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Photovoltaic (PV) power generation can considerably reduce the consumption

of traditional fossil energy and improve environmental problems. Reliable

photovoltaic (PV) cell modelling owns great significance to the following

output characteristics analysis and optimal operation of the whole PV

system, while there are several unknown physical parameters within different

PV cell models. Thus, the identification of the internal parameters of the PV cell

model is the first and foremost step for PV cell modelling, nevertheless, the

intrinsic highly complex and non-linear and multi-modal features make

traditional approaches, such as analytical methods hard to achieve

satisfactory performance in solving this problem. Hence, this work aims to

employ a powerful tool to effectively and efficiently overcome this thorny

problem based on the most advanced optimization method. A recently

developed meta-heuristic algorithm called peafowl optimization algorithm

(POA) is employed in this work for PV cell modelling parameter

identification. For comprehensive validation, two different PV cell models,

i.e., double diode model (DDM) and triple diode model (TDM) are utilized.

Simulation results demonstrate that POA can more accurately identify the

unknown parameters of PV cell models in a higher convergence speed

compared against other algorithms.
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Introduction

Due to the high speed of technological development in the world today, the over-

exploitation of fossil energy sources has led to the subsequent depletion of resources and

air pollution, which has become a vital task to be resolved. In order to relieve the pressure

of energy supply as soon as possible and effectively, the change of energy structure in the

new era is necessary for the construction and development of the current society (Zhang

et al., 2020), and the development of various green and efficient renewable energy and

clean energy technologies is very important. Among them, solar energy has been widely

used in various application scales and purposes thanks to its excellent characteristics

(Jordehi, 2016), such as rich reserves, clean and safe, no pollution to the environment

during power generation, low cost, convenient and simple installation, etc.
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Although PV power generation has achieved good results so

far, it still faces many problems and challenges (Abbassi et al.,

2018). First of all, the manufacturer does not usually provide

comprehensive PV cell parameters, which are derived from

standard test conditions that do not accurately reflect the

changes caused by subsequent failure and ageing of PV panels

(Qais et al., 2019). Therefore, it is difficult to achieve reliable PV

cell modeling, which affects the following control and

optimization of the whole system (Chen et al., 2018; Li et al.,

2018). Therefore, it is of great significance to develop an accurate

and efficient intelligent identification algorithm to reliably

identify the unknown parameters of PV cells, so as to achieve

accurate modeling of PV cells. Due to the multimodal and highly

nonlinear characteristics of photovoltaic systems, researchers in

recent years have focused on various types of photovoltaic

models. The most representative equivalent models are the

single diode (SDM) and the double diode model (DDM).

However, complex photovoltaic parameter models also have

certain reference significance, such as the three-diode model

(TDM) with a large number of unknown parameters. The

problem of this model is that the calculation process is

complicated. In particular, this paper proposes TDM as the

research object, which can effectively analyze the complex

physical problems existing in photovoltaic systems. In

addition, in the diagnosis and analysis of photovoltaic system

faults, it is necessary to accurately extract the relevant electrical

parameters of the model. This method is an important

prerequisite for accurate maximum power point tracking. So

far, scholars at home and abroad have developed many methods

to solve the highly nonlinear and multimodal problem of PV cell

parameter identification (Pourmousa et al., 2019). These

methods can be divided into three categories, namely,

analytical method, deterministic method and heuristic

algorithm. The first two methods have obvious defects in the

process of solving problems, such as low identification accuracy,

large amount of calculation, strong model dependence, and

extremely sensitive to initial operating conditions and gradient

information. At first, the analytical method was used to extract

model parameters (Wolf and Benda, 2013), and a series of

interdependent mathematical equations were used to correlate

different model parameters (Torabi et al., 2017). Most of the

parameters used are: 1) short-circuit current, 2) open circuit

voltage and 3) maximum power point voltage and current, and

appropriate equations are derived with the data provided by the

manufacturer. However, using mathematical methods to solve

these equations will cost a lot of time and energy, and the

accuracy is limited (Villalva et al., 2009). In order to

overcome the shortcomings of analytical method,

deterministic method is applied to this problem. This kind of

method is an optimization method to extract parameters based

on some reference points on the given current-voltage (I-V)

curve (Gao et al., 2016). This method makes use of the two

important analytical properties of convexity and monotonicity of

the problem, which leads to two important research directions,

convex function difference optimization method and monotone

optimization method. Deterministic methods mainly include

several types of traditional methods, including Lambert

W-functions (El-Fergany, 2021) and iterative curve fitting

(Chaibi et al., 2020), can effectively improve the calculation

accuracy. However, they are very strict with the continuity,

convexity and differentiability of the model characteristics and

the objective function, and they are highly sensitive to gradient

information and initial conditions, so they are easy to converge

prematurely and fall into local optimization when solving highly

nonlinear problems.

