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With a growing penetration of renewable energy generation in the modern

power networks, it has become highly challenging for network operators to

balance electricity supply and demand. Residential load forecasting nowadays

plays an increasingly important role in this aspect and facilitates various

interactions between power networks and electricity users. While numerous

research works have been proposed targeting at aggregate residential load

forecasting, only a few efforts have been made towards individual residential

load forecasting. The issue of volatility of individual residential load has never

been addressed in forecasting. Thus, to fill this gap, this paper presents a deep

learning method empowered with dynamic mirror descent for adaptive

individual residential load forecasting. The proposed method is evaluated on

a real-life Irish residential load dataset, and the experimental results show that it

improves the prediction accuracy by 9.1% and 11.6% in the aspects of RMSE and

MAE respectively in comparison with a benchmark method.
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1 Introduction

As advanced metering infrastructure (AMI) is being widely deployed in the modern

power system, especially, smart meters, a growing number of granular data of residential

electricity consumption has become easily available on a large scale (Sajjad et al., 2016; Xie

et al., 2018). This huge amount of data enables power network operators to motivate

residential customers to actively participate in demand side management (DSM) through

a wide range of various demand response programs (DRPs), for example, time-of-use

pricing (Zhou et al., 2016; Ponocko andMilanovic, 2018). As part of DSM, residential load

forecasting is a significantly important but challenging task for power network operators,

due to great irregularity and uncertainty of residential load (Welikala et al., 2019). As a

result, addressing the challenges of residential load forecasting plays a crucial role in

interactions between network operators and residential customers, efficient and cost-

effective grid operations, and household energy consumption optimizations.
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At present, residential load forecasting is generally

categorized into two classes - aggregate and individual. More

specifically, data analytics for aggregate residential load

forecasting mainly include support vector regression (SVR)

(Humeau et al., 2013; Wijaya et al., 2015), random forest

(Goehry et al., 2020), artificial neural networks (ANNs)

(Marinescu et al., 2013; Marinescu et al., 2014; Quilumba

et al., 2015; Campos and Silva, 2016; Stephen et al., 2017;

Wang et al., 2018; Oprea and Bara, 2019), and deep neural

networks (DNNs) (Zheng et al., 2018; Zou et al., 2019). Besides,

these methods tend to be combined with clustering techniques,

for instance, k-means clustering, in order to improve the

forecasting performance. In general, a number of models

based on these methods have obtained a desirable level of

prediction accuracy on aggregate residential load forecasting.

This is because a variety of behaviours of residential customers

can smoothen out their overall load profile at the aggregate level,

therefore generating an easily identifiable energy consumption

pattern.

However, compared to aggregate residential load forecasting,

only a few researchers have attempted to explore individual

residential load forecasting so far. Some traditional machine

learning methods, for instance, ANNs, are still applied to

forecast individual residential load (Paterakis et al., 2016; Xu

et al., 2016; Vossen et al., 2018; Dinesh et al., 2019; Wu et al.,

2020). During recent years, DNNs, such as recurrent neural

networks (RNNs) and long short-term memory (LSTM)

networks (Gan et al., 2017; Kong et al., 2017; Hossen et al.,

2018; Shi et al., 2018; Kong et al., 2019; Alhussein et al., 2020;

Wang et al., 2020; Lin et al., 2021), have been largely adopted due

to their superior capability in extracting complex patterns.

Although existing DNN models have mostly achieved a

comparatively higher prediction accuracy than many

traditional machine learning models, they are essentially

trained on a limited amount of residential load data offline

and then applied to perform forecasting online. As a result,

these well-trained offline models are likely to encounter many

sudden changes of residential load when forecasting online,

which are not included in training. This is because individual

residential load can be extremely volatile and uncertain, which

would have a significantly negative effect on the forecasting

performance of the DNN models.

To address the issue of volatility of individual residential load

in forecasting, this paper presents a method for short-term

individual residential load forecasting, which is able to adjust

the forecasting error dynamically. Specifically, the key

contributions of the paper are summarized as follows:

1) Firstly, it presents an LSTM based deep learning method

empowered with dynamic mirror descent (DMD) for

adaptive individual residential load forecasting.

