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This paper presents the integrated performance of a solar-assisted desiccant

dehumidifier along with Maisotsenko cycle (M-cycle) counter flow heat and

mass exchanger. This system handles latent load and sensible load separately.

The hybrid configuration of solar thermal collectors was analyzed for efficiency of

solar collectors and solar fraction. High consumption of fossil fuels, which are

already present in a limited amount, is also associatedwith environmental problems

and climate change issues, as these increase the chances of global warming. These

issues demandof us to shift towards renewable energy resources. Increase inworld

energy use results in a number of environmental problems, such as climate change,

in addition to global warming and ozone depletion. In building services, HVAC

systems are major concerns. To overcome the requirement, conventional air

conditioning and vapor compression systems are mainly used for air

conditioning, although these also have some environmental problems. Solar

thermal applications in combination with other renewable-energy-dependent

cooling practices have generated a huge interest towards sustainable solutions,

keeping in view several techno-economical, environmental, and climatic

advantages. The experimental investigation reveals that the maximum outlet

temperature and efficiency of solar thermal collectors was 87°C and 56%

respectively. The maximum cooling capacity of the system is evaluated at 4.6 kW.
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Highlights

1- The solar thermal collector mainly evacuated tube collector

and flat plate collector, which were used for the

regeneration of solid desiccant wheel

2- The parametric analysis of operating conditions is carried

out with the configuration of counter flowHMX on Process

air stream

3- The minimum outlet temperatutre from the M-Cycle is

14.7°C with a low inlet temperature of 27°C

4- The Maximum cooling capacity of the system is evaluated

at 4.6 kW

1 Introduction

The amount of energy consumed to perform a special action,

produce or manufacture something, or simply inhabit a building

is termed as energy consumption (Sikder et al., 2016). Growing

populations and improved living standards around the world

have had a large impact on energy consumption (Wu J. et al.,

2020; Khan et al., 2020). These factors affect the economic growth

of a country. Economic growth has a strong correlation with

energy consumption (Wang and Wang, 2020; Knight and Schor,

2014). In China and other Asian countries during the period of

2000–2008, economic growth accelerated the demand for

electricity based on coal, and resulted in emissions of carbon

dioxide CO2 (Wu H et al., 2020; Farooq et al., 2019).

Unfortunately, two-thirds of CO2 emissions have already been

consumed, and the remaining portion will be spent by 2050,

making the energy-water-environment nexus crucial to

achieving the COP21 target of keeping environmental

temperature increase below 2°C. Though recent technical

advancements in the electricity and desalination industries

have increased their efficiency, they are still only running at

35% and 10% of their thermodynamic limitations, respectively,

which has a significant impact on energy consumption and

carbon emissions. Desalination process research is vital to

meeting the energy needs of a growing global population

while also lowering per capita energy consumption and

safeguarding the planet’s natural resources (Shahzad et al.,

2017). It means that increase in the economic growth results

in an increase in energy consumption. Energy consumption in

higher education buildings make up 40% of total energy

consumption in the United Kingdom (United Kingdom)

(Amber et al., 2020). So, emissions can be minimized by

cutting of energy consumption. In developing countries,

economic development is necessary to achieve this aim.

In developed countries, the energy consumption in building

sectors contributes 20%–40% to total energy usage (Bahadori-

Jahromi et al., 2017), (Kashif et al., 2020). With the increasing

demand of thermal comfort in buildings like offices and other

industrial buildings, HVAC systems account for about 10%–20%

of total energy consumption (Lu et al., 2019; González and

Fiorito, 2015). It is clear that energy consumption is

increasing day by day, especially in building services (Pérez-

Lombard et al., 2008; Petri et al., 2017). In the modern era, fossil

fuels like coal and oil used for energy production are depleting

rapidly (Brandt, 2011; Murphy et al., 2011). So, there is a need to

move towards an alternative source of energy generation (Halim,

2013; Berbel and Posadillo, 2018).

The Sun is the major source of life on earth; when using this

source to power a system, it serves as a ‘‘free’’ source of energy for

many processes at the same time. In comparison with other

sources of energy, solar energy has great advantages of being

remarkably clean and environmentally friendly (Mahmud et al.,

2018; Choudhary and Srivastava, 2019). Solar energy is a major

source of renewable energy and, based on methods of its capture

and conversion, solar power can be classified as either active solar

or passive solar energies (Abdelkareem et al., 2018). Rapid

increases in energy consumption day by day and considerably

high prices of fossil fuels demand the replacement of traditional

refrigeration systems that require high amounts of energy

(Moriarty and Honnery, 2019). For large systems, a number

of solar-based cooling technologies exist that can be used in

combination with solar thermal collectors (Baral et al., 2015; Ma

et al., 2017). Solar-assisted desiccant air conditioning is a

renewable technology which saves a lot of energy (Angrisani

et al., 2016). Because this system does not have a compressor in it,

energy consumption is very low as compared to other

refrigeration systems. The energy consumption equipment’s

includes axial fans and water pumps, which consumes a small

amount of energy.

