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With the development of intelligent operation and maintenance of substations,

the daily inspection of substations needs to process massive video and image

data. This puts forward higher requirements on the processing speed and

accuracy of defect detection. Based on the end-to-end learning paradigm,

this article proposes an intelligent detection method for substation insulator

defects based on CenterMask. First, the backbone network VoVNet is improved

according to the residual connection and eSE module, which effectively solves

the problems of deep network saturation and gradient information loss. On this

basis, an insulator mask generation method based on a spatial attention-

directed mechanism is proposed. Insulators with complex image

backgrounds are accurately segmented. Then, three strategies of pixel-wise

regression prediction, multi-scale features, and centerness are introduced. The

anchor-free single-stage target detector accurately locates the defect points of

insulators. Finally, an example analysis is carried out with the substation

inspection image of a power supply company in a certain area to verify the

effectiveness and robustness of the proposed method.
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1 Introduction

In China, the “State Grid Corporation Artificial Intelligence Technology Application

2021 Work Plan” has made clear instructions to build and operate two levels of AI “two

libraries and one platform” and form a number of high-precision and high-value power-

specific models. As an important and indispensable part of the power system, the safe and

stable operation of substations is the basis for building a strong smart grid (Han et al.,

2021; Li et al., 2022a). Today, rising renewable energy uncertainty (Li et al., 2022b; Li et al.,

2022c) and concerns about cyber security and privacy issues (Li et al., 2019; Li et al.,

2022d) pose new challenges for substation operations. Therefore, there are strict standards

for operation and maintenance (Q&M) of substation equipment (Huang et al., 2016).

Insulators are key equipment in substations. Common types include pillar insulators,

bushing insulators, and suspension insulators. Its operational performance is directly

related to the stable and continuous operation of the regional power grid. However,
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insulator fouling and breakage are the main factors affecting its

operational performance (He and Gorur, 2017). In order to meet

the needs of Q&M, the substation is equipped with inspection

robots and deployed a large number of high-definition cameras

(Guan et al., 2021). The daily Q&M of insulators in the station

needs to process massive amounts of video and image data. How

to use data to efficiently analyze insulator defects is not only the

focus of Q&M work but also the difficulty in defect detection

(Wang et al., 2017).

Currently, scholars around the world have extensively

investigated on the defect detection of substation insulators as

artificial intelligence has been successfully applied to classification

problems in engineering (Shi et al., 2008; Shi et al., 2009). In Zhai

et al. (2018), based on machine vision, the feature extraction of the

insulator image is completed through the Vision module of

LabVIEW, and the preliminary identification and positioning of

the insulator are realized. The surface of substation insulators is

very susceptible to the influence of wet weather, resulting in

contamination and flashover accidents in substation facilities.

Tang et al. (2020) designed an insulator cleaning robot based

on binocular vision, using the YOLOv4-tiny deep learning network

algorithm to identify and detect pillar insulators and flange targets.

By establishing an electrothermal conversion model for insulator

strings, a method for identifying deteriorating porcelain insulators

in substations based on infrared thermal imaging technology is

proposed. The method in Zhang and Chen (2020) obtains a degree

of practicality. In addition, the method in Gao et al. (2021) was

used in order to improve the fault diagnosis capability of substation

equipment insulators. A method for identifying breakage of

substation equipment insulators based on intelligent image

information fusion and edge contour segmentation detection is

proposed. Usamentiaga et al. (2018) studied multi-source image

information fusion detection and the multi-source image fusion

reconstruction method of the insulator contamination state.

However, this work extracts the surface color features,

temperature rise features, and discharge intensity features of

insulators from visible light images, infrared images, and

ultraviolet images, respectively, which makes the detection

method difficult to apply online (Jin et al., 2018).

In summary, the application of computer vision and deep

learning methods to realize defect detection of substation

insulators has become a research hotspot. However, the

existing methods are not ideal for the detection of massive

high-definition image data in substations, and there is a

common problem of low real-time detection of insulator

defects. Therefore, an end-to-end agile detection method for

substation insulator defects is proposed. The method is based on

a single-stage instance segmentation algorithm and adopts an

end-to-end learning paradigm.

The main novelties of this work are as follows:

(i) The end-to-end design idea revolutionizes the staged and

step-by-step segmentation and detection methods in

traditional insulator detection research. This strategy

effectively reduces the impact of step-by-step error

iteration on model performance.