Meta-heuristic algorithms can transform the difficult

problem of model parameter identification into a simple

nonlinear constrained optimization problem. The great

advantages of using meta-heuristic algorithm are: easy to

implement, high efficiency, insensitive to initial conditions

and gradient information, which can effectively avoid the

shortcomings of the above two methods. They are considered

to be the most promising and effective tool for PV cell

parameter identification with the best comprehensive

performance (Chan et al., 1986). So far, many heuristic

algorithms have been used to identify the unknown

parameters of PV cells (Pillai and Rajasekar, 2018; Yang

et al., 2020), e.g., genetic algorithm (GA) (Jervase et al.,

2001), particle swarm optimization (PSO) (Ye et al., 2009),

artificial bee colony (ABC) (Oliva et al., 2014), whale

optimization algorithm (WOA) (Xiong et al., 2018),

backtracking search algorithm (BSA) (Yu et al., 2018),

month flame optimizer (MFO) (Allam, Yousri, Eteiba), etc.

However, not all metaheuristic algorithms can be used for

any optimization problem, because the optimizer in each

algorithm mechanism cannot make the most rational

optimization results for all problems. Especially due to

various intractable problems such as high nonlinearity and

multimodality. Therefore, the problem that has been widely

concerned is how to solve the practical engineering problems

and ensure the optimization effect at the same time. In

particularly, this paper aims to propose a novel bionic

optimization algorithm to achieve efficient and reliable

optimization to solve the above highly complex practical

engineering problems. Therefore, in this paper, a novel

biomimetic optimization algorithm (POA) is used in the

parameter identification of photovoltaic cell models, which

has the following three contributions:

• POA is developed based on peafowl behavior which

contains a variety of update factors that can effectively

balance local exploration and global exploitation, thereby

obtaining a satisfactory global optimal solution;

• POA with adaptive search is capable of dynamically

adjusting its behavior to collect satisfactory search

results at multiple stages;
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• For PV cell parameter identification, two benchmark PV cell

models, DDM and TDM, are used to comprehensively verify

the effectiveness and reliability of POA for PV cell parameter

identification. Case studies show that POA can effectively

improve the accuracy and stability of parameter

identification compared with other algorithms.

Photovoltaic cell modelling

Building an exact PV cell model (Chen and Yu, 2019) is

fundamental to its subsequent studies of output characteristics,

fault diagnosis, etc. Only by accurately fitting the output I-V and

power-voltage (P-V) curves of PV cells can the performance of

PV systems be reliably evaluated and predicted, which largely

depends on accurately identifying the required physical

parameters from the PV cell model. In this paper, two kinds

of equivalent circuit models, DDM and TDM are selected for

modelling.

Double diode model

As demonstrated in Figure 1, DDM consists of an ideal

constant current source Iph, a series resistance Rs, a shunt

resistance Rsh, and two diodes D1 and D2 connected in parallel

[(Pourmousa et al., 2019)]. In particular, the series resistance

Rs represents the total series resistance of material body

resistance, thin layer resistance and electrode contact

resistance. At the same time, parallel resistance Rsh, is

mainly caused by the poor p-n junction or impurities near

the junction, which reflects the leakage level of the battery.

Rsh, affects PV cell open circuit voltage, the decrease of Rsh

will reduce the open circuit voltage, but the short-circuit

current will not be affected.

IL � Iph − Id1 − Id2 − Ish (1)

where Ish denotes shunt resistance current Rsh; and the currents

Id1 and Id2 flowing through diodes D1 and D2 are written as

(Abbassi et al., 2018)

Id1 � Isd1[exp(VL + ILRs

a1Vt
) − 1] (2)

Id2 � Isd2[exp(VL + ILRs

a2Vt
) − 1] (3)

Hence, output I-V relationship of DDM can be calculated by

IL � Iph − Isd1[exp(q(VL + ILRs)
a1Vt

) − 1]
− Isd2[exp(q(VL + ILRs)

a2Vt
) − 1] − VL + ILRs

Rsh
(4)

Thus, seven parameters need to be identified for DDM, e.g., Iph,

Isd1, Isd2, Rs, Rsh, a1, and a2.

Triple diode model

The configuration of TDM is illustrated in Figure 2.

Compared with DDM, a third diode is added in parallel due

to the influence of grain boundaries and large leakage current

(Qais et al., 2019).