The emerging cooling technology hybrid indirect evaporative

cooling-mechanical vapor compression (IEC-MVC) combines

the benefits of IEC and MVC, allowing for precise temperature

and humidity regulation, excellent energy efficiency, and little

water usage (Chen et al., 2022). When compared to conventional

mechanical vapor compression (MVC) chillers, the indirect

evaporative cooler (IEC) is seen as a more efficient and

environmentally friendly option for cooling purposes.

However, IEC is a passive cooler and has no real control over

the ambient temperature or humidity of the supplied air. When

the relative humidity of the air is high, IEC performance suffers.

We explore a hybrid approach that integrates IEC and MVC in

order to get around these restrictions. In the IEC, pre-cooling

occurs when energy is reclaimed from the exhausted air of a room

and applied to the outside air before further processing with MV

(Chen et al., 2021).

As an alternative to traditional air conditioning systems,

indirect evaporative cooling technology has evolved as an

energy-efficient, low-cost, and sustainable method of cooling

indoor spaces. This is because it may reduce cooling costs by

as much as half compared to conventional cooling methods like

forced air and vapor compression, as well as desiccant cooling.

Jamil et al. (2021) investigated an innovative humidifier-aided
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regenerative indirect evaporative cooler that reduces fouling

tendency and water management difficulties by doing away

with hydrophilic surfaces used in the system. The proposed

setup has an optimal cooling efficiency of 83.82 percent and a

performance coefficient of 44 percent. Scaling trends of the

coefficient of performance are as follows: Primary air inlet

temperature > primary air outlet temperature > primary air

velocity. The effectiveness of the cooler scales is as follows:

Secondary air outlet temperature > primary air inlet

temperature > primary air humidity > primary air outlet.

In terms of coefficient of performance (COP), M-CYCLE-

based desiccant air conditioning systems are 60%–65% more

efficient than conventional air conditioning systems providing

the same inlet conditions (Kashif Shahzad et al., 2018). The main

advantage of this solution is that it can provide the required

comfort level with comparatively less effective dehumidification

(Cui et al., 2019).When discussing these air conditioning systems

the factors air inlet temperature, regeneration air temperature,

and humidity are important. An important component of the

desiccant dehumidifier is the special desiccant wheel that is solely

used to adsorb the moisture content from air during

dehumidification (Hu et al., 2016). A lot of materials are used

for thermal storage in desiccant cooling systems like silica gel,

paraffin wax, stearic acid, and CaCl2.6H2O (Leng et al., 2006;

Alghamdi, 2017). Choosing which material depends on the

energy consumed by them. An experimental analysis shows

that if a system exists without solar energy and storage

material the energy consumption by it is 23.57 kW. On the

other hand, the average energy saving percentage of paraffin

wax, stearic acid, and CaCl2.6H2O is 75.86%, 78%, and 64.6%

respectively, by using them as storage materials (Kabeel et al.,

2018). This study was carried out by using Silica gel as a storage

material in solar-assisted desiccant air conditioning system.

The COP of this desiccant-based cooling system is strongly

contingent on the operating parameters and can be increased by

unbalancing the flow of air through the dehumidifier (Wu et al.,

2019). When performing the second law analysis, the reversible COP

of this system is found to be 2.64 while operating in ventilationmode

and around 3.03 on recirculation mode. In ventilation mode, COP

can be improved 10%–15%by unbalancing the air flow.Moreover, in

recirculation COP increases by 50% (Anisimov et al., 2015). A

numerical technique is used to execute the thermal calculations of

an indirect evaporative cooler (IEC) based on a model of combined

parallel heat and mass exchanger with counter flow regenerative

arrangement. The results calculated from mathematical simulation

show the high effectiveness of the presentedmodel (Kilkovský, 2020).

In Hong Kong, a hybrid configuration of solar-assisted liquid

desiccant dehumidifier (LDD) along with indirect evaporative

cooler was carried out in an elevated temperature region with a

high humidity ratio. The results show that, by increasing the solar

collector’s area, the cooling capacity as well as moisture removal

rate were increased. Moreover, the air conditioning system based

on LDD indirect evaporative cooler saves about 47% energy

consumption when compared with a mechanical vapor

compression refrigeration system (Chen et al., 2017).