(ii) Insulator mask generation and defect detection can be

performed in parallel. This method greatly improves the

fault identification efficiency of the piece of equipment

Q&M in the substation.

(iii) The one-stage instance segmentation algorithm has been

successfully applied in the detection of insulator defect

points by introducing pixel-by-pixel regression

prediction, multi-scale features, and centerness, the three

strategies to accurately output the bounding box label of the

defect point location.

This article is organized as follows: Section 2 briefly describes

the architecture for agile detection of insulator defect points in

substations. The method of insulator mask generation and defect

point detection is described in detail in Section 3. Section 4

verifies the effectiveness of the proposed method based on the

built experimental environment. Finally, conclusions and

outlook are presented in Section 5.

2 Architecture of the insulator defect
intelligent detection method

Due to the close connection between the equipment in the

substation, the insulator image taken by the inspection robot is

mixed with more other pieces of transformer equipment (Wang

andMeng, 2019; Kou et al., 2022). This makes it necessary to step

through the images during insulator defect detection. However,

the result of step-by-step processing will certainly increase the

detection time and reduce the accuracy of detection (Chen et al.,

2019; Zhao et al., 2019). At the same time, the characteristics of

the massive amount of inspection images are different to ignore.

Therefore, this study comprehensively measures the Q&M

requirements of substation insulators and the training

complexity of massive inspection images. A defect detection

method based on CenterMask is designed. The overall

implementation plan of this work is shown in Figure 1. Based

on the one-stage target detection algorithm, a parallelized image

segmentation technique is incorporated to obtain the insulator

mask (Yuan et al., 2021). The masks for insulator defect points

are also extracted separately. By counting the insulator defect

detection task points, the main tasks are insulator detection,

insulator mask segmentation, insulator defect point detection,

and insulator defect point location.

As shown in Figure 1, this end-to-end work can be

decomposed into three parts. First, based on the accumulated

original inspection images, the initial image database is

constructed. Then, the defect detection model structure is

designed. This part is also the core of the whole method. 1)

The backbone network adopts improved VoVNet to achieve
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efficient extraction of target features. 2) The spatial attention-

guided mask (SAG-mask) branch generates target masks. 3)

Using fully convolutional one-stage (FCOS) to detect defect

points of insulators. Finally, the end realizes the output of the

insulator mask and the bounding box label of the defect point.

3 Agile detection method for
substation insulator defects

CenterMask is a newer instance segmentation algorithm

proposed by Youngwan Lee and Jongyoul Park of the Korea

Institute of Electronics and Communications in 2019 (Lee and

Park, 2020). This algorithm adds the SAG-maskmodule invented

by scholars to the famous one-stage anchor-free target detection

algorithm FCOS, which makes its target segmentation accuracy

and speed superior to traditional algorithms. The two scholars

made the algorithm open source for scholars in the field of image

and vision to jointly explore the application research of the

algorithm. The application of this algorithm in substation

insulator defect detection further improves the intelligence

and accuracy of insulator defect detection.

3.1 Insulator feature extraction based on
improved VoVNet

The inspection robot in the smart substation will collect

images of insulators from different angles during the operation.

The background of the insulator in the image is complex and

diverse, which has serious noise interference to the accurate

detection of insulator defect points (Tao et al., 2018; Kou et al.,

2020a). Therefore, our first task is to achieve accurate extraction

of insulator target features. It is the backbone network of the

model that accomplishes this task in the study.

At present, various target detection models rely on different

backbone networks (Du et al., 2021). The core module used by

the mainstream target detection model DenseNet is the dense

block. All previous layers are aggregated through dense

connections, resulting in a linear increase in the number of

input pipelines for each subsequent layer. This strategy makes

the memory access cost and energy consumption extremely high,

and the computing speed is seriously hindered (Xu and Wu.

2020). When the input is a higher-quality insulator image, object

extraction tends to consume more memory and inference time.

This problem makes the detection effect of insulator defects far

from meeting the standard of massive high-definition insulator

images in substations. The CenterMask backbone network

proposed by the research utilizes an improved VoVNet. The

short board of feature redundancy caused by dense connections

in DenseNet is effectively solved, and the core module of one-

shot aggregation (OSA) is adopted. In the strategy, all the

previous layers are unified and aggregated at the end.