Similarly, output I-V relationship of TDM is calculated by

(Qais et al., 2019)

IL � Iph − Isd1[exp(q(VL + ILRs)
a1Vt

) − 1]
− Isd2[exp(q(VL + ILRs)

a2Vt
) − 1]

− Isd3[exp(q(VL + ILRs)
a3Vt

) − 1] − VL + ILRs

Rsh
(5)

where a3 denotes ideality factor of the third diode.

Therefore, Iph, Isd1, Isd2, Isd3, Rs, Rsh, a1, a2 and a3. are

nine data that TDM needs to identify.

FIGURE 1
Equivalent circuit of DDM.

FIGURE 2
Equivalent circuit of TDM.
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Objective function

In order to implement an exercise to efficiently minimize the

error between experimental and simulated data, a parameter

extraction technique is used to determine the optimal parameters

for the PV model, which can be quantitatively evaluated with the

assistance of an objective function. Here, the root mean square

error (RMSE) is taken as the objective function, as follows:

RMSE (x) �
�������������������
1
N

∑N

k�1(f(VL, IL, x))2√
(6)

where x represents the parameter vector to be identified, and N

represents the number of experimental data.

In order to make the experimental data results more

convincing, different error functions are given in Table 1.

Based on Table 1, for the sake of minimizing the error

between experimental data and simulated data, objective

function RMSE (x) needs to be minimized by optimizing

solution vector x. Note that objective function value is

inversely proportional to the solution quality.

Peafowl optimization algorithm

POA is based on the courtship, foraging and chasing behaviors of

green peafowls (Wang et al., 2022). On this basis, a general

mathematical model is established. Male peacocks have delicate

feathers to show their unique position advantage in the

population. Male peacocks usually take the initiative to attract

female peahens after finding high-quality food, and then seek

mating. The more beautiful a male peacock’s tail is, the more

females it attracts by strutting and shaking its feathers. Once the

male peacock finds food, they will not only open their feathers, but

also further dance to expand the area to attract females (Wang et al.,

2022). The dance mode can be divided into two types: rotating in

place and walking in circles. Male peacocks also make cat like noises

to attract female peahens. Male peacocks are polygamous, so they

want to attract as many female peacocks as possible and mate

with them.

The next aims to illustrate the main optimization mechanisms

and principles of POA, to further demonstrate the superiority of this

method. In order to more concisely introduce the core optimization

principle of POA, only the core mechanisms are illustrated. More

details can be referred to literature (Wang et al., 2022) for interested

readers for more in-depth learning.

Courtship behavior of peacocks

When the peacock is in the mating season, the male

peacock will hover near the food source through three

behaviors: tail-spreading, rotating and flapping. There are

two rotation modes around the food source, and the

mechanism of these two rotation modes is dependent on

the fitness function value. In particular, when the value of the

fitness function is larger, the radius of the peacock’s rotation

around the food is smaller, but the probability of the

peacock’s rotation around the food is higher. The peacock

with worse fitness function has a larger rotation radius, and

this mathematical model is described as

XPc1 � XPc1(t) + 1 · RS · Xr1

‖Xr1‖ (7)

XPc2 �
XPc2(t) + 1.5 · RS · Xr2

‖Xr2‖, r1 < 0.9

XPc2(t), otherwise

⎧⎪⎪⎨⎪⎪⎩ (8)

XPc3 �
XPc3(t) + 2 · RS · Xr3

‖Xr3‖, r2 < 0.8

XPc3(t), otherwise

⎧⎪⎪⎨⎪⎪⎩ (9)

XPc4 �
XPc4(t) + 3 · RS · Xr4

‖Xr4‖, r3 < 0.6

XPc4(t), otherwise

⎧⎪⎪⎨⎪⎪⎩ (10)

XPc5 �
XPc5(t) + 5 · RS · Xr5

‖Xr5‖, r4 < 0.3

XPc5(t), otherwise

⎧⎪⎪⎨⎪⎪⎩ (11)

Xr � 2 · rand(1, Dim) − 1 (12)
whereXPci represents the position vector of the ith male peacock;

RS represents the rotation radius of the circle; Xr represents

random vector; ‖Xr‖ is the modulus of Xr; r1, r2, r3, r4 represent

the four random numbers of [0, 1].

Approaching behavior of peahens

Peacocks constantly adjust their behavior during courtship,

adopting approach mechanisms and adaptive search mechanisms.

In the process of courtship, the female peacock first approaches the

male peacock and will look around. Therefore, the fitness of

mutual attraction between male and female peacocks is

proportional. The mathematical model of this process is as

follows (Wang et al., 2022):

TABLE 1 Error functions of DDM and TDM.