From the above mentioned studies, it is clear that the

working ability of the IEC is significantly affected by the

humidity level of air. Furthermore, it is clear that the cooling

capacity and moisture removal rate can be increased by

increasing the regeneration temperature. To achieve such

configuration, solar thermal collectors as a renewable energy

source are used in association with SDD-IEC. Dew point

evaporative cooling is a perfect option for removing the

sensible heat that is produced by electronics, data centers, and

electric cars since it uses so little power (Lin et al., 2021).

Due to higher building demand for HVAC applications, there is

a need to use renewable energy resources for these applications to

mitigate an intensive use of energy. Solar desiccant evaporative

cooling is an emerging technique that can be more helpful in severe

climate conditions with minimum energy requirement for its

operation. In the majority of studies carried out on SDD-IEC, a

cross flow heat exchanger was usually used. In this study, however, a

counter flow heat exchanger was used as an indirect evaporative

cooler and an integrated system of thermal collectors (evacuated

tube collectors and Flat Plate Collectors) were utilized for

regeneration process through hot water. The current work is

carried out in UET Taxila (Latitude: 33.7660 Longitude: 72.8250),

where temperature in the summer is high and the climate is humid.

It is worth mentioning that the present study experimentally

evaluates the effect of operational parameters such as humidity,

temperature, and rotational speed of desiccant wheel on the

performance of the system. The current study is novel in terms

of parametric analysis of SDD-IEC by using EES, experimental

evaluation of solar water heating system in term of collector’s

efficiency, temperature profile and sensible heat factor, and

validation of key aspects of the cooling system.

2 Materials and methods

2.1 Experimental setup

The experimental setup has a hybrid configuration of solar water

heating system and solid desiccant indirect evaporative cooler.

2.1.1 Solar array for water heating
Solar thermal collectors were used as a renewable source of

energy to heat water to regenerate the desiccant wheel. Solar

thermal collectors consist of a hybrid configuration of flat plate

collectors (FPCs) and evacuated tube collectors along with a

storage tank. The FPCs are the cheapest source among collectors

and it does not require the tracking of the Sun. FPCs are designed

for moderate temperatures. To achieve the required regenerative

temperature, FPCs are linked with evacuated tube collectors

(ETCs). The space between glass and absorber is evacuated to

reduce the convection losses in ETC.
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The cover area of flat plate and ETC is 4.7 and 6.8 m2

respectively. An auxiliary source consisting of electric heaters is

also used for backup source. The collector’s arrays are mounted on

the roof of energy engineering departmentUETTaxila. Tominimize

the environmental impacts on the efficiency of collectors, the rubber

foam of thickness 5 mm is used to insulate the loop circuit. To

record the temperature values at different points of the solar water

heating system, K type thermocouples are used. However, to control

the water flow rate through the collector’s ball, valves are installed at

various points. Similarly, a pressure relief valve is used in the tank to

release steam. The solar water heating system works continuously

throughout the day. The set value for the temperature of hot water is

75 C. The experimental setup of solar collectors is shown in Figure 1.

The intensity of solar light is measured using a pyranometer.

2.1.2 Cooling system
The cooling system comprises of a solid desiccant dehumidifier,

enthalpy wheel, indirect evaporative cooler (counter flow heat and

mass exchanger), direct evaporative cooler, and heating coils. The

system handles the latent as well as sensible load separately. A solid

desiccant dehumidifier is used to handle the latent load of the

system whereas the indirect evaporative cooler handles the sensible

load. The whole system is separated into two portions: the process

side and the regeneration side. This experimental setup can be

viewed in Figure 2.

2.2 Experimental procedure

Before performance evaluation of the system, the sensors

are calibrated and tested initially with different operating

conditions. The cooling system was tested by varying the

mass flow rate, humidity level of inlet air, rpm of desiccant

wheel, and regeneration temperature. After measuring the

system’s initial performance, the experimental data was

collected by running the system. The solar loop was stared

at 8 a.m. so that it can achieve the required regenerative

temperature. The desiccant cooling system works from

9 a.m. to 4 p.m. The schematic diagram of the integrated

solar-assisted solid desiccant dehumidifier in the direct

evaporative cooler has been represented in Figure 3. The

ambient air is forced to enter in the system at 1 through a

fan, goes through the desiccant wheel in the process side, and

leaves at 2 as shown in Figure 3. In this process, the humidity

level of air is decreased but the temperature rises up (latent

heating of ambient air). Further, from processes 2–3 the

dehumidified air passes through the heat recovery wheel for

temperature reduction. Then air is passed through the indirect

evaporative cooler for sensible cooling and leaves the system at

4. Afterwards, on the regeneration side, the room air is sensibly

cooled in the direct evaporative cooler and leaves at 6. Then the

heat exchange phenomena take place between the process air

and regeneration air from 6 to 7. Later, the regeneration air

achieves the required regenerative temperature of desiccant

wheel (70°C) by passing through the heating coils. At last,

from 7 to 8 this heated air moves over the desiccant wheel

to absorb the moisture content in it and leave the system at 9.