2) Secondly, it modifies the original DMD to make it feasible for

adjusting residential load forecasting.

3) Thirdly, it devises a comprehensive feature expression

strategy to describe load characteristics at each time step in

order to form the input of the forecasting model.

4) Finally, the proposed method is validated and compared with

a published benchmark method on a real-life Irish residential

load dataset, and the influence of the modified DMD on the

forecasting performance of the proposed method is

investigated in detail.

The remainder of this paper is organized as follows.

Section 2 reports a comprehensive literature review on

residential load forecasting. Section 3 briefly introduces

recurrent neural networks and LSTM networks, and then

details the modifications made on the original DMD.

Section 4 integrates DMD into an LSTM based deep

learning method for adaptive individual residential load

forecasting. In Section 5, the proposed residential load

forecasting method is evaluated on a real-life Irish

residential load dataset. Finally, Section 6 concludes the

paper and points out some future work.

2 Review on residential load
forecasting

A number of research works have been presented in the area

of aggregate residential load forecasting. Wijaya et al. (2015)

designed a short-term cluster-based aggregate residential load

forecasting strategy. It firstly clusters residential customers, then

forecasts the energy consumption of each cluster separately

through SVR, and finally aggregates the energy consumption

forecasts of all clusters. Similar to Wijaya et al. (2015), Humeau

et al. (2013) developed a residential load forecasting method for

the district level, which combines k-means clustering with SVR.

Different from Wijaya et al. (2015) and Humeau et al. (2013),

Goehry et al. (2020) employed hierarchical clustering and

random clustering respectively to divide residential customers

into subsets and applied random forests to build the forecasting

model for each subset.

ANNs have also been commonly applied to forecast

residential load at the aggregate level. For example, a dynamic

forecasting mechanism was proposed to monitor small-scale

residential electricity demand and detect anomalous pattern

changes in Marinescu et al. (2014). A self-organizing map is

employed for anomalous day detection, and an ANN prediction

model changes its input neurons according to a previously

detected and recorded match in a database of anomalous days

in order to conduct demand prediction for anomalous days.

Wang et al. (2018) proposed an ensemble method for short-term

aggregate residential load forecasting, which produces the

forecasts for all load subprofiles based on hierarchical

clustering and ANNs, and then combines all the forecasts

with different weights to obtain the final forecasting result of
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the aggregate residential load. Quilumba et al. (2015) presented a

three-step aggregate residential load forecasting approach, based

on k-means clustering and ANNs. In Marinescu et al. (2013) and

Campos and Silva (2016), a comprehensive performance

comparison was made between ANNs and some other

prediction models, such as auto-regression and auto-regressive

integrated moving average. Moreover, a gated recurrent unit

(GRU) neural network based approach was developed to perform

short-term load forecasting for residential community (Zheng

et al., 2018). Also, it uses least absolute shrinkage and selection

operator (LASSO) and partial correlation analysis to explore the

influences of temperature, humidity, rainfall, and wind speed on

residential load in order to determine the input variables for the

forecasting model.

In summary, aggregate residential load is comparatively

easier to forecast than individual residential load, because

individual behaviors have the features of volatility and

uncertainty in energy consumption. As a result, existing

forecasting models on aggregate residential load have obtained

a satisfactory level of prediction accuracy.

By contrast, only a few efforts have been made towards

individual residential load forecasting. Xu et al. (2016)

proposed a k-nearest vector auto-regressive framework

with exogenous input to spatial-temporally model

household electricity demand. Dinesh et al. (2019)

presented a forecasting approach to the power

consumption of a single household, which is based on

non-intrusive load monitoring (NILM) and graph spectral

clustering. Different from Xu et al. (2016) and Dinesh et al.

(2019), Vossen et al. (2018) developed a probabilistic

forecasting model to describe the uncertainty of individual

residential load using two different types of density-

estimation ANNs respectively. In Wu et al. (2020), a

boosting-based framework for multiple kernel learning

regression was presented to forecast individual residential

load. It not only adopts boosting to learn an ensemble of

multiple kernel regressors, but also applies transfer learning

to forecast the load of the residential customer which has a

very limited amount of energy consumption data. In

addition, Gan et al. (2017) employed a quantile LSTM

network to perform probabilistic residential load

forecasting at the individual level. In Alhussein et al.