Model Error function Solution vector

DDM fDDM(VL , IL , x) � Iph − Isd1[exp(q(VL+ILRs)
a1Vt

) − 1] − Isd2[exp(q(VL+ILRs)
a2Vt

) − 1] − VL+ILRs
Rsh

− IL x � {Iph , Isd1 , Isd2 , Rs , Rsh , a1 , a2}
TDM fTDM(VL , IL , x) � Iph − Isd1[exp(q(VL+ILRs)

a1Vt
) − 1] − Isd2[exp(q(VL+ILRs)

a2Vt
) − 1] − Isd3[exp(q(VL+ILRs)

a3Vt
) − 1] − VL+ILRs

Rsh
− IL x � {Iph , Isd1 , Isd2 , Isd3 , Rs , Rsh , a1 , a2 , a3}
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XPh �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

XPh(t) + 3 · θ · (XPc1 −XPh(t)), 0.6≤ r5 ≤ 1
XPh(t) + 3 · θ · (XPc2 −XPh(t)), 0.4≤ r5 < 0.6
XPh(t) + 3 · θ · (XPc3 −XPh(t)), 0.2≤ r5 < 0.4
XPh(t) + 3 · θ · (XPc4 −XPh(t)), 0.1≤ r5 < 0.2
XPh(t) + 3 · θ · (XPc5 −XPh(t)), 0≤ r5 < 0.1

(13)

θ � θ0 + θ1 − θ0 · t

tmax
(14)

where r5 is defined as a random number in [0,1]; while θ0 is

assigned a value of 0.1 and θ1 is assigned a value of 1.

Random food searching behavior of
peafowl cubs

In order to play a random search role in the food search

space, juvenile peacocks will actively approach male peacocks

with good food sources (the highest fitness). In this paper, one of

the five peacocks is used as the target object. These five peacocks

guide the juvenile peacocks with equal probability. In this

process, the random search behavior of the peacocks is

described by the Levy flight, and the behavior of peafowl cub

can be expressed as

XSPc �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

XPc1(t), 0.8< r8 ≤ 1
XPc2(t), 0.6< r8 ≤ 0.8
XPc3(t), 0.4< r8 ≤ 0.6
XPc4(t), 0.2< r8 ≤ 0.4
XPc5(t), 0≤ r8 ≤ 0.2

(15)

XPcC � XPcC(t) + α · Levy · (XPc1(t) −XPcC(t))
+ δ · (XSPc −XPcC(t) (16)

where r8 represents a random number on [0, 1];XSPc is defined as

the position vector of the peacock, XPcC refers to the position

vector of the juvenile peacock; α and δ are expressed as coefficient
factors.

Besides, the five peacocks also have the internal interactions

among them. In addition, male peacock #1 has the best food

source, the remaining four male peacocks will gradually move

towards male peacock #1. The detailed pattern can be shown in

Figure 3.

The optimization framework of PV cell parameter

identification based on POA is shown in Figure 4. The

historical data of the output voltage and current determined

by the PV cell will be regarded as the input of the POA and

converted into the objective function. According to the specific PV

cell model, the optimization program is executed based on

POA, and finally the identification parameters of PV cells are

output.

Case studies

In this section, two different kinds of PV models, i.e., DDM and

TDM are adopted for parameter identification based on POA. The

experimental I-V data utilized for simulation are extracted from a

57mmdiameter R.T.C. France solar cell under theweather condition

(G = 1000W/m2 and T = 33°C). Note that there are in total of 26 sets

of I-V data.

POA is in comparison with other twometa-heuristic algorithms,

e.g., ABC (Oliva et al., 2014) and WOA (Xiong et al., 2018).

FIGURE 3
Interaction mechanism among different peacocks.
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Particularly, their maximum iteration number is designed to be the

same, i.e., 200, while all approaches are executed in 30 independent

runs to acquire statistical results. Besides, population size of each

algorithm is designed to be 50 and 70 for DDM and TDM,

respectively. Note that the best simulation results of all the

methods are highlighted in bold. All case studies are undertaken

by Matlab 2021a through a personal computer with IntelR

CoreTMi7 CPU at 2.0 GHz and 32 GB of RAM.

FIGURE 4
Application process of POA for parameter identification of PV cell.

TABLE 2 Parameters identification results under DDM.