2.3 Thermal resistance model

The thermal resistance model given in Figure 4 illustrates the

modes of heat transfer in an evacuated tube collector. Heat is

transferred between fluid and receiver through convection.

FIGURE 1
Experimental setup of solar thermal collectors.
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3 Measuring instruments

At various points in the solar-assisted desiccant air

conditioning system (SDAC) the parameters of air were

measured to analyze the system performance. The parameters

that were measured were humidity, temperature, and air flow

rate. The pressure difference measured from manometers gives

the air flow rate of process air and the regeneration air. DHT-22

Sensors were used to measure the temperature and humidity level

of the air along with a data logger based on the Arduino program.

The intensity of solar light was measured by using LI-19 data

logger.

FIGURE 2
Experimental setup of the solid desiccant indirect evaporative cooler.

FIGURE 3
Schematic of solar-assisted desiccant indirect evaporative cooler.
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4 Results and discussion

4.1 Parametric analysis of desiccant wheel

In this section, parametric analysis of desiccant wheel for

desiccant material silica gel SiO2 has been done by EES software.

4.1.1 Effect of process inlet humidity ratio
The Process inlet parameters like Wpin and Tpin influence

the other parameters of desiccant wheel. The effect of Wpin on

Wpout for Silica gel desiccant wheel (DW) is shown in Figure 5.

The analysis is carried out on rotation speeds of the desiccant

wheel i.e., 20, 26, and 36 rph. The Wpin, has direct influence on

theWpout. At higher Wpin more moisture is removed in the air.

Thus, the outlet humidity increases with inlet humidity, which

causes higher moisture removal. Additionally, it can be

viewed that the dehumidification of air is more favorable at

lower rotation speeds. When considering the different speeds

of the desiccant wheel, the graph shows that at the lowest

speed the Wpout is greater as compared to the highest speed of

rotation at each Wpin. This shows the moisture removal by

desiccant increases with the increase of speed.

4.1.2 Effect of regeneration temperature
Regeneration air always has a dominant role on

specifying process outlet conditions. The effect of Treg on

Wpout and DW is as shown in Figure 6. Dehumidification by

desiccant wheel is mostly exaggerated by regeneration

temp. Raising the Treg improves the moisture removal

capability of the desiccant material which results in

lowering the process outlet humidity ratio because

desiccant wheel is regenerated in a better way. However,

the rotation speed also has an important effect on Wpout. At

lower speeds dehumidification is minimum as compared to

high speed, which results in higher humidity ratio on the

process outlet.

FIGURE 4
Thermal resistance model of evacuated tube collector.

FIGURE 5
Effect of Wpin on Wpout for Silica gel desiccant.
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4.1.3 Effect of regeneration temperature on
process outlet temperature

Additionally, Treg affects Tpout andDT of process air outlet and

is as shown in Figure 7. Increases in Treg increase the outlet

temperature of process air Tpout. High Treg gives high Tpout.

This is due to the increase in heat of adsorption with additional

latent heat to sensible heat conversion. On the other hand, at low

Treg the outlet temp Tpout is close to each other at each rotation of

the wheel but shows a significant effect at high Treg on the rotation

speeds. At high Treg and N, DT of the air dominates as compared

to less Treg and N.

4.1.4 Effect of rotation speed of desiccant wheel
The speed “n” of desiccant wheel influences the Wpout of the

process outlet air with different Wpin, Tsin, and Treg. The effect of

speed N onWpout andW at differentWpin is as shown in Figure 8.

The rotational speed has an important role in the

accomplishment of the dehumidification process at a low

rotation speed.

4.1.5 Variation of temperature and cooling
capacity of solar desiccant coolings

The process inlet Tpin and the process outlet temperature of

M-Cycle Tpo (mc) along with cooling capacity Qc is shown in

Figure 9: Variation of cooling capacity and temperatures of SDC.

Increases in inlet temperature results in a decrease in inlet

humidity ratio, so the cooling capacity increases. The process

outlet temperature increases with increases in inlet temperature.

The maximum cooling capacity achieved is 4.6 kW.