(2020), a hybrid model combining a convolutional neural

network and an LSTM network was proposed to forecast the

individual household load. Wang et al. (2020) designed a

framework for short-term individual residential load

forecasting. It firstly partitions historical load data by

clustering to train multiple LSTM models, and then uses a

fully connected cascade neural network to fuse the multiple

LSTM models. Shi et al. (2018) proposed a novel pooling-

based deep RNN to avoid overfitting during residential load

forecasting. It batches the load profiles of a group of

residential customers into an input pool in order to

increase data diversity and volume. Also, Lin et al. (2021)

presented a graph neural network based method for

individual residential load forecasting, which aims to

capture both temporal information of historical load and

spatial information of neighbouring households in order to

improve the forecasting accuracy. In Hossen et al. (2018),

different types of DNNs, such as RNNs and LSTM networks,

were applied to short-term individual residential load

forecasting and a performance comparison was conducted

among them. Furthermore, automatic hyperparameter

tuning was utilised to select an optimal hyperparameter

combination for an LSTM network in order to improve

the accuracy of individual residential load forecasting

(Kong et al., 2017).

Although a variety of forecasting models for individual

residential load have been developed, their training data is

unable to include all the cases on residential energy

consumption, as individual residential load tends to change

dramatically over time, which leads to a poor prediction

accuracy when they are applied online.

3 Methodology

3.1 Long short term memory model

As a sequence based model, RNNs are capable of establishing

excellent temporal correlation between previous and current

information (Chen et al., 2016; Tolosana et al., 2018). This

characteristic makes RNNs an ideal candidate for short-term

residential load forecasting, because the residential load

consumption pattern has a strong and complex relationship

between adjacent time steps (Kong et al., 2019). However, in

terms of the specific implementation, a special RNN, called the

LSTMnetwork, is employed in this paper, as it significantly improves

the performance of the general RNN. In this section, the RNN

architecture is firstly introduced, and then the LSTM unit is

explained.

3.1.1 Recurrent neural networks
In the working process, the RNN aims to map the input

sequence of x values into corresponding sequential outputs: y.

Specifically, the learning process conducts every single time step

from t � 1 to t � τ. For time step t, the network neuron

parameters at the lth layer update their shared states with the

following equations (Shi et al., 2018):

a(t)1 � b1 +W1 · h(t−1)1 + U1 · x(t) (1)
h(t)l � factivation(a(t)l ) (l � 1, 2,/, N) (2)

a(t)l � bl +Wl · h(t−1)l + Ul · h(t)l−1 (l � 2, 3,/, N) (3)
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y(t) � bN +WN · h(t−1)N + UN · h(t)N (4)
L � floss(y(t), y(t)

target) (5)

where x(t) is the data input at time step t, y(t) is the

corresponding forecast, y(t)
target is the true output at time step t,

h(t)l is the shared states of the lth layer at time step t, N is the total

layer number of the network, and a(t)l is the input of the lth layer

at time step t, which consists of three components: 1) the input

x(t) at time step t or the shared states h(t)l−1 of the l − 1th layer at

time step t; 2) the bias bl of the lth layer; 3) the shared states h
(t−1)
l

of the lth layer at time step t-1.

Due to their shared states, RNNs are able to learn

dependency contained in the previous time steps.

3.1.2 LSTM units
RNNs are trained by backpropagation through time, but

learning long-term dependency with RNNs is difficult because of

gradient vanishing or exploding (Kong et al., 2019). In order to

overcome these two issues, an LSTM unit is introduced, and

LSTM has gradually become the most popular structure of RNNs

in solving many time series problems.