Algorithm Iph(A) I01(μA) Rs(Ω) Rsh(Ω) a1 I02(μA) a2 RMSE

ABC 0.7604 0.5450 0.0372 52.0978 1.8104 0.1511 1.4196 1.1915E-03

WOA 0.7603 0.5333 0.0358 71.7116 1.6921 0.1502 1.4360 1.1342E-03

POA 0.7608 0.2366 0.0367 53.4175 1.4570 0.2602 1.7944 9.8602E-04

FIGURE 5
Comparison between actual data and model curve obtained by POA for DDM: (A) I-V curve and (B) P-V curve.
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Results discussion on double diode model

The optimal parameters and RMSE obtained by different

algorithms are demonstrated in Table 2, among them the best

result is highlighted in bold. Based onTable 2, it can be seen that POA

can achieve the most satisfactory performance compared against its

competitors in terms of accuracy. The RMSE obtained by POA is

only 51.19% and 86.93% to that of ABC and WOA, respectively.

Figure 5 illustrate the I-V curve and P-V curve fitting results

obtained by POA under DDM, which indicates that the identified

results are highly matched with the real data. Thus, the model

parameters identification accuracy of POA can be further

improved.

Besides, the boxplot graph and convergence curves obtained

by various algorithm are respectively shown in Figures 6A,B.

Boxplot graph shows that the distribution range of POA is the

FIGURE 6
Boxplot graph and convergence curve obtained by POA for DDM: (A) boxplot graph and (B) convergence curve.

TABLE 3 Model parameters identified by various algorithms for TDM.

Algorithm Iph(A) I01(μA) Rs(Ω) Rsh(Ω) a1 I02(μA) a2 I03(μA) a3 RMSE

ABC 0.7615 0.2446 0.0364 44.8763 1.4618 0.3504 1.5620 0.2663 1.9265 1.1656E-03

WOA 0.7598 0.3709 0.0364 76.7663 1.5757 0.0289 1.8577 0.0779 1.4071 1.2060E-03

POA 0.7607 0.0739 0.0363 55.5735 1.9996 0.2745 1.4795 0.2265 1.9685 9.8462E-04

FIGURE 7
Comparison between actual data and model curve obtained by POA for TDM: (A) I-V curve and (B) P-V curve.
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smallest among all the algorithms with the minimal lower and

upper bounds, which indicates that POA can acquire the lowest

RMSE with the highest stability. Convergence curves show that

POA owns the highest convergence speed and stability.

Results discussion on three-diode model

Table 3 shows the simulation results obtained by POA for TDM

parameter estimation, in which the most accurate results along with

its corresponding algorithm are highlighted in bold. Thus, it can be

observed that POA can realize the highest quality estimation

performance compared with ABC and WOA. The RMSE

obtained by POA is only 84.47% and 81.64% to that of ABC and

WOA, respectively.

The output I-V curve and P-V curve for TDM obtained by

POA is shown in Figure 7, upon which it can be illustrated

that the simulated data is extremely similar to the real data,

which can effectively verify the parameters identification

reliability of POA.

Furthermore, the boxplot graph and convergence curves

of different algorithms are demonstrated in Figures 8A,B,

respectively. Figure 8A shows that POA can obtain the

smallest distribution range with the minimal lower and

upper bounds, which can validate the high identification

accuracy and stability of POA. From Figure 8B, it shows

that POA can search the global optimum in a high

convergence rate.

Conclusion

In this paper, the core component of the PV power

generation system, namely the PV cell, is taken as the

research object. The purpose of this paper is to accurately and

effectively identify the unknown parameters in its model, so as to

achieve its accurate modeling, so as to better guide the later

optimal power generation and operation control. The main

contributions of this paper are summarized as follows:

• Through the study of peacock behavior, I received

relevant inspiration and used peacock behavior as a

search mechanism. In this paper, a novel POA

optimization algorithm is proposed. For the

parameter identification problem of photovoltaic

model, this algorithm is used to optimize the

identification results, thereby improving the accuracy

of photovoltaic cell parameter identification;

• The novelty of POA algorithm is that the algorithm

includes efficient search operators and heuristics, in

order to avoid getting trapped in local optima during

the search process. The algorithm can dynamically

adjust the optimization mechanism to find a balance

between local search and global search, so as to

improve the convergence accuracy of parameter

identification;

• The algorithm is applied to the parameter identification

of DDM and TDM PV cell models, and the effectiveness

and reliability of POA for PV cell parameter

identification are comprehensively verified. Case

studies show that POA can effectively improve the

accuracy and stability of parameter

identification compared with other algorithms.

Further studies can be focused on the improvement and

modification on the algorithm structure to lower the

parameter tuning burden. Also, more different PV cell

models can be applied for more comprehensive validation

under more complex operation conditions, which is more

beneficial for engineering applications.

FIGURE 8
Boxplot graph and convergence curve obtained by POA for TDM: (A) boxplot graph and (B) convergence curve.
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