the park distribution network and sold to
the upper power grid.
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this paper, the RO method adopts the uncertainty bounds

construction method in reference (Niu et al., 2019); the SO

method adopts the hierarchical clustering method to process

the initial scenario set according to (Lin et al., 2018) and

chooses 20 typical scenarios for solution. The detailed

calculation results are shown in Table 6. As shown in

Table 6, from the economic perspective, the scheduling cost

of the proposed method is between those of the RO method

and SOmethod. Compared with the ROmethod, the proposed

method reduces the scheduling cost by 55,307.1¥, accounting

for 1.91% of the total cost; in terms of computational

complexity, the proposed method is slightly longer than the

traditional RO method but far better than the SO method and

saves 1,326.94 s of computational time compared to the SO

method. This is because the SO method needs to consider the

corresponding scheduling cost under different scenarios,

which results in a heavy computational burden and makes

it difficult to meet the requirements of online computing for

large-scale systems. In summary, the proposed method can

effectively reduce the conservatism of the traditional RO

method and the computational complexity of SO methods,

thus achieving a balance between computational efficiency

and robustness.

Table 7 shows that the IDM method adopted in this paper

can fully explore the potential of limited historical data

samples. With the increasing number of samples, the cost

of day-ahead scheduling and real-time rescheduling decreases

and gradually approaches the total cost of the SO method.

With the IDM method, it is not necessary to determine or

assume the specific probability distribution type of

uncertainty, especially when the number of samples is

small, and its advantages are more outstanding. When the

number of samples is less than 1,000, the decreasing trend of

the total cost is very obvious; when the number of samples

exceeds 1,000, the decreasing trend of the total cost gradually

slows down, which also shows that this method can meet the

requirement of small sample data analysis and improve the

applicability. On the other hand, under different sample

numbers, the total calculation time does not fluctuate

greatly and basically remains within 100 s, which shows the

efficiency of the CC&G algorithm.

Meanwhile, the value of the conservative parameter }will

also have an impact on the final results. To further analyze its

impact, four cases with different } values are designed. As

shown in Table 8, with the increasing value of }, the total

scheduling cost also increases. The larger the value of } is, the

stronger the robustness of the optimization scheme is, but the

conservatism is also enhanced, resulting in an increase in

economic investment. The smaller the value of } is, the

greater the economic value that can be guaranteed, but the

TABLE 6 Results comparison of different optimization methods.

Method Cost of day-ahead
scheduling/¥

Cost of real-time
rescheduling/¥

Total cost/¥ Calculation time/s

DP 2,581,945.9 355,383.4 2,937,329.3 48.1437

RO 2,648,906.7 241,244.3 2,890,151.0 62.27

SO 2,591,998.0 234,456.2 2,826,454.2 1,415.80

Proposed method 2,601,322.6 233,521.3 2,834,843.9 88.86

TABLE 7 Results comparison of different samples.

Number of samples Cost of day-ahead
scheduling/¥

Cost of real-time
rescheduling/¥

Total cost/¥ Calculation time/s

200 2,601,322.6 233,521.3 2,834,843.9 88.86

300 2,600,686.5 232,784.2 2,833,470.7 92.13

500 2,599,882.6 232,499.5 2,832,382.1 93.17

1,000 2,598,949.3 232,052.0 2,831,001.3 94.52

2,500 2,598,462.4 231,479.6 2,829,942.0 95.36

TABLE 8 Influence analysis of conservatism parameters on the results.

The value of  Total cost/¥ Calculation time/s

6 2,829,542.6 89.97

8 2,834,843.9 88.86

12 2,838,497.0 89.03

16 2,841,733.4 87.40
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amount of gas production data reaching the prediction

boundary is too low to fully cope with the uncertainty and

volatility of coal gas, resulting in low robustness of system

operation. Therefore, decision-makers need to reasonably

select the value of }, comprehensively considering the

economic and robustness levels.