Let {x1, x2,/, xT} denote a typical input sequence for an

LSTM unit, where xt ∈ Rk represents a k-dimensional vector of

real values at time step t. In order to establish temporal relations, the

LSTM unit defines and maintains an internal memory cell state

throughout the life cycle, which is the most important element of the

LSTMunit. Thememory cell state st−1 interacts with the intermediate

output ht−1 and the subsequent inputxt to determine which elements

of the internal state vector should be updated, maintained, or erased

according to the outputs of the previous time step and the inputs of

the present time step. Apart from the internal state, the LSTM unit

also defines the input nodegt, the input gate it, the forget gateft, and

the output gate ot. The formulations of all nodes in the LSTMunit are

presented below from (6) to (11) (Kong et al., 2019):

f t � σ(Wfxxt +Wfhht−1 + bf) (6)
it � σ(W ixxt +W ihht−1 + bi) (7)

g t � Φ(Wgxxt +Wghht−1 + bg) (8)
ot � σ(Woxxt +Wohht−1 + bo) (9)

st � g t ⊙ it + st−1 ⊙ f t (10)
ht � Φ(st) ⊙ ot (11)

where Wfx, Wfh, W ix, W ih, Wgx, Wgh, Wox, and Woh denote

the weight matrices of the corresponding inputs of the network

activation functions, ⊙ denotes the element-wise multiplication,

σ denotes the sigmoid activation function, and Φ denotes the

tanh activation function.

In each time step, the memory cell state has three operations: 1)

discard useless information from thememory cell state st; 2) add the

new information it extracted from the input xt and the intermediate

output ht−1 into the memory cell state st; 3) determine the new

intermediate output ht from the memory cell state st. Thus, the

memory cell state is capable to keep useful information for a long

time and result in RNN performance enhancement.

3.2 Dynamic mirror descent

As an online learning method, dynamic mirror descent (DMD)

is capable to incorporate a dynamic model in the learning process,

and effectively minimize the loss and estimate time-varying system

states (Hall andWillett, 2015; Ledva et al., 2015). DMD is executed by

twomain steps: 1) an observation-based update incorporates the new

measurement into the parameter prediction; 2) amodel-based update

advances the parameter prediction to the next time step. The

frequently used notations in DMD are given in Table 1, and the

detailed steps of DMD are presented in Algorithm 1.

Algorithm 1: Dynamic Mirror Descent

In order to apply DMD to adjust the forecasted value of

residential load dynamically, following the work presented in

Ledva et al. (2018), a few modifications are made to the original

DMD. The idea is that the concept of the original DMD is still

adopted but it is not a direct implementation of the original DMD. In

other words, the modified DMD considers the forecastingmodel as a

black box and simply adjusts its output with the measured and

forecasted values.Hence, themodifiedDMD is formulated as follows:

k̂t+1 � argminθ∈Θ η〈∇lt(θ̂t), θ〉 +D(θ|| k̂t) (12)
�θt+1 � Φ(�θt) (13)

θ̂t+1 � �θt+1 + k̂t+1 (14)

where ∇lt is an arbitrary sub-gradient function of lt(·); k̂t is the
adjustment variable accumulating the deviation between the

forecasted and measured values; η is the constant step size; Φ
is the residential load forecasting model; �θt is the input data ofΦ.
The model-based update (13) only computes an intermediate

prediction �θt+1 without the real measurement influencing �θt+1.
The measurement-based update and the model-based prediction

are combined in (14) to obtain a final prediction θ̂t+1.
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In this paper, for simplicity, the loss function lt(θ̂t) is selected
as lt(θ̂t) � 1

2 ‖θ̂t − yt‖22, while the Bregman divergence D(θ‖k̂t) is
selected as. D(θ‖k̂t) � 1

2 ‖θ − k̂t‖22 Thus, the convex function (12)

can be simplified as the following:

k̂t+1 � k̂t + η(yt − θ̂t) (15)

where yt and θ̂t are the real measurement and the final forecast of

residential load respectively. As a result, the modified DMD is

formed using (13–15).