The improved VoVNet addresses the performance saturation

problem and the information loss problem in standard VoVNet,

respectively. 1) By adjusting the input of the OSA module and

adding it to the output, the residual link of ResNet is introduced

to ensure that VoVNet can train a deeper network. It can

effectively process insulator images with high pixel ratios. 2)

The eSE module of ResNet is added to the last feature layer of

VoVNet, and the two fully connected layers used in the original

SE module are directly replaced by one, which effectively reduces

FIGURE 1
Overall framework of the intelligent detection method for insulator defects.
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the loss of channel information. This method further enhances

the feature extraction capability of the insulator target. The

improved connection structure of OSA modules in VoVNet

according to the idea is shown in the insulator feature

extraction area in Figure 1. The performance of the target

detection models based on the improved VoVNet surpasses

the models based on other target detection algorithms. The

algorithm greatly improves the GPU computing efficiency and

meets the needs of high-speed processing for intelligent

identification of hidden dangers of insulators.

3.2 Insulator mask extraction based on the
spatial attention-guided mask

Insulator image datasets mostly suffer from the problems of

complex backgrounds, multiple strings in a single image, and

insulator overlap (Kou et al., 2020b). Section 3.1 shows how

insulator feature extraction realizes insulator target detection.

The position of the insulator in the image is accurately framed,

and only completing this link cannot quickly detect the defect

points of the insulator. Therefore, it is necessary to further realize

the precise segmentation of insulator beads on this basis. Adding

the SAG-mask branch to the target result of FCOS detection in

the CenterMask algorithm satisfactorily completes this task.

The most famous ones in instance segmentation are Mask

RCNN and its related improved algorithms, as well as the

YOLACT algorithm which focuses on speed (Wang et al.,

2020b). However, a spatial attention-oriented mechanism is

proposed in CenterMask. The mechanism is able to utilize the

spatial attention map of the input image to predict segmentation

masks for each boxed instance. The added SAG-mask branch can

be performed in parallel with the insulator fault point

identification of the target detector, which greatly improves

the identification efficiency of intelligent hidden dangers of

insulators.

In this article, the instance segmentation of insulators is

decomposed into two simple and parallel subtasks, as shown in

the mask generation area in Figure 1. Task 1 achieves the goal of

constraining the local area of each insulator and naturally

distinguishing the instance. A rough shape prediction is made

around the center point of each insulator. Task 2 achieves precise

segmentation of insulators while retaining the spatial position of

precise segmentation. The branch is predicted using the insulator

saliency pixels in the entire inspection image. The core idea is to

focus on specific block features in the feature map by using an

attention mechanism. Finally, a mask for each insulator’s

corresponding image position is constructed by multiplying

the outputs of the two parallel branches.

The mathematical process of the instance segmentation

process can be described as follows: the input insulator feature

map is marked as Xi ∈ RCpHpW. It is pooled using max pooling

and average pooling. The pooled features are, respectively,

Fmax pooling, Faverage pooling ∈ R1pHpW and subsequently passed

through a 3 × 3 convolutional neural network. The specific

mathematical functions are as follows:

A(sag(Xi) � σF3p3(Pmax pooling · Paverage pooling)). (1)

Then, saliency pixels are used in task 2 to enhance the input

features of the original insulator image, as shown in Eq. 2.

Xsag � Asag(Xi) ⊗ Xi. (2)

3.3 Identification and location of insulator
defects based on fully convolutional one-
stage algorithm

The goal of intelligent hidden danger identification of insulators

is to quickly locate various common faults of insulators through

intelligent algorithms, such as bead damage, excessive pollution, and

aging cracks (Wang et al., 2020a). The accurate extraction of the

insulator mask can only ensure that the location of the insulator is

identified from the inspection image, and the insulator is accurately

segmented. However, specific fault points require accurate location

detection of the corresponding model. This work uses the anchor-

free FCOS algorithm to complete the task in the target detection part

of the overall CenterMask structure. FCOS is a fully convolutional

one-stage object detection algorithm (Zhang et al., 2022). It solves

the object detection problem in a pixel-by-pixel prediction manner.

At the same time, in the detection process, the anchor-free box of

FCOS is a huge advantage. The hyperparameters associated with

anchor boxes and all the complex computations associated with

anchor boxes are effectively avoided. The efficiency of insulator

defect identification and location has been greatly improved. The

output of the entire defect identification and localization results

includes three aspects: pixel-by-pixel regression prediction, multi-

scale features, and centerness.

The specific process framework is shown in the defect point

labeling area in Figure 1. The first output of the 3 output layers is

the classification branch. H*W represents the size of the feature.