7 Conclusion

Considering the uncertainty of byproduct coal gas

production, a DRO scheduling model for SPIES is established,

including day-ahead scheduling stage and real-time rescheduling

stage. First, the fuzzy set of byproduct coal gas production is

constructed by the IDM method, which is equivalent to the

deterministic interval of production. Then, the CC&G algorithm

is adopted to improve the solving efficiency. Finally, the following

conclusions are drawn through the case study:

(1) The IDM method can accurately describe the uncertainty of

coal gas production. When the data samples are small or the

specific distribution of variables is unknown, the advantages of

the proposed method are more obvious. In case study part, the

solution results under different data samples are analyzed. In

general, the more data samples, the less the total cost. When the

number of samples is 200, the total cost is 2,834,843.9¥; when

the number of samples is 2,500, the total cost is 2,829,942.0¥,

which reduces total cost by 4,901.9¥. This also means that this

method canmeet the requirement of small sample data analysis

and improve the applicability.

(2) Compared with the RO method and the SO method, the

proposed DRO method can take into account the advantages

of both, that is, it strikes a balance between the robustness of the

RO method and the computational complexity of the SO

method and controls the solution time within 100 s. More

specifically, compared with the traditional RO method,

method proposed in this paper reduces total cost by

55,307.1¥, accounting for 1.91% of the total cost. In addition,

the proposed method can effectively reduce the computational

complexity. Computational time of the proposed method is

slightly longer than the traditional RO method but far faster

than the SO method and saves 1,326.94 s compared to the SO

method. Meanwhile, when the number of data samples is larger

than 1,000, the total cost of the method proposed will continue

to approach the total cost of the SOmethod, thus improving the

practicability of the model.
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Nomenclature

ξ The number of event

n The number of occurrence states

θ The probability of each state

Γ(·) Gamma function

ri The ith priori parameter

s Equivalent sample value

mi The occurrence number of the event state

~vBt , ~v
C
t , ~v

L
t Uncertain parameters of BFG, COG and LDG

production

zB+t , zB−t 0–1 auxiliary variable

} Conservatism degree parameter

Cda and Cadj The day-ahead scheduling cost and the real-time

adjustment cost

Hda and Hadj The day-ahead scheduling constraints and

real-time adjustment constraints

GBFG
t , GCOG

t , GBFG
t The position adjustment quantities of the

BFG, COG and LDG holders at time t

Cgas
BFG, C

gas
COG, C

gas
LDG The combustion costs of the three types of

coal gas

Ccoal The purchase price per ton of coal

FCOG
i,t , FBFG

i,t , FLDG
i,t The consumption of three types of coal gas of

the ith piece of equipment at time t

Fcoal,t The coal consumption at time t

Cele
buy,t, C

ele
sell,t The power purchase and sale price at time t

Pbuy,t, Psell,t The selling and purchasing power of SPIES at time t

CS1, CS2 The unit production cost of steam S1 and S2

S1i,t, S
2
i,t Production of S1 and S2 of the ith piece of steam

production equipment at time t

RS1
i,t , R

S2
i,t , R

P
t Demand response adjustment amount of steam/

electricity at time t

CR
S1, C

R
S2, C

R
P Compensation coefficients for demand response

Sboi,1i,t , Sboi,2i,t Production of S1 and S2 produced by the ith boiler at

time t

hCOG, hLDG, hBFG Calorific values of the three types of gas

hS1, hS2 The enthalpy of steam S1 and S2

ηboi,S1i,t , ηboi,S2i,t The production efficiency of the two types of steam

at time t

ECHP
t ,HCHP

t Electric power and thermal power of the CHP unit

at time t

k0, k1, k2, k3 The slope and intercept of the boundary line

describing the thermoelectric characteristics

i, j Node number of park distribution network

pj, qj The active injection power and reactive injection power of

node j

rij + jxij Impedance of branch ij

Pjk , Qjk Active and reactive power at the head end of branch jk

~Iij The square value of the current on line ij

~Vj The square value of the voltage of node j

Ftotal
BFG,t, F

total
COG,t, F

total
LDG,t The predicted production of the three types

of coal gas at time t

GCOG
t−1 , GLDG

t−1 , GBFG
t−1 The gas holder positions of the three types of

coal gas at time t-1

DCOG
t , DLDG

t , DBFG
t The discharge losses of the three types of gas

at time t

Stotal1 , Stotal2 The demand for steam S1 and S2

Cadj
COG, C

adj
BFG, C

adj
LDG, C

adj
coal Unit depreciation cost coefficient

generated by the rescheduling of various fuels

Cpun
BFG, C

pun
COG, C

pun
LDG Unit penalty coefficients of coal gas

discharge loss

DBFG
t , DCOG

t , DLDG
t Discharge losses of the three types of coal gas

at time t in the real-time stage
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