4 Adaptive individual residential load
forecasting

4.1 Implementation process

Due to high volatility and uncertainty of individual

residential load, a comprehensive feature expression strategy is

devised in order to describe the details of the energy consumption

at each time step. So, the input features of a data sample St at a

particular time step t are detailed as follows:

1) the sequence of the residential load for the past T time steps

Et ∈ RT is formed as:

Et � [et−T,/, et−2, et−1] (16)

where et is the energy consumption (kWh) at time step t;

2) the sequence of the half-hourly indexes for the past T time

steps Dt ∈ RT is formed as:

Dt � [dt−T,/, dt−2, dt−1] (17)

where dt ∈ [1, 48] is the half-hourly index for time step t,

because the sampling frequency is once every half an hour;

3) the sequence of the day indexes for the past T time steps

Wt ∈ RT is formed as:

Wt � [wt−T,/, wt−2, wt−1] (18)

where wt ∈ [1, 7] is the day index for time step t, as there are

7 days in a week;

4) the sequence of the holiday signs for the past T time steps

Ht ∈ RT is formed as:

Ht � [ht−T,/, ht−2, ht−1] (19)

where ht is the holiday sign for time step t, which is either one or 2,

and one denotes non-holiday and two denotes holiday (in this paper, it

is assumed that weekdays are non-holiday and weekends are holiday).

Thus, a data sample St is a matrix of a concatenation of the

four sequences, expressed below:

St � [ET
t , D

T
t , W

T
t , H

T
t ] (20)

where ET
t ,D

T
t ,W

T
t , andH

T
t are the transposes of Et ,Dt ,Wt , andHt

respectively. In order to speed up the convergence of the forecasting

model and improve its generalization capacity, the input features are

normalized to [0, one] according to their nature. To be specific, the

min-max normalizationmethod is adopted forEt , whileDt ,Wt, and

Ht are encoded by a one-hot encoder. The one-hot encodermaps an

original element of the feature sequencewithM categories into a new

sequence with M elements, where only the new element

corresponding to the original element is one while the rest are all

zeros. Hence, a normalized data sample Ŝt is expressed as:

Ŝt � [ÊT
t , D̂

T
t , Ŵ

T
t , Ĥ

T
t ] (21)

where Ŝt is a T × N matrix and N � 1 + 48 + 7 + 2 � 58, ÊT
t , D̂

T
t ,

ŴT
t , and Ĥ

T
t are the normalized matrixes of ET

t ,D
T
t ,W

T
t , andH

T
t

respectively. Each row of the normalized data sample Ŝt is the

detailed features for the corresponding time step.

In order to performadaptive residential load forecasting, an LSTM

network is firstly well trained for each resident, and then it is applied

with themodifiedDMDadjusting the forecasting error dynamically. In

general, the proposed method goes through the following four steps

sequentially to forecast residential load: 1) the input sample is formed;

2) the input sample is normalized and fed to the well trained LSTM

network to obtain the intermediate forecast; 3) the adjustment variable

of the modified DMD is updated; 4) the final forecast is computed by

summing the adjustment variable and the intermediate forecast. The

framework of integration of deep learning and dynamicmirror descent

for adaptive individual residential load forecasting is shown in Figure 1,

and the steps of LSTM and DMD integration are detailed in

Algorithm 2.

TABLE 1 Frequently used notations in dynamic mirror descent.

Notation Meaning

θ the system state

Θ a convex set

xt the observed data point

ηt the step size

Φt a known dynamic model based on prior knowledge

θt the intermediate forecast

θ̂t the final forecast

f t(·) a convex function from the environment

lt(·) a convex loss function

r(·) a convex regularization function

∇f t(·) an arbitrary subgradient function of f t(·)
〈·, ·〉 the dot product operator

D (θ‖θ̂t) the Bregman divergence measuring the distance between θ and θ̂t
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Algorithm 2: LSTM and DMD Integration for Adaptive

Individual Residential Load Forecasting

4.2 Dataset description

The dataset used in this paper is from the Smart Metering

Electricity Customer Behaviour Trials initiated by Commission

FIGURE 1
Framework of integration of deep learning and dynamic mirror descent for adaptive individual residential load forecasting.

TABLE 2 Experiment parameters of adaptive individual residential load
forecasting based on deep learning and dynamic mirror descent.