C represents the number of categories. A position in the input

inspection image can be mapped to a position on the feature, and

the mapping function is as follows:

(⌊r
2
⌋ + pr

�
, ⌊r
2
⌋ + qr), (3)

where the coordinates (p, q) denote a specific location in the

inspection image. r denotes the scaling between the feature map

and the original inspection image. This function can represent

the relationship between the position of the point on the feature

map and the position of the point on the output image. This lays

the groundwork for computing the classification and regression

objectives for each point on the feature map.

The second output is the centerness policy. The FCOS algorithm

is applied to achieve the high efficiency of one-stage anchor-free box
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calculation and high recall rate of the pixel-by-pixel regression

strategy. It also brings many low-quality prediction bounding

boxes with very large deviation from the center point. By

introducing this strategy, the distance between each point and the

target center can be calculated, thereby suppressing some predicted

bounding boxes that are far away from the target center. But this

strategy does not introduce any excessive hyperparameters.

The centerness strategy adds a branch to each prediction

layer of the feature pyramid. Also, this branch is parallel to the

classification branch, which is equivalent to adding a loss

function to the network. During the training process of the

image dataset, the loss function constrains the predicted

bounding box to be as close to the center point as possible so

that the auxiliary non-maximum suppression (NMS) can filter

out the low-quality bounding box prediction. The loss function is

as follows:

Lossp �

������������������������������
min(dp

left, d
p
right)

max(dp
left, d

p
right) × min(dp

top, d
p
bottom)

max(dp
top, d

p
bottom)

√√
, (4)

where the distances from the center point to the left, right, top,

and bottom sides of the prediction bounding box are represented

by dleft, dright, dtop, and dbottom, respectively. Lossp is the value of

the loss function, and the more it tends to zero, the better the

prediction can be constrained.

The third output is the return branch. When performing the

target frame regression on all the points in the target frame of defect

points in the inspection image, the distance to each edge is used as

the measurement standard. This part is the main difference between

the target detection algorithm without the anchor frame and the

target detection algorithm based on the anchor frame, where 4 in

H × W × 4 represents four values related to regression. This is

calculated as follows:

dp
left � m −m(i)

0 , dp
top � n − n(i)0 ,

dp
right � m(i)

0 −m, dp
bottom � n(i)0 − n.

(5)

4 Case study

In order to verify the effectiveness and robustness of the

insulator defect agile detection method proposed in this study,

taking the substation inspection image of a power supply

company in a certain area as an example, an example analysis

is carried out. There are two main aspects to build the

experimental environment in the DELL graphics workstation.

Hardware: Intel(R) Xeon(R) Gold 5118 CPU @ 2.30 GHz,

NVIDIA Quadro P5000, and 128 GB RAM; Software: Python

3.7.6, CUDA 10.1, PyTorch 1.4.0, Detectron2 0.1.1, and CV2

4.2.0. The model output results are evaluated by a number of

index combinations to further realize the optimization of the

defect point identification model.

4.1 Insulator mask generation and defect
detection

The insulator images captured by the inspection are divided

into the training set and test set. In the aforementioned

experimental environment, the analysis of training set samples

and the selection and optimization of themodel backbone network

are carried out. This model was trained over 200,000 iterations.

During the training process, each part of the network loss is

visualized to achieve accurate tuning of model parameters. The

complete flow of insulator mask generation is shown in Figure 2.

First, the training set, as shown in Figure 2A, is manually

annotated. It is used to assist the initial learning of the model.

Figure 2B shows the manual annotation of the original inspection

image using the labeling tool LabelMe. Insulators are marked

with the “Insulator” label, and insulator defect points are marked

with the “Insulator error” label. Then, the CenterMask network

model is iteratively learned and adjusted using the effectively

labeled training set. This process takes a long time. Finally, the

trained insulator defect detection model is applied. The input test

FIGURE 2
Insulatormask generation process: (A)Original image of insulator beading. (B) Annotated drawing of the insulator. (C) Insulatormask extraction.
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set is used for model insulator mask extraction branch validity

verification. The extracted rendering is shown in Figure 2C.

As mentioned in Section 2, defect point identification and

mask extraction in the insulator defect detection model are two

independent branches, and the two branches can be executed in

parallel. The identification of defect points does not have to wait

for mask generation or be disturbed by mask generation results.