4.2 Analysis of thermal collectors

4.2.1 Thermal energy shares
The solar thermal energy flows vary as the function of time

exists in Figure 10: Variation of thermal Energy flows with respect to

time. Q(fall) is the solar thermal energy on earth and Q(sol) is the

thermal energy provided by the solar thermal collectors. Due to

FIGURE 6
Effect of regeneration temperature on process outlet
humidity ratio.

FIGURE 7
Effect of regeneration temperature on process outlet
Temperature.

FIGURE 8
Effect of rotational speed of the wheel on process outlet
humidity ratio.
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higher intensities of solar light in the month of May, the Q(fall) is

high. Moreover, the energy obtained from the collectors is also high

in this month as compared to others. The maximum andminimum

energy gain is 6.58 and 1.22 kW respectively. The average energy

gain for three selected days of different months is 4.3 kW.While the

average energy fall on the earth’s surface is 9.42 kW.

4.2.2 Temperature profile of solar water heating
system

Another aspect of utilizing solar energy is for the

regeneration purposes of desiccant wheel through solar

thermal collectors. The variation of temperatures of a solar

water heating system and the time is shown in Figure 11:

Variation of temperature of collectors with respect to time of

three different months. The intensity of solar radiation strongly

affects the output of collectors. As seen from the figure, the

temperature gradient is low in the morning because of low solar

intensity in the morning. The maximum temperature outlet

achieved through the collector is 87.49°C. However, the

maximum temperature gain is 12.33°C, with solar intensity of

868 W/m2. While the minimum temperature gain is 2.33°C,

corresponding to solar intensity of 351 W/m2. For 3 days the

average outlet temperature is 76.33°C, with an average solar

intensity of 671 W/m2.

4.2.3 Effect of solar intensity on collector’s
efficiency

Solar irradiance influences the efficiency of collectors.

Increases in solar irradiance results in high efficiency of

collectors. Variation of collector efficiency along with solar

irradiance is shown in Figure 12: Variation of collector

efficiency with respect to solar irradiance. When the solar

intensity is low the efficiency decreases. The observation

shows that maximum collector efficiency is 56% with solar

irradiance of 868 W/m2. In the month of July, minimum

efficiency was observed at 9 a.m. at 22%, corresponding to

solar intensity of 351 W/m2. The average resulting efficiency

for 3 days is 45%.

The observation shows that the moisture removal rate in

desiccant wheel decreases as the rotational speed of the wheel

increases for both process and regeneration streamline.When the

inlet temperature of the process stream line increases, inlet

FIGURE 9
Variation of cooling capacity and temperatures of SDC.

FIGURE 10
Variation of thermal Energy flows with respect to time in the
year (2017)

FIGURE 11
Variation of temperature of collectors with respect to time in
three different months.
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humidity ratio decreases, which corresponds to enhancing the

cooling capacity of the system. Moreover, the collector’s

efficiency is dependent on the intensity of solar irradience.

5 Conclusion

The performance of an integrated solar desiccant cooling

(SDC) system was experimentally monitored for three selected

days in summer months under the hot and humid climate of

Taxila, Pakistan.

• The experimental results show that, for thermal comfort

conditions, the SDC system gives better output. The other

systems that were based on only indirect evaporative cooler

do not have the capability to produce such thermal comfort

in the severe weather conditions of summer.

• The maximum outlet temperature of collectors is 87°C.

However, the maximum reputed efficiency is 56%. The

minimum outlet temperature from the M-Cycle is 14.7°C

with a low inlet temperature of 27°C.

• An increase in the process inlet temperature results in a

decrease in inlet humidity ratio, hence the cooling capacity

enhances.

• The Maximummonitored cooling capacity of the system is

4.6 kW. The parametric analysis shows that the moisture

removal rate is high with a low speed of rotation of

desiccant wheel or vise versa.

• At 20 rph of desiccant wheel, the moisture removal rate is

tremendous.

• The current study concludes that the energy consumption

by the system was minimized when utilizing solar energy to

regenerate the desiccant material through thermal

collectors.
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Nomenclature

T Temperature (°C)

W Humidity Ratio (g/kg)

Qc Cooling capacity (kW)

N Speed of rotation of desiccant wheel (rpm)

Q(sol) Thermal energy from Collectors (kW)

Q(fall) Thermal energy fall on earth (kW)

Eta Efficiency of Collectors

ΔT Temperature gain (°C)

Subscripts

Pin Process inlet conditions

Pout Process outlet conditions

reg Regeneration conditions

in(coll) Collector Inlet Conditions

o(coll) Collector outlet conditions
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