Parameters Values

RNN layer number 3

Fully-connected layer number 1

Neuron number of RNN layer 64

Neuron number of fully-connected layer 64

Batch size 128

Time length of input 24

RNN unit LSTM

Activation function of RNN layer tanh

Activation function of fully-connected layer linear

Optimization method AdamOptimizer

Training epoch 25

Learning rate 0.001

Loss function RMSE
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for Energy Regulation in Ireland (Commission for Energy

Regulation, 2012). The trials lasted from July 2009 to

December 2010 with over 5000 Irish residential customers

and small and medium enterprises (SMEs) participating. In

the trials, there are 929 1-E-E customers, which means that

they are all residential customers (1) with the controlled stimulus

(E) and the controlled tariff (E). These customers are billed at the

flat rate without any stimulus, and therefore are most

representative because the majority of residential customers

outside the trials are of this type. Among these 929 customers,

782 customers have a complete record of energy consumption

throughout the trials. In this paper, 750 1-E-E customers with a

complete record are randomly selected as the experiment

dataset.

4.3 Experiment setup

The full data of a single residential customer is divided into a

training dataset and a test dataset with a ratio of 9:1. So, for each

resident, 90% of the data samples are used for training, while the

rest of 10% are used for testing. In addition, as this paper is not

focused on improving the prediction accuracy via the optimal

network structure, hyperparameter fine-tuning is not conducted

on the LSTM network. All the experiment parameters are

presented in Table 2.

5 Results and discussion

In this section, a performance comparison was firstly made

between the proposed residential load forecasting method and a

published benchmark method presented in Kong et al. (2019). It is

noted that the benchmarkmethod only uses the same LSTMnetwork

as the proposed method but does not apply any online learning

method. RMSE and MAE are employed as the performance indexes

for residential load forecasting, formulated as follows:

RMSE �

������������∑N
t�1(ŷt − yt)2

N

√√
(22)

MAE �
∑N

t�1
∣∣∣∣∣∣ŷt − yt

∣∣∣∣∣∣
N

(23)

where ŷt is the forecasted value, yt is the real value, and N is the

size of the test dataset. Furthermore, the effect of the parameter η

of the modified DMD on the proposed residential load

forecasting method was investigated. In this paper, the

adjustment variable is initialised as 0.

5.1 Performance analysis of adaptive
individual residential load forecasting

A performance comparison was conducted between the

proposed and benchmark methods in terms of prediction

accuracy. In this case, the parameter η of the modified DMD

is set as 1.0 × 10−5, 1.0 × 10−4, 1.0 × 10−3, 1.0 × 10−2, 1.0 × 10−1, and

1.0×100 respectively, and the optimal forecasting result obtained

is regarded as the result of the proposed method. The results of

both methods are presented in Table 3.

It is noted that Table 3 describes the average RMSE andMAE

of all the residents. In Table 3, the proposed method performs

TABLE 3 Residential load forecasting results of the proposed and
benchmark methods.

Index
(kWh)

Benchmark
Method

Proposed
Method

Improvement
percentage (%)

MAE 0.285 0.252 11.6%

RMSE 0.493 0.448 9.1%

FIGURE 2
RMSE and MAE reduction of the proposed method compared to the benchmark method.
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much better than the benchmark method, in terms of both RMSE

and MAE. Besides, the improvement percentage of MAE is

higher than that of RMSE, because MAE and RMSE indicate

the forecasting performance from two different perspectives. To

be specific, MAE, which reflects the mean of errors, regards every

error equally and averages all the errors, while RMSE, which

reflects the fluctuation of errors, strengthens the large error and

weakens the small error.

The reason for the significant performance improvement of

the proposed method can be explained as follows. As the

adjustment variable k̂t of the modified DMD is capable to

update itself based on the errors between the forecasts and the

real measurements of the previous time steps, the proposed

method can effectively adjust the intermediate forecast �θt of

the current time step to obtain the final forecast θ̂t.

In addition, Figure 2 presents the RMSE and MAE reduction

of the proposed method across all the residents compared to the

benchmark method, while Figure 3 presents the statistics of

improvement percentage of the proposed method compared

to the benchmark method.