Therefore, the defect point identification and positioning is more

flexible, and the effect is better. By adopting the same multi-scale

training strategy as insulators, the model parameters are set for

random scaling within the range of input scales. The insulator

explosion point training dataset is enriched according to the

maximum and minimum input size constraints. When

outputting the defect point xml file, the visual output display of

single-image insulator defect point identification and identification

accuracy is realized. For the test set, the model insulator defect

point detection visualization diagram and the corresponding

positioning label stored in the xml file effect are shown in Figure 3.

4.2 Example index evaluation

For the model test results, the average precision (AP) and

average recall (AR) evaluation metrics are set. Under the

combination of different IOUs, areas under inspection (AREA),

and number of objects under inspection (MaxDets), model

performance analysis is performed on all test results. The specific

evaluation results are shown in Table 1. Here, IOU represents the

degree of overlap between the generated candidate frame and the

original marked frame. It is the ratio of intersection and union, and

the calculation equation is as follows:

IOU � Area of Overlap
Area of Union

. (6)

In Table 1, AP represents IOU ranging from 0.5 to 0.95. AP50
represents the IOU range of 0.5–1.0. AP75 represents the IOU

range of 0.75–1.0. APs represents the AP measurement of the

target box whose pixel area is smaller than 322. APm represents the

AP measurement of the target box whose pixel area is between

322 ~ 962. APl represents the AP measurement of the target box

whose pixel area is larger than 962. Value 1 represents the AP/AR

generated by the insulator mask under different evaluation

methods. Value 2 represents the index result value of defect

point detection in different situations.

Analysis of Table 1 shows that when 0.5 is used as the IOU

threshold for segmentation, the model mask generation effect is

the best. The accuracy of the model is 93.4%, indicating that the

model satisfies the extraction of insulators in most inspection

image scenarios. However, the AP and AR of target boxes with a

pixel area smaller than are significantly lower, indicating that the

model still needs to be improved in the details of mask generation.

The performance of the model in defect point detection is further

FIGURE 3
Insulator defect point detection and positioning.
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analyzed, and the overall Q&M requirements of the substation are

met, and the detection effect is good. In the detection of objects

with a pixel area greater than 962, AP andAR are 97.6% and 94.2%,

respectively. The model performs best. It can be seen that the

model has a high detection accuracy rate for large insulator defect

points, and has a good recall rate.

5 Conclusion

This work takes the intelligent Q&M of the equipment in

the substation as the background and comprehensively analyzes

the characteristics of the massive images of inspection

insulators and the complex background of defect point

detection. An intelligent detection method for substation

insulator defects based on CenterMask is proposed. The

proposal of this technology improves the efficiency and

accuracy of insulator defect detection to a certain extent.

The results of the example analysis verify the following main

conclusion:

1) An end-to-end insulator defect point detection architecture is

designed. The entire learning process does not perform

artificial sub-problem division, but the deep learning

model directly learns the mapping from the original input

to the desired output.

2) It is only necessary to input the insulator field image captured

by the inspection robot into the defect detection model. The

three key tasks of target feature extraction, mask

segmentation, and defect point target detection of

insulators can be realized at one time.

3) A new agile detectionmethod for insulator defects in substations

is proposed. In themanual inspectionmode, the waste of human

resources and the potential safety hazards caused by the

operation of the power grid are effectively reduced.

The transfer application research of this method will be the next

exploration direction. It will greatly promote the efficiency and

intelligence of substation equipment Q&M and has important

research significance and engineering application value. At the

same time, although the defect detection accuracy of this method

is satisfactory, the hyperparameters involved in the optimal state of

the model are still determined manually. Determining

hyperparameters through model self-learning is a meaningful work.
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TABLE 1 Index values of different assessment methods.

Assessment method IOU AREA MaxDets Value 1 Value 2

AP 0.50–0.95 All 100 0.921 0.881

AP50 >0.50 All 100 0.934 0.926

AP75 >0.75 All 100 0.854 0.873

APs 0.50–0.95 Small 100 0.845 0.694

APm 0.50–0.95 Medium 100 0.896 0.811

APl 0.50–0.95 Large 100 0.912 0.976

ARm1 0.50–0.95 All 1 0.632 0.694

ARm10 0.50–0.95 All 10 0.726 0.789

ARm100 0.50–0.95 All 100 0.791 0.804

ARs 0.50–0.95 Small 100 0.751 0.792

ARm 0.50–0.95 Medium 100 0.887 0.834

ARl 0.50–0.95 Large 100 0.898 0.942
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