In Figure 2, it can be clearly seen that the proposed

method achieves different levels of improvements on a

large number of residents. More specifically, some

residents receive significant RMSE and MAE reductions

FIGURE 3
Statistics of improvement percentage of the proposed method compared to the benchmark method.

FIGURE 4
Load profiles of the proposed and benchmark methods (Resident 3844).
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FIGURE 5
Effect of parameter η on the forecasting performance of the proposed method: 1) η = 1.0 × 10−5, 2) η = 1.0 × 10−4, 3) η = 1.0 × 10−3, 4) η = 1.0 ×
10−2, 5) η = 1.0 × 10−1, 6) η = 1.0×100. (A) MAE reduction. (B) RMSE reduction.

FIGURE 6
Optimal values of parameter η for the proposed method to achieve the minimum RMSE and MAE values.
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(e.g., from 0.4 to 1.0), but others only receive slight RMSE and

MAE reductions (e.g., from 0.01 to 0.05). It is also noted that

some residents obtain an RMSE decrease but an MAE

increase, while others obtain the opposite result. Besides,

there is no performance difference between the proposed and

benchmark methods for a few residents. This demonstrates

that the modified DMD fails to effectively adjust the

forecasting error over time, mainly because of the great

complexity of these residential load profiles.

In Figure 3, there are totally 555 + 116 + 62 + 5 =

738 residents with an RMSE reduction, which account for

738/750 = 98.4% of all residents. Among them, most residents

obtain an RMSE reduction of less than 20%, which account for

(555 + 116)/750 = 89.47%. Besides, only five residents obtain an

RMSE reduction of even more than 60%. Similarly, a total of

443 + 87 + 85 + 17 = 632 residents receive an MAE reduction,

which account for 632/750 = 84.27%. Among them, most

residents obtain an MAE reduction of less than 20%, which

account for (443 + 87)/750 = 70.67%. Only 17 residents obtain an

MAE reduction of even more than 60%. It is also noted that

118 residents fail to obtain an MAE reduction, while only

12 residents fail to obtain an RMSE reduction. This fact

indicates that the proposed method tends to decrease RMSE

in comparison with MAE.

Furthermore, Figure 4 shows the load profiles of a random

resident forecasted by the proposed and benchmark methods

FIGURE 7
Load profiles of the proposed method for different values of parameter η (Resident 1425).

FIGURE 8
Forecasting errors of the proposed method for different values of parameter η (Resident 1425).
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during a random week (Monday 29/11/2010—Sunday 5/12/

2010). It is obvious in Figure 4 that the forecasted load profile

of the proposed method is much closer to the real load profile

than that of the benchmark method. To be specific, when a

dramatic increase or decrease of the residential load occurs, the

proposed method can capture the change rapidly. Also, it can

track the residential load stably, when the residential load only

fluctuates slightly. By contrast, the benchmark method is unable

to forecast accurately, when the residential load changes

significantly over time.

5.2 Effect of parameter η on performance
of adaptive individual residential load
forecasting

As the parameter η plays an important role in the modified

DMD, its effect on the forecasting performance of the proposed

method was further investigated. Figure 5 depicts the MAE and

RMSE reduction of the proposed method across all residents

compared to the benchmark method, when the modified DMD is

applied with different values of the parameter η.

It can be clearly seen in Figure 5A that the proposed

method has the worst performance when η is 1.0×100, because

a large number of residents fail to receive an MAE reduction.

However, when η is 1.0 × 10−1, 1.0 × 10−2, and 1.0 × 10−3, the

proposed method performs much better, because a majority

of residents receive different MAE reductions. Only a small

amount of residents receive an MAE reduction, when η is

1.0 × 10−4 and 1.0 × 10−5. It is also noted that there are a

variety of trends of MAE reductions among all the residents

as η changes from 1.0×100 to 1.0 × 10−5. Likewise, in

Figure 5B, in terms of RMSE, the proposed method has

the worst performance when η is 1.0×100, but performs

much better when η is 1.0 × 10−1, 1.0 × 10−2, and 1.0 ×

10−3. Only a small number of residents obtain an RMSE

reduction, when η is 1.0 × 10−4 and 1.0 × 10−5. Besides,

different trends of RMSE reductions can be seen among all

the residents, as η changes from 1.0×100 to 1.0 × 10−5.

The reason for the poor forecasting performance of the

proposed method, when η is too small or too large, can be

explained as follows. In (15), if η is too small, the deviation

between the real measurement and the final forecast at the

current time step cannot be accumulated effectively in the

adjustment variable at the next time step. Thus, the modified

DMD is unable to adjust the intermediate forecast properly

over time. But, if η is too large, the deviation between the real

measurement and the final forecast at the current time step

accounts for a large proportion in the adjustment variable at

the next time step, significantly weakening the accumulation

of the deviations of the previous time steps. Therefore, the

modified DMD fails to track the forecasting error accurately

over time.

Furthermore, Figure 6 shows the optimal values of the

parameter η when the proposed method achieves the best

performance in terms of RMSE and MAE respectively. It is

obvious in Figure 6 that the proposed method rarely achieves

the minimum MAE value when η is 1.0×100 and 1.0 × 10−5.

However, it is capable to achieve the minimum MAE value on a

large amount of residents when η is 1.0 × 10−3 and 1.0 × 10−4.

Similarly, the proposed method is able to achieve the minimum

RMSE value only on a few residents when η is 1.0×100 and 1.0 ×

10−5. But, it achieves the minimum RMSE value on a majority of

residents when η is 1.0 × 10−1 and 1.0 × 10−2. As MAE and RMSE

measure errors from two perspectives, the optimal values of η are

different, when the proposed method achieves the minimum

MAE and RMSE values on a single resident.

In addition, Figure 7 describes the load profiles of a random

resident forecasted by the proposed method on a random day

(Wednesday 22/12/2010) when the modified DMD is applied

with different values of the parameter η, while Figure 8 describes

the forecasting errors of the proposed method on this resident as the

parameter η changes.

In Figure 7, the proposed method performs forecasting

accurately at most time steps throughout the day, when η is

1.0 × 10−2 and 1.0 × 10−3. By contrast, when η is 1.0 × 10−4 and

1.0 × 10−5, the forecasted load profiles of the proposed method are

quite close to that of the benchmark method. When η is 1.0×100 and

1.0 × 10−1, there is a significant deviation between the real load profile

and the forecasted load profiles of the proposed method at many

time steps. This is mainly because a too small or too large value of η

has a negative influence on the modified DMD. In Figure 8, MAE of

the proposedmethod firstly decreases from η= 1.0 × 10−5 to η= 1.0 ×

10−3, and then increases from η = 1.0 × 10−3 to η = 1.0×100. The

proposedmethod achieves the lowestMAE value of 0.3379 when η is

1.0 × 10−3. Similarly, RMSE of the proposed method firstly decreases

from η = 1.0 × 10−5 to η = 1.0 × 10−2, and then increases from η =

1.0 × 10−2 to η = 1.0×100. The proposed method achieves the lowest

RMSE value of 0.5355 when η is 1.0 × 10−2.

6 Conclusion

This paper has presented an adaptive individual

residential load forecasting method, which integrates deep

learning and dynamic mirror descent to address the issue of

great volatility of individual residential load. The original

DMD is modified to become feasible for dynamic residential

load forecasting. Besides, a detailed feature expression

strategy is devised to provide the proposed method with

sufficient information of energy consumption at each time

step. The experimental results have shown that the proposed

method has improved the prediction accuracy substantially

by 9.1% in RMSE and 11.6% in MAE, in comparison with the

published benchmark method. In addition, the effect of the

parameter η of the modified DMD on the proposed method is
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further explored, and the comparison results have indicated

that the optimal value of η can be found out to achieve the

maximum performance improvement.

Future work will focus on fine-tuning techniques to combine

with deep learning and explore their effects on residential load

forecasting. Optimization techniques will also be applied to

search for the optimal value of the parameter η of the

modified DMD in a continuous space in our future work